| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the bison parser for LLVM assembly languages files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| %{ |
| #include "ParserInternals.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Assembly/AutoUpgrade.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <iostream> |
| #include <list> |
| #include <utility> |
| |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit |
| int yylex(); // declaration" of xxx warnings. |
| int yyparse(); |
| |
| namespace llvm { |
| std::string CurFilename; |
| } |
| using namespace llvm; |
| |
| static Module *ParserResult; |
| |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output |
| // relating to upreferences in the input stream. |
| // |
| //#define DEBUG_UPREFS 1 |
| #ifdef DEBUG_UPREFS |
| #define UR_OUT(X) std::cerr << X |
| #else |
| #define UR_OUT(X) |
| #endif |
| |
| #define YYERROR_VERBOSE 1 |
| |
| static bool ObsoleteVarArgs; |
| static bool NewVarArgs; |
| static BasicBlock *CurBB; |
| static GlobalVariable *CurGV; |
| |
| |
| // This contains info used when building the body of a function. It is |
| // destroyed when the function is completed. |
| // |
| typedef std::vector<Value *> ValueList; // Numbered defs |
| static void |
| ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers, |
| std::map<const Type *,ValueList> *FutureLateResolvers = 0); |
| |
| static struct PerModuleInfo { |
| Module *CurrentModule; |
| std::map<const Type *, ValueList> Values; // Module level numbered definitions |
| std::map<const Type *,ValueList> LateResolveValues; |
| std::vector<PATypeHolder> Types; |
| std::map<ValID, PATypeHolder> LateResolveTypes; |
| |
| /// PlaceHolderInfo - When temporary placeholder objects are created, remember |
| /// how they were referenced and one which line of the input they came from so |
| /// that we can resolve them later and print error messages as appropriate. |
| std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo; |
| |
| // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward |
| // references to global values. Global values may be referenced before they |
| // are defined, and if so, the temporary object that they represent is held |
| // here. This is used for forward references of GlobalValues. |
| // |
| typedef std::map<std::pair<const PointerType *, |
| ValID>, GlobalValue*> GlobalRefsType; |
| GlobalRefsType GlobalRefs; |
| |
| void ModuleDone() { |
| // If we could not resolve some functions at function compilation time |
| // (calls to functions before they are defined), resolve them now... Types |
| // are resolved when the constant pool has been completely parsed. |
| // |
| ResolveDefinitions(LateResolveValues); |
| |
| // Check to make sure that all global value forward references have been |
| // resolved! |
| // |
| if (!GlobalRefs.empty()) { |
| std::string UndefinedReferences = "Unresolved global references exist:\n"; |
| |
| for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); |
| I != E; ++I) { |
| UndefinedReferences += " " + I->first.first->getDescription() + " " + |
| I->first.second.getName() + "\n"; |
| } |
| ThrowException(UndefinedReferences); |
| } |
| |
| // Look for intrinsic functions and CallInst that need to be upgraded |
| for (Module::iterator FI = CurrentModule->begin(), |
| FE = CurrentModule->end(); FI != FE; ) |
| UpgradeCallsToIntrinsic(FI++); |
| |
| Values.clear(); // Clear out function local definitions |
| Types.clear(); |
| CurrentModule = 0; |
| } |
| |
| // GetForwardRefForGlobal - Check to see if there is a forward reference |
| // for this global. If so, remove it from the GlobalRefs map and return it. |
| // If not, just return null. |
| GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { |
| // Check to see if there is a forward reference to this global variable... |
| // if there is, eliminate it and patch the reference to use the new def'n. |
| GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); |
| GlobalValue *Ret = 0; |
| if (I != GlobalRefs.end()) { |
| Ret = I->second; |
| GlobalRefs.erase(I); |
| } |
| return Ret; |
| } |
| } CurModule; |
| |
| static struct PerFunctionInfo { |
| Function *CurrentFunction; // Pointer to current function being created |
| |
| std::map<const Type*, ValueList> Values; // Keep track of #'d definitions |
| std::map<const Type*, ValueList> LateResolveValues; |
| bool isDeclare; // Is this function a forward declararation? |
| |
| /// BBForwardRefs - When we see forward references to basic blocks, keep |
| /// track of them here. |
| std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs; |
| std::vector<BasicBlock*> NumberedBlocks; |
| unsigned NextBBNum; |
| |
| inline PerFunctionInfo() { |
| CurrentFunction = 0; |
| isDeclare = false; |
| } |
| |
| inline void FunctionStart(Function *M) { |
| CurrentFunction = M; |
| NextBBNum = 0; |
| } |
| |
| void FunctionDone() { |
| NumberedBlocks.clear(); |
| |
| // Any forward referenced blocks left? |
| if (!BBForwardRefs.empty()) |
| ThrowException("Undefined reference to label " + |
| BBForwardRefs.begin()->first->getName()); |
| |
| // Resolve all forward references now. |
| ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); |
| |
| Values.clear(); // Clear out function local definitions |
| CurrentFunction = 0; |
| isDeclare = false; |
| } |
| } CurFun; // Info for the current function... |
| |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle definitions of all the types |
| //===----------------------------------------------------------------------===// |
| |
| static int InsertValue(Value *V, |
| std::map<const Type*,ValueList> &ValueTab = CurFun.Values) { |
| if (V->hasName()) return -1; // Is this a numbered definition? |
| |
| // Yes, insert the value into the value table... |
| ValueList &List = ValueTab[V->getType()]; |
| List.push_back(V); |
| return List.size()-1; |
| } |
| |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { |
| switch (D.Type) { |
| case ValID::NumberVal: // Is it a numbered definition? |
| // Module constants occupy the lowest numbered slots... |
| if ((unsigned)D.Num < CurModule.Types.size()) |
| return CurModule.Types[(unsigned)D.Num]; |
| break; |
| case ValID::NameVal: // Is it a named definition? |
| if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) { |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| break; |
| default: |
| ThrowException("Internal parser error: Invalid symbol type reference!"); |
| } |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| if (DoNotImprovise) return 0; // Do we just want a null to be returned? |
| |
| |
| if (inFunctionScope()) { |
| if (D.Type == ValID::NameVal) |
| ThrowException("Reference to an undefined type: '" + D.getName() + "'"); |
| else |
| ThrowException("Reference to an undefined type: #" + itostr(D.Num)); |
| } |
| |
| std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) |
| return I->second; |
| |
| Type *Typ = OpaqueType::get(); |
| CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); |
| return Typ; |
| } |
| |
| static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) { |
| SymbolTable &SymTab = |
| inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() : |
| CurModule.CurrentModule->getSymbolTable(); |
| return SymTab.lookup(Ty, Name); |
| } |
| |
| // getValNonImprovising - Look up the value specified by the provided type and |
| // the provided ValID. If the value exists and has already been defined, return |
| // it. Otherwise return null. |
| // |
| static Value *getValNonImprovising(const Type *Ty, const ValID &D) { |
| if (isa<FunctionType>(Ty)) |
| ThrowException("Functions are not values and " |
| "must be referenced as pointers"); |
| |
| switch (D.Type) { |
| case ValID::NumberVal: { // Is it a numbered definition? |
| unsigned Num = (unsigned)D.Num; |
| |
| // Module constants occupy the lowest numbered slots... |
| std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty); |
| if (VI != CurModule.Values.end()) { |
| if (Num < VI->second.size()) |
| return VI->second[Num]; |
| Num -= VI->second.size(); |
| } |
| |
| // Make sure that our type is within bounds |
| VI = CurFun.Values.find(Ty); |
| if (VI == CurFun.Values.end()) return 0; |
| |
| // Check that the number is within bounds... |
| if (VI->second.size() <= Num) return 0; |
| |
| return VI->second[Num]; |
| } |
| |
| case ValID::NameVal: { // Is it a named definition? |
| Value *N = lookupInSymbolTable(Ty, std::string(D.Name)); |
| if (N == 0) return 0; |
| |
| D.destroy(); // Free old strdup'd memory... |
| return N; |
| } |
| |
| // Check to make sure that "Ty" is an integral type, and that our |
| // value will fit into the specified type... |
| case ValID::ConstSIntVal: // Is it a constant pool reference?? |
| if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) |
| ThrowException("Signed integral constant '" + |
| itostr(D.ConstPool64) + "' is invalid for type '" + |
| Ty->getDescription() + "'!"); |
| return ConstantSInt::get(Ty, D.ConstPool64); |
| |
| case ValID::ConstUIntVal: // Is it an unsigned const pool reference? |
| if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { |
| if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { |
| ThrowException("Integral constant '" + utostr(D.UConstPool64) + |
| "' is invalid or out of range!"); |
| } else { // This is really a signed reference. Transmogrify. |
| return ConstantSInt::get(Ty, D.ConstPool64); |
| } |
| } else { |
| return ConstantUInt::get(Ty, D.UConstPool64); |
| } |
| |
| case ValID::ConstFPVal: // Is it a floating point const pool reference? |
| if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) |
| ThrowException("FP constant invalid for type!!"); |
| return ConstantFP::get(Ty, D.ConstPoolFP); |
| |
| case ValID::ConstNullVal: // Is it a null value? |
| if (!isa<PointerType>(Ty)) |
| ThrowException("Cannot create a a non pointer null!"); |
| return ConstantPointerNull::get(cast<PointerType>(Ty)); |
| |
| case ValID::ConstUndefVal: // Is it an undef value? |
| return UndefValue::get(Ty); |
| |
| case ValID::ConstZeroVal: // Is it a zero value? |
| return Constant::getNullValue(Ty); |
| |
| case ValID::ConstantVal: // Fully resolved constant? |
| if (D.ConstantValue->getType() != Ty) |
| ThrowException("Constant expression type different from required type!"); |
| return D.ConstantValue; |
| |
| case ValID::InlineAsmVal: { // Inline asm expression |
| const PointerType *PTy = dyn_cast<PointerType>(Ty); |
| const FunctionType *FTy = |
| PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; |
| if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) |
| ThrowException("Invalid type for asm constraint string!"); |
| InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, |
| D.IAD->HasSideEffects); |
| D.destroy(); // Free InlineAsmDescriptor. |
| return IA; |
| } |
| default: |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } // End of switch |
| |
| assert(0 && "Unhandled case!"); |
| return 0; |
| } |
| |
| // getVal - This function is identical to getValNonImprovising, except that if a |
| // value is not already defined, it "improvises" by creating a placeholder var |
| // that looks and acts just like the requested variable. When the value is |
| // defined later, all uses of the placeholder variable are replaced with the |
| // real thing. |
| // |
| static Value *getVal(const Type *Ty, const ValID &ID) { |
| if (Ty == Type::LabelTy) |
| ThrowException("Cannot use a basic block here"); |
| |
| // See if the value has already been defined. |
| Value *V = getValNonImprovising(Ty, ID); |
| if (V) return V; |
| |
| if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty)) |
| ThrowException("Invalid use of a composite type!"); |
| |
| // If we reached here, we referenced either a symbol that we don't know about |
| // or an id number that hasn't been read yet. We may be referencing something |
| // forward, so just create an entry to be resolved later and get to it... |
| // |
| V = new Argument(Ty); |
| |
| // Remember where this forward reference came from. FIXME, shouldn't we try |
| // to recycle these things?? |
| CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID, |
| llvmAsmlineno))); |
| |
| if (inFunctionScope()) |
| InsertValue(V, CurFun.LateResolveValues); |
| else |
| InsertValue(V, CurModule.LateResolveValues); |
| return V; |
| } |
| |
| /// getBBVal - This is used for two purposes: |
| /// * If isDefinition is true, a new basic block with the specified ID is being |
| /// defined. |
| /// * If isDefinition is true, this is a reference to a basic block, which may |
| /// or may not be a forward reference. |
| /// |
| static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) { |
| assert(inFunctionScope() && "Can't get basic block at global scope!"); |
| |
| std::string Name; |
| BasicBlock *BB = 0; |
| switch (ID.Type) { |
| default: ThrowException("Illegal label reference " + ID.getName()); |
| case ValID::NumberVal: // Is it a numbered definition? |
| if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size()) |
| CurFun.NumberedBlocks.resize(ID.Num+1); |
| BB = CurFun.NumberedBlocks[ID.Num]; |
| break; |
| case ValID::NameVal: // Is it a named definition? |
| Name = ID.Name; |
| if (Value *N = CurFun.CurrentFunction-> |
| getSymbolTable().lookup(Type::LabelTy, Name)) |
| BB = cast<BasicBlock>(N); |
| break; |
| } |
| |
| // See if the block has already been defined. |
| if (BB) { |
| // If this is the definition of the block, make sure the existing value was |
| // just a forward reference. If it was a forward reference, there will be |
| // an entry for it in the PlaceHolderInfo map. |
| if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) |
| // The existing value was a definition, not a forward reference. |
| ThrowException("Redefinition of label " + ID.getName()); |
| |
| ID.destroy(); // Free strdup'd memory. |
| return BB; |
| } |
| |
| // Otherwise this block has not been seen before. |
| BB = new BasicBlock("", CurFun.CurrentFunction); |
| if (ID.Type == ValID::NameVal) { |
| BB->setName(ID.Name); |
| } else { |
| CurFun.NumberedBlocks[ID.Num] = BB; |
| } |
| |
| // If this is not a definition, keep track of it so we can use it as a forward |
| // reference. |
| if (!isDefinition) { |
| // Remember where this forward reference came from. |
| CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno); |
| } else { |
| // The forward declaration could have been inserted anywhere in the |
| // function: insert it into the correct place now. |
| CurFun.CurrentFunction->getBasicBlockList().remove(BB); |
| CurFun.CurrentFunction->getBasicBlockList().push_back(BB); |
| } |
| ID.destroy(); |
| return BB; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Code to handle forward references in instructions |
| //===----------------------------------------------------------------------===// |
| // |
| // This code handles the late binding needed with statements that reference |
| // values not defined yet... for example, a forward branch, or the PHI node for |
| // a loop body. |
| // |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references |
| // and back patchs after we are done. |
| // |
| |
| // ResolveDefinitions - If we could not resolve some defs at parsing |
| // time (forward branches, phi functions for loops, etc...) resolve the |
| // defs now... |
| // |
| static void |
| ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers, |
| std::map<const Type*,ValueList> *FutureLateResolvers) { |
| // Loop over LateResolveDefs fixing up stuff that couldn't be resolved |
| for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(), |
| E = LateResolvers.end(); LRI != E; ++LRI) { |
| ValueList &List = LRI->second; |
| while (!List.empty()) { |
| Value *V = List.back(); |
| List.pop_back(); |
| |
| std::map<Value*, std::pair<ValID, int> >::iterator PHI = |
| CurModule.PlaceHolderInfo.find(V); |
| assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!"); |
| |
| ValID &DID = PHI->second.first; |
| |
| Value *TheRealValue = getValNonImprovising(LRI->first, DID); |
| if (TheRealValue) { |
| V->replaceAllUsesWith(TheRealValue); |
| delete V; |
| CurModule.PlaceHolderInfo.erase(PHI); |
| } else if (FutureLateResolvers) { |
| // Functions have their unresolved items forwarded to the module late |
| // resolver table |
| InsertValue(V, *FutureLateResolvers); |
| } else { |
| if (DID.Type == ValID::NameVal) |
| ThrowException("Reference to an invalid definition: '" +DID.getName()+ |
| "' of type '" + V->getType()->getDescription() + "'", |
| PHI->second.second); |
| else |
| ThrowException("Reference to an invalid definition: #" + |
| itostr(DID.Num) + " of type '" + |
| V->getType()->getDescription() + "'", |
| PHI->second.second); |
| } |
| } |
| } |
| |
| LateResolvers.clear(); |
| } |
| |
| // ResolveTypeTo - A brand new type was just declared. This means that (if |
| // name is not null) things referencing Name can be resolved. Otherwise, things |
| // refering to the number can be resolved. Do this now. |
| // |
| static void ResolveTypeTo(char *Name, const Type *ToTy) { |
| ValID D; |
| if (Name) D = ValID::create(Name); |
| else D = ValID::create((int)CurModule.Types.size()); |
| |
| std::map<ValID, PATypeHolder>::iterator I = |
| CurModule.LateResolveTypes.find(D); |
| if (I != CurModule.LateResolveTypes.end()) { |
| ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy); |
| CurModule.LateResolveTypes.erase(I); |
| } |
| } |
| |
| // setValueName - Set the specified value to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is free'd by this function. |
| // |
| static void setValueName(Value *V, char *NameStr) { |
| if (NameStr) { |
| std::string Name(NameStr); // Copy string |
| free(NameStr); // Free old string |
| |
| if (V->getType() == Type::VoidTy) |
| ThrowException("Can't assign name '" + Name+"' to value with void type!"); |
| |
| assert(inFunctionScope() && "Must be in function scope!"); |
| SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable(); |
| if (ST.lookup(V->getType(), Name)) |
| ThrowException("Redefinition of value named '" + Name + "' in the '" + |
| V->getType()->getDescription() + "' type plane!"); |
| |
| // Set the name. |
| V->setName(Name); |
| } |
| } |
| |
| /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, |
| /// this is a declaration, otherwise it is a definition. |
| static GlobalVariable * |
| ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage, |
| bool isConstantGlobal, const Type *Ty, |
| Constant *Initializer) { |
| if (isa<FunctionType>(Ty)) |
| ThrowException("Cannot declare global vars of function type!"); |
| |
| const PointerType *PTy = PointerType::get(Ty); |
| |
| std::string Name; |
| if (NameStr) { |
| Name = NameStr; // Copy string |
| free(NameStr); // Free old string |
| } |
| |
| // See if this global value was forward referenced. If so, recycle the |
| // object. |
| ValID ID; |
| if (!Name.empty()) { |
| ID = ValID::create((char*)Name.c_str()); |
| } else { |
| ID = ValID::create((int)CurModule.Values[PTy].size()); |
| } |
| |
| if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { |
| // Move the global to the end of the list, from whereever it was |
| // previously inserted. |
| GlobalVariable *GV = cast<GlobalVariable>(FWGV); |
| CurModule.CurrentModule->getGlobalList().remove(GV); |
| CurModule.CurrentModule->getGlobalList().push_back(GV); |
| GV->setInitializer(Initializer); |
| GV->setLinkage(Linkage); |
| GV->setConstant(isConstantGlobal); |
| InsertValue(GV, CurModule.Values); |
| return GV; |
| } |
| |
| // If this global has a name, check to see if there is already a definition |
| // of this global in the module. If so, merge as appropriate. Note that |
| // this is really just a hack around problems in the CFE. :( |
| if (!Name.empty()) { |
| // We are a simple redefinition of a value, check to see if it is defined |
| // the same as the old one. |
| if (GlobalVariable *EGV = |
| CurModule.CurrentModule->getGlobalVariable(Name, Ty)) { |
| // We are allowed to redefine a global variable in two circumstances: |
| // 1. If at least one of the globals is uninitialized or |
| // 2. If both initializers have the same value. |
| // |
| if (!EGV->hasInitializer() || !Initializer || |
| EGV->getInitializer() == Initializer) { |
| |
| // Make sure the existing global version gets the initializer! Make |
| // sure that it also gets marked const if the new version is. |
| if (Initializer && !EGV->hasInitializer()) |
| EGV->setInitializer(Initializer); |
| if (isConstantGlobal) |
| EGV->setConstant(true); |
| EGV->setLinkage(Linkage); |
| return EGV; |
| } |
| |
| ThrowException("Redefinition of global variable named '" + Name + |
| "' in the '" + Ty->getDescription() + "' type plane!"); |
| } |
| } |
| |
| // Otherwise there is no existing GV to use, create one now. |
| GlobalVariable *GV = |
| new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, |
| CurModule.CurrentModule); |
| InsertValue(GV, CurModule.Values); |
| return GV; |
| } |
| |
| // setTypeName - Set the specified type to the name given. The name may be |
| // null potentially, in which case this is a noop. The string passed in is |
| // assumed to be a malloc'd string buffer, and is freed by this function. |
| // |
| // This function returns true if the type has already been defined, but is |
| // allowed to be redefined in the specified context. If the name is a new name |
| // for the type plane, it is inserted and false is returned. |
| static bool setTypeName(const Type *T, char *NameStr) { |
| assert(!inFunctionScope() && "Can't give types function-local names!"); |
| if (NameStr == 0) return false; |
| |
| std::string Name(NameStr); // Copy string |
| free(NameStr); // Free old string |
| |
| // We don't allow assigning names to void type |
| if (T == Type::VoidTy) |
| ThrowException("Can't assign name '" + Name + "' to the void type!"); |
| |
| // Set the type name, checking for conflicts as we do so. |
| bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T); |
| |
| if (AlreadyExists) { // Inserting a name that is already defined??? |
| const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); |
| assert(Existing && "Conflict but no matching type?"); |
| |
| // There is only one case where this is allowed: when we are refining an |
| // opaque type. In this case, Existing will be an opaque type. |
| if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) { |
| // We ARE replacing an opaque type! |
| const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T); |
| return true; |
| } |
| |
| // Otherwise, this is an attempt to redefine a type. That's okay if |
| // the redefinition is identical to the original. This will be so if |
| // Existing and T point to the same Type object. In this one case we |
| // allow the equivalent redefinition. |
| if (Existing == T) return true; // Yes, it's equal. |
| |
| // Any other kind of (non-equivalent) redefinition is an error. |
| ThrowException("Redefinition of type named '" + Name + "' in the '" + |
| T->getDescription() + "' type plane!"); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code for handling upreferences in type names... |
| // |
| |
| // TypeContains - Returns true if Ty directly contains E in it. |
| // |
| static bool TypeContains(const Type *Ty, const Type *E) { |
| return std::find(Ty->subtype_begin(), Ty->subtype_end(), |
| E) != Ty->subtype_end(); |
| } |
| |
| namespace { |
| struct UpRefRecord { |
| // NestingLevel - The number of nesting levels that need to be popped before |
| // this type is resolved. |
| unsigned NestingLevel; |
| |
| // LastContainedTy - This is the type at the current binding level for the |
| // type. Every time we reduce the nesting level, this gets updated. |
| const Type *LastContainedTy; |
| |
| // UpRefTy - This is the actual opaque type that the upreference is |
| // represented with. |
| OpaqueType *UpRefTy; |
| |
| UpRefRecord(unsigned NL, OpaqueType *URTy) |
| : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {} |
| }; |
| } |
| |
| // UpRefs - A list of the outstanding upreferences that need to be resolved. |
| static std::vector<UpRefRecord> UpRefs; |
| |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is |
| /// called. It loops through the UpRefs vector, which is a list of the |
| /// currently active types. For each type, if the up reference is contained in |
| /// the newly completed type, we decrement the level count. When the level |
| /// count reaches zero, the upreferenced type is the type that is passed in: |
| /// thus we can complete the cycle. |
| /// |
| static PATypeHolder HandleUpRefs(const Type *ty) { |
| if (!ty->isAbstract()) return ty; |
| PATypeHolder Ty(ty); |
| UR_OUT("Type '" << Ty->getDescription() << |
| "' newly formed. Resolving upreferences.\n" << |
| UpRefs.size() << " upreferences active!\n"); |
| |
| // If we find any resolvable upreferences (i.e., those whose NestingLevel goes |
| // to zero), we resolve them all together before we resolve them to Ty. At |
| // the end of the loop, if there is anything to resolve to Ty, it will be in |
| // this variable. |
| OpaqueType *TypeToResolve = 0; |
| |
| for (unsigned i = 0; i != UpRefs.size(); ++i) { |
| UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " |
| << UpRefs[i].second->getDescription() << ") = " |
| << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n"); |
| if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { |
| // Decrement level of upreference |
| unsigned Level = --UpRefs[i].NestingLevel; |
| UpRefs[i].LastContainedTy = Ty; |
| UR_OUT(" Uplevel Ref Level = " << Level << "\n"); |
| if (Level == 0) { // Upreference should be resolved! |
| if (!TypeToResolve) { |
| TypeToResolve = UpRefs[i].UpRefTy; |
| } else { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].second->getDescription() << "\n"; |
| std::string OldName = UpRefs[i].UpRefTy->getDescription()); |
| UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); |
| UR_OUT(" * Type '" << OldName << "' refined upreference to: " |
| << (const void*)Ty << ", " << Ty->getDescription() << "\n"); |
| } |
| UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... |
| --i; // Do not skip the next element... |
| } |
| } |
| } |
| |
| if (TypeToResolve) { |
| UR_OUT(" * Resolving upreference for " |
| << UpRefs[i].second->getDescription() << "\n"; |
| std::string OldName = TypeToResolve->getDescription()); |
| TypeToResolve->refineAbstractTypeTo(Ty); |
| } |
| |
| return Ty; |
| } |
| |
| |
| // common code from the two 'RunVMAsmParser' functions |
| static Module * RunParser(Module * M) { |
| |
| llvmAsmlineno = 1; // Reset the current line number... |
| ObsoleteVarArgs = false; |
| NewVarArgs = false; |
| |
| CurModule.CurrentModule = M; |
| yyparse(); // Parse the file, potentially throwing exception |
| |
| Module *Result = ParserResult; |
| ParserResult = 0; |
| |
| //Not all functions use vaarg, so make a second check for ObsoleteVarArgs |
| { |
| Function* F; |
| if ((F = Result->getNamedFunction("llvm.va_start")) |
| && F->getFunctionType()->getNumParams() == 0) |
| ObsoleteVarArgs = true; |
| if((F = Result->getNamedFunction("llvm.va_copy")) |
| && F->getFunctionType()->getNumParams() == 1) |
| ObsoleteVarArgs = true; |
| } |
| |
| if (ObsoleteVarArgs && NewVarArgs) |
| ThrowException("This file is corrupt: it uses both new and old style varargs"); |
| |
| if(ObsoleteVarArgs) { |
| if(Function* F = Result->getNamedFunction("llvm.va_start")) { |
| if (F->arg_size() != 0) |
| ThrowException("Obsolete va_start takes 0 argument!"); |
| |
| //foo = va_start() |
| // -> |
| //bar = alloca typeof(foo) |
| //va_start(bar) |
| //foo = load bar |
| |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getReturnType(); |
| const Type* ArgTyPtr = PointerType::get(ArgTy); |
| Function* NF = Result->getOrInsertFunction("llvm.va_start", |
| RetTy, ArgTyPtr, (Type *)0); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI); |
| new CallInst(NF, bar, "", CI); |
| Value* foo = new LoadInst(bar, "vastart.fix.2", CI); |
| CI->replaceAllUsesWith(foo); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| |
| if(Function* F = Result->getNamedFunction("llvm.va_end")) { |
| if(F->arg_size() != 1) |
| ThrowException("Obsolete va_end takes 1 argument!"); |
| |
| //vaend foo |
| // -> |
| //bar = alloca 1 of typeof(foo) |
| //vaend bar |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getParamType(0); |
| const Type* ArgTyPtr = PointerType::get(ArgTy); |
| Function* NF = Result->getOrInsertFunction("llvm.va_end", |
| RetTy, ArgTyPtr, (Type *)0); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI); |
| new StoreInst(CI->getOperand(1), bar, CI); |
| new CallInst(NF, bar, "", CI); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| |
| if(Function* F = Result->getNamedFunction("llvm.va_copy")) { |
| if(F->arg_size() != 1) |
| ThrowException("Obsolete va_copy takes 1 argument!"); |
| //foo = vacopy(bar) |
| // -> |
| //a = alloca 1 of typeof(foo) |
| //b = alloca 1 of typeof(foo) |
| //store bar -> b |
| //vacopy(a, b) |
| //foo = load a |
| |
| const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); |
| const Type* ArgTy = F->getFunctionType()->getReturnType(); |
| const Type* ArgTyPtr = PointerType::get(ArgTy); |
| Function* NF = Result->getOrInsertFunction("llvm.va_copy", |
| RetTy, ArgTyPtr, ArgTyPtr, |
| (Type *)0); |
| |
| while (!F->use_empty()) { |
| CallInst* CI = cast<CallInst>(F->use_back()); |
| AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI); |
| AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI); |
| new StoreInst(CI->getOperand(1), b, CI); |
| new CallInst(NF, a, b, "", CI); |
| Value* foo = new LoadInst(a, "vacopy.fix.3", CI); |
| CI->replaceAllUsesWith(foo); |
| CI->getParent()->getInstList().erase(CI); |
| } |
| Result->getFunctionList().erase(F); |
| } |
| } |
| |
| return Result; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RunVMAsmParser - Define an interface to this parser |
| //===----------------------------------------------------------------------===// |
| // |
| Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) { |
| set_scan_file(F); |
| |
| CurFilename = Filename; |
| return RunParser(new Module(CurFilename)); |
| } |
| |
| Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) { |
| set_scan_string(AsmString); |
| |
| CurFilename = "from_memory"; |
| if (M == NULL) { |
| return RunParser(new Module (CurFilename)); |
| } else { |
| return RunParser(M); |
| } |
| } |
| |
| %} |
| |
| %union { |
| llvm::Module *ModuleVal; |
| llvm::Function *FunctionVal; |
| std::pair<llvm::PATypeHolder*, char*> *ArgVal; |
| llvm::BasicBlock *BasicBlockVal; |
| llvm::TerminatorInst *TermInstVal; |
| llvm::Instruction *InstVal; |
| llvm::Constant *ConstVal; |
| |
| const llvm::Type *PrimType; |
| llvm::PATypeHolder *TypeVal; |
| llvm::Value *ValueVal; |
| |
| std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList; |
| std::vector<llvm::Value*> *ValueList; |
| std::list<llvm::PATypeHolder> *TypeList; |
| // Represent the RHS of PHI node |
| std::list<std::pair<llvm::Value*, |
| llvm::BasicBlock*> > *PHIList; |
| std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable; |
| std::vector<llvm::Constant*> *ConstVector; |
| |
| llvm::GlobalValue::LinkageTypes Linkage; |
| int64_t SInt64Val; |
| uint64_t UInt64Val; |
| int SIntVal; |
| unsigned UIntVal; |
| double FPVal; |
| bool BoolVal; |
| |
| char *StrVal; // This memory is strdup'd! |
| llvm::ValID ValIDVal; // strdup'd memory maybe! |
| |
| llvm::Instruction::BinaryOps BinaryOpVal; |
| llvm::Instruction::TermOps TermOpVal; |
| llvm::Instruction::MemoryOps MemOpVal; |
| llvm::Instruction::OtherOps OtherOpVal; |
| llvm::Module::Endianness Endianness; |
| } |
| |
| %type <ModuleVal> Module FunctionList |
| %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList |
| %type <BasicBlockVal> BasicBlock InstructionList |
| %type <TermInstVal> BBTerminatorInst |
| %type <InstVal> Inst InstVal MemoryInst |
| %type <ConstVal> ConstVal ConstExpr |
| %type <ConstVector> ConstVector |
| %type <ArgList> ArgList ArgListH |
| %type <ArgVal> ArgVal |
| %type <PHIList> PHIList |
| %type <ValueList> ValueRefList ValueRefListE // For call param lists |
| %type <ValueList> IndexList // For GEP derived indices |
| %type <TypeList> TypeListI ArgTypeListI |
| %type <JumpTable> JumpTable |
| %type <BoolVal> GlobalType // GLOBAL or CONSTANT? |
| %type <BoolVal> OptVolatile // 'volatile' or not |
| %type <BoolVal> OptTailCall // TAIL CALL or plain CALL. |
| %type <BoolVal> OptSideEffect // 'sideeffect' or not. |
| %type <Linkage> OptLinkage |
| %type <Endianness> BigOrLittle |
| |
| // ValueRef - Unresolved reference to a definition or BB |
| %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef |
| %type <ValueVal> ResolvedVal // <type> <valref> pair |
| // Tokens and types for handling constant integer values |
| // |
| // ESINT64VAL - A negative number within long long range |
| %token <SInt64Val> ESINT64VAL |
| |
| // EUINT64VAL - A positive number within uns. long long range |
| %token <UInt64Val> EUINT64VAL |
| %type <SInt64Val> EINT64VAL |
| |
| %token <SIntVal> SINTVAL // Signed 32 bit ints... |
| %token <UIntVal> UINTVAL // Unsigned 32 bit ints... |
| %type <SIntVal> INTVAL |
| %token <FPVal> FPVAL // Float or Double constant |
| |
| // Built in types... |
| %type <TypeVal> Types TypesV UpRTypes UpRTypesV |
| %type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL |
| |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT |
| %type <StrVal> Name OptName OptAssign |
| %type <UIntVal> OptAlign OptCAlign |
| %type <StrVal> OptSection SectionString |
| |
| %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK |
| %token DECLARE GLOBAL CONSTANT SECTION VOLATILE |
| %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING |
| %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN |
| %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT |
| %token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK |
| %type <UIntVal> OptCallingConv |
| |
| // Basic Block Terminating Operators |
| %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE |
| |
| // Binary Operators |
| %type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories |
| %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators |
| |
| // Memory Instructions |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR |
| |
| // Other Operators |
| %type <OtherOpVal> ShiftOps |
| %token <OtherOpVal> PHI_TOK CAST SELECT SHL SHR VAARG |
| %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR |
| %token VAARG_old VANEXT_old //OBSOLETE |
| |
| |
| %start Module |
| %% |
| |
| // Handle constant integer size restriction and conversion... |
| // |
| INTVAL : SINTVAL; |
| INTVAL : UINTVAL { |
| if ($1 > (uint32_t)INT32_MAX) // Outside of my range! |
| ThrowException("Value too large for type!"); |
| $$ = (int32_t)$1; |
| }; |
| |
| |
| EINT64VAL : ESINT64VAL; // These have same type and can't cause problems... |
| EINT64VAL : EUINT64VAL { |
| if ($1 > (uint64_t)INT64_MAX) // Outside of my range! |
| ThrowException("Value too large for type!"); |
| $$ = (int64_t)$1; |
| }; |
| |
| // Operations that are notably excluded from this list include: |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially. |
| // |
| ArithmeticOps: ADD | SUB | MUL | DIV | REM; |
| LogicalOps : AND | OR | XOR; |
| SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE; |
| |
| ShiftOps : SHL | SHR; |
| |
| // These are some types that allow classification if we only want a particular |
| // thing... for example, only a signed, unsigned, or integral type. |
| SIntType : LONG | INT | SHORT | SBYTE; |
| UIntType : ULONG | UINT | USHORT | UBYTE; |
| IntType : SIntType | UIntType; |
| FPType : FLOAT | DOUBLE; |
| |
| // OptAssign - Value producing statements have an optional assignment component |
| OptAssign : Name '=' { |
| $$ = $1; |
| } |
| | /*empty*/ { |
| $$ = 0; |
| }; |
| |
| OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } | |
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | |
| WEAK { $$ = GlobalValue::WeakLinkage; } | |
| APPENDING { $$ = GlobalValue::AppendingLinkage; } | |
| /*empty*/ { $$ = GlobalValue::ExternalLinkage; }; |
| |
| OptCallingConv : /*empty*/ { $$ = CallingConv::C; } | |
| CCC_TOK { $$ = CallingConv::C; } | |
| FASTCC_TOK { $$ = CallingConv::Fast; } | |
| COLDCC_TOK { $$ = CallingConv::Cold; } | |
| CC_TOK EUINT64VAL { |
| if ((unsigned)$2 != $2) |
| ThrowException("Calling conv too large!"); |
| $$ = $2; |
| }; |
| |
| // OptAlign/OptCAlign - An optional alignment, and an optional alignment with |
| // a comma before it. |
| OptAlign : /*empty*/ { $$ = 0; } | |
| ALIGN EUINT64VAL { |
| $$ = $2; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| ThrowException("Alignment must be a power of two!"); |
| }; |
| OptCAlign : /*empty*/ { $$ = 0; } | |
| ',' ALIGN EUINT64VAL { |
| $$ = $3; |
| if ($$ != 0 && !isPowerOf2_32($$)) |
| ThrowException("Alignment must be a power of two!"); |
| }; |
| |
| |
| SectionString : SECTION STRINGCONSTANT { |
| for (unsigned i = 0, e = strlen($2); i != e; ++i) |
| if ($2[i] == '"' || $2[i] == '\\') |
| ThrowException("Invalid character in section name!"); |
| $$ = $2; |
| }; |
| |
| OptSection : /*empty*/ { $$ = 0; } | |
| SectionString { $$ = $1; }; |
| |
| // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV |
| // is set to be the global we are processing. |
| // |
| GlobalVarAttributes : /* empty */ {} | |
| ',' GlobalVarAttribute GlobalVarAttributes {}; |
| GlobalVarAttribute : SectionString { |
| CurGV->setSection($1); |
| free($1); |
| } |
| | ALIGN EUINT64VAL { |
| if ($2 != 0 && !isPowerOf2_32($2)) |
| ThrowException("Alignment must be a power of two!"); |
| CurGV->setAlignment($2); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Types includes all predefined types... except void, because it can only be |
| // used in specific contexts (function returning void for example). To have |
| // access to it, a user must explicitly use TypesV. |
| // |
| |
| // TypesV includes all of 'Types', but it also includes the void type. |
| TypesV : Types | VOID { $$ = new PATypeHolder($1); }; |
| UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); }; |
| |
| Types : UpRTypes { |
| if (!UpRefs.empty()) |
| ThrowException("Invalid upreference in type: " + (*$1)->getDescription()); |
| $$ = $1; |
| }; |
| |
| |
| // Derived types are added later... |
| // |
| PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ; |
| PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL; |
| UpRTypes : OPAQUE { |
| $$ = new PATypeHolder(OpaqueType::get()); |
| } |
| | PrimType { |
| $$ = new PATypeHolder($1); |
| }; |
| UpRTypes : SymbolicValueRef { // Named types are also simple types... |
| $$ = new PATypeHolder(getTypeVal($1)); |
| }; |
| |
| // Include derived types in the Types production. |
| // |
| UpRTypes : '\\' EUINT64VAL { // Type UpReference |
| if ($2 > (uint64_t)~0U) ThrowException("Value out of range!"); |
| OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder |
| UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... |
| $$ = new PATypeHolder(OT); |
| UR_OUT("New Upreference!\n"); |
| } |
| | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? |
| std::vector<const Type*> Params; |
| for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(), |
| E = $3->end(); I != E; ++I) |
| Params.push_back(*I); |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg))); |
| delete $3; // Delete the argument list |
| delete $1; // Delete the return type handle |
| } |
| | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? |
| $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); |
| delete $4; |
| } |
| | '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type? |
| const llvm::Type* ElemTy = $4->get(); |
| if ((unsigned)$2 != $2) |
| ThrowException("Unsigned result not equal to signed result"); |
| if (!ElemTy->isPrimitiveType()) |
| ThrowException("Elemental type of a PackedType must be primitive"); |
| if (!isPowerOf2_32($2)) |
| ThrowException("Vector length should be a power of 2!"); |
| $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2))); |
| delete $4; |
| } |
| | '{' TypeListI '}' { // Structure type? |
| std::vector<const Type*> Elements; |
| for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(), |
| E = $2->end(); I != E; ++I) |
| Elements.push_back(*I); |
| |
| $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); |
| delete $2; |
| } |
| | '{' '}' { // Empty structure type? |
| $$ = new PATypeHolder(StructType::get(std::vector<const Type*>())); |
| } |
| | UpRTypes '*' { // Pointer type? |
| $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1))); |
| delete $1; |
| }; |
| |
| // TypeList - Used for struct declarations and as a basis for function type |
| // declaration type lists |
| // |
| TypeListI : UpRTypes { |
| $$ = new std::list<PATypeHolder>(); |
| $$->push_back(*$1); delete $1; |
| } |
| | TypeListI ',' UpRTypes { |
| ($$=$1)->push_back(*$3); delete $3; |
| }; |
| |
| // ArgTypeList - List of types for a function type declaration... |
| ArgTypeListI : TypeListI |
| | TypeListI ',' DOTDOTDOT { |
| ($$=$1)->push_back(Type::VoidTy); |
| } |
| | DOTDOTDOT { |
| ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy); |
| } |
| | /*empty*/ { |
| $$ = new std::list<PATypeHolder>(); |
| }; |
| |
| // ConstVal - The various declarations that go into the constant pool. This |
| // production is used ONLY to represent constants that show up AFTER a 'const', |
| // 'constant' or 'global' token at global scope. Constants that can be inlined |
| // into other expressions (such as integers and constexprs) are handled by the |
| // ResolvedVal, ValueRef and ConstValueRef productions. |
| // |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| const Type *ETy = ATy->getElementType(); |
| int NumElements = ATy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != -1 && NumElements != (int)$3->size()) |
| ThrowException("Type mismatch: constant sized array initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| itostr(NumElements) + "!"); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $3->size(); i++) { |
| if (ETy != (*$3)[i]->getType()) |
| ThrowException("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$3)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ConstantArray::get(ATy, *$3); |
| delete $1; delete $3; |
| } |
| | Types '[' ']' { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| int NumElements = ATy->getNumElements(); |
| if (NumElements != -1 && NumElements != 0) |
| ThrowException("Type mismatch: constant sized array initialized with 0" |
| " arguments, but has size of " + itostr(NumElements) +"!"); |
| $$ = ConstantArray::get(ATy, std::vector<Constant*>()); |
| delete $1; |
| } |
| | Types 'c' STRINGCONSTANT { |
| const ArrayType *ATy = dyn_cast<ArrayType>($1->get()); |
| if (ATy == 0) |
| ThrowException("Cannot make array constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| int NumElements = ATy->getNumElements(); |
| const Type *ETy = ATy->getElementType(); |
| char *EndStr = UnEscapeLexed($3, true); |
| if (NumElements != -1 && NumElements != (EndStr-$3)) |
| ThrowException("Can't build string constant of size " + |
| itostr((int)(EndStr-$3)) + |
| " when array has size " + itostr(NumElements) + "!"); |
| std::vector<Constant*> Vals; |
| if (ETy == Type::SByteTy) { |
| for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C) |
| Vals.push_back(ConstantSInt::get(ETy, *C)); |
| } else if (ETy == Type::UByteTy) { |
| for (unsigned char *C = (unsigned char *)$3; |
| C != (unsigned char*)EndStr; ++C) |
| Vals.push_back(ConstantUInt::get(ETy, *C)); |
| } else { |
| free($3); |
| ThrowException("Cannot build string arrays of non byte sized elements!"); |
| } |
| free($3); |
| $$ = ConstantArray::get(ATy, Vals); |
| delete $1; |
| } |
| | Types '<' ConstVector '>' { // Nonempty unsized arr |
| const PackedType *PTy = dyn_cast<PackedType>($1->get()); |
| if (PTy == 0) |
| ThrowException("Cannot make packed constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| const Type *ETy = PTy->getElementType(); |
| int NumElements = PTy->getNumElements(); |
| |
| // Verify that we have the correct size... |
| if (NumElements != -1 && NumElements != (int)$3->size()) |
| ThrowException("Type mismatch: constant sized packed initialized with " + |
| utostr($3->size()) + " arguments, but has size of " + |
| itostr(NumElements) + "!"); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $3->size(); i++) { |
| if (ETy != (*$3)[i]->getType()) |
| ThrowException("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '"+ |
| (*$3)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ConstantPacked::get(PTy, *$3); |
| delete $1; delete $3; |
| } |
| | Types '{' ConstVector '}' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| ThrowException("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| if ($3->size() != STy->getNumContainedTypes()) |
| ThrowException("Illegal number of initializers for structure type!"); |
| |
| // Check to ensure that constants are compatible with the type initializer! |
| for (unsigned i = 0, e = $3->size(); i != e; ++i) |
| if ((*$3)[i]->getType() != STy->getElementType(i)) |
| ThrowException("Expected type '" + |
| STy->getElementType(i)->getDescription() + |
| "' for element #" + utostr(i) + |
| " of structure initializer!"); |
| |
| $$ = ConstantStruct::get(STy, *$3); |
| delete $1; delete $3; |
| } |
| | Types '{' '}' { |
| const StructType *STy = dyn_cast<StructType>($1->get()); |
| if (STy == 0) |
| ThrowException("Cannot make struct constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| if (STy->getNumContainedTypes() != 0) |
| ThrowException("Illegal number of initializers for structure type!"); |
| |
| $$ = ConstantStruct::get(STy, std::vector<Constant*>()); |
| delete $1; |
| } |
| | Types NULL_TOK { |
| const PointerType *PTy = dyn_cast<PointerType>($1->get()); |
| if (PTy == 0) |
| ThrowException("Cannot make null pointer constant with type: '" + |
| (*$1)->getDescription() + "'!"); |
| |
| $$ = ConstantPointerNull::get(PTy); |
| delete $1; |
| } |
| | Types UNDEF { |
| $$ = UndefValue::get($1->get()); |
| delete $1; |
| } |
| | Types SymbolicValueRef { |
| const PointerType *Ty = dyn_cast<PointerType>($1->get()); |
| if (Ty == 0) |
| ThrowException("Global const reference must be a pointer type!"); |
| |
| // ConstExprs can exist in the body of a function, thus creating |
| // GlobalValues whenever they refer to a variable. Because we are in |
| // the context of a function, getValNonImprovising will search the functions |
| // symbol table instead of the module symbol table for the global symbol, |
| // which throws things all off. To get around this, we just tell |
| // getValNonImprovising that we are at global scope here. |
| // |
| Function *SavedCurFn = CurFun.CurrentFunction; |
| CurFun.CurrentFunction = 0; |
| |
| Value *V = getValNonImprovising(Ty, $2); |
| |
| CurFun.CurrentFunction = SavedCurFn; |
| |
| // If this is an initializer for a constant pointer, which is referencing a |
| // (currently) undefined variable, create a stub now that shall be replaced |
| // in the future with the right type of variable. |
| // |
| if (V == 0) { |
| assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!"); |
| const PointerType *PT = cast<PointerType>(Ty); |
| |
| // First check to see if the forward references value is already created! |
| PerModuleInfo::GlobalRefsType::iterator I = |
| CurModule.GlobalRefs.find(std::make_pair(PT, $2)); |
| |
| if (I != CurModule.GlobalRefs.end()) { |
| V = I->second; // Placeholder already exists, use it... |
| $2.destroy(); |
| } else { |
| std::string Name; |
| if ($2.Type == ValID::NameVal) Name = $2.Name; |
| |
| // Create the forward referenced global. |
| GlobalValue *GV; |
| if (const FunctionType *FTy = |
| dyn_cast<FunctionType>(PT->getElementType())) { |
| GV = new Function(FTy, GlobalValue::ExternalLinkage, Name, |
| CurModule.CurrentModule); |
| } else { |
| GV = new GlobalVariable(PT->getElementType(), false, |
| GlobalValue::ExternalLinkage, 0, |
| Name, CurModule.CurrentModule); |
| } |
| |
| // Keep track of the fact that we have a forward ref to recycle it |
| CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); |
| V = GV; |
| } |
| } |
| |
| $$ = cast<GlobalValue>(V); |
| delete $1; // Free the type handle |
| } |
| | Types ConstExpr { |
| if ($1->get() != $2->getType()) |
| ThrowException("Mismatched types for constant expression!"); |
| $$ = $2; |
| delete $1; |
| } |
| | Types ZEROINITIALIZER { |
| const Type *Ty = $1->get(); |
| if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty)) |
| ThrowException("Cannot create a null initialized value of this type!"); |
| $$ = Constant::getNullValue(Ty); |
| delete $1; |
| }; |
| |
| ConstVal : SIntType EINT64VAL { // integral constants |
| if (!ConstantSInt::isValueValidForType($1, $2)) |
| ThrowException("Constant value doesn't fit in type!"); |
| $$ = ConstantSInt::get($1, $2); |
| } |
| | UIntType EUINT64VAL { // integral constants |
| if (!ConstantUInt::isValueValidForType($1, $2)) |
| ThrowException("Constant value doesn't fit in type!"); |
| $$ = ConstantUInt::get($1, $2); |
| } |
| | BOOL TRUETOK { // Boolean constants |
| $$ = ConstantBool::True; |
| } |
| | BOOL FALSETOK { // Boolean constants |
| $$ = ConstantBool::False; |
| } |
| | FPType FPVAL { // Float & Double constants |
| if (!ConstantFP::isValueValidForType($1, $2)) |
| ThrowException("Floating point constant invalid for type!!"); |
| $$ = ConstantFP::get($1, $2); |
| }; |
| |
| |
| ConstExpr: CAST '(' ConstVal TO Types ')' { |
| if (!$3->getType()->isFirstClassType()) |
| ThrowException("cast constant expression from a non-primitive type: '" + |
| $3->getType()->getDescription() + "'!"); |
| if (!$5->get()->isFirstClassType()) |
| ThrowException("cast constant expression to a non-primitive type: '" + |
| $5->get()->getDescription() + "'!"); |
| $$ = ConstantExpr::getCast($3, $5->get()); |
| delete $5; |
| } |
| | GETELEMENTPTR '(' ConstVal IndexList ')' { |
| if (!isa<PointerType>($3->getType())) |
| ThrowException("GetElementPtr requires a pointer operand!"); |
| |
| // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct |
| // indices to uint struct indices for compatibility. |
| generic_gep_type_iterator<std::vector<Value*>::iterator> |
| GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()), |
| GTE = gep_type_end($3->getType(), $4->begin(), $4->end()); |
| for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) |
| if (isa<StructType>(*GTI)) // Only change struct indices |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i])) |
| if (CUI->getType() == Type::UByteTy) |
| (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); |
| |
| const Type *IdxTy = |
| GetElementPtrInst::getIndexedType($3->getType(), *$4, true); |
| if (!IdxTy) |
| ThrowException("Index list invalid for constant getelementptr!"); |
| |
| std::vector<Constant*> IdxVec; |
| for (unsigned i = 0, e = $4->size(); i != e; ++i) |
| if (Constant *C = dyn_cast<Constant>((*$4)[i])) |
| IdxVec.push_back(C); |
| else |
| ThrowException("Indices to constant getelementptr must be constants!"); |
| |
| delete $4; |
| |
| $$ = ConstantExpr::getGetElementPtr($3, IdxVec); |
| } |
| | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != Type::BoolTy) |
| ThrowException("Select condition must be of boolean type!"); |
| if ($5->getType() != $7->getType()) |
| ThrowException("Select operand types must match!"); |
| $$ = ConstantExpr::getSelect($3, $5, $7); |
| } |
| | ArithmeticOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| ThrowException("Binary operator types must match!"); |
| // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs. |
| // To retain backward compatibility with these early compilers, we emit a |
| // cast to the appropriate integer type automatically if we are in the |
| // broken case. See PR424 for more information. |
| if (!isa<PointerType>($3->getType())) { |
| $$ = ConstantExpr::get($1, $3, $5); |
| } else { |
| const Type *IntPtrTy = 0; |
| switch (CurModule.CurrentModule->getPointerSize()) { |
| case Module::Pointer32: IntPtrTy = Type::IntTy; break; |
| case Module::Pointer64: IntPtrTy = Type::LongTy; break; |
| default: ThrowException("invalid pointer binary constant expr!"); |
| } |
| $$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy), |
| ConstantExpr::getCast($5, IntPtrTy)); |
| $$ = ConstantExpr::getCast($$, $3->getType()); |
| } |
| } |
| | LogicalOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| ThrowException("Logical operator types must match!"); |
| if (!$3->getType()->isIntegral()) { |
| if (!isa<PackedType>($3->getType()) || |
| !cast<PackedType>($3->getType())->getElementType()->isIntegral()) |
| ThrowException("Logical operator requires integral operands!"); |
| } |
| $$ = ConstantExpr::get($1, $3, $5); |
| } |
| | SetCondOps '(' ConstVal ',' ConstVal ')' { |
| if ($3->getType() != $5->getType()) |
| ThrowException("setcc operand types must match!"); |
| $$ = ConstantExpr::get($1, $3, $5); |
| } |
| | ShiftOps '(' ConstVal ',' ConstVal ')' { |
| if ($5->getType() != Type::UByteTy) |
| ThrowException("Shift count for shift constant must be unsigned byte!"); |
| if (!$3->getType()->isInteger()) |
| ThrowException("Shift constant expression requires integer operand!"); |
| $$ = ConstantExpr::get($1, $3, $5); |
| } |
| | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { |
| if (!ExtractElementInst::isValidOperands($3, $5)) |
| ThrowException("Invalid extractelement operands!"); |
| $$ = ConstantExpr::getExtractElement($3, $5); |
| } |
| | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!InsertElementInst::isValidOperands($3, $5, $7)) |
| ThrowException("Invalid insertelement operands!"); |
| $$ = ConstantExpr::getInsertElement($3, $5, $7); |
| } |
| | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { |
| if (!ShuffleVectorInst::isValidOperands($3, $5, $7)) |
| ThrowException("Invalid shufflevector operands!"); |
| $$ = ConstantExpr::getShuffleVector($3, $5, $7); |
| }; |
| |
| |
| // ConstVector - A list of comma separated constants. |
| ConstVector : ConstVector ',' ConstVal { |
| ($$ = $1)->push_back($3); |
| } |
| | ConstVal { |
| $$ = new std::vector<Constant*>(); |
| $$->push_back($1); |
| }; |
| |
| |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations... |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Modules |
| //===----------------------------------------------------------------------===// |
| |
| // Module rule: Capture the result of parsing the whole file into a result |
| // variable... |
| // |
| Module : FunctionList { |
| $$ = ParserResult = $1; |
| CurModule.ModuleDone(); |
| }; |
| |
| // FunctionList - A list of functions, preceeded by a constant pool. |
| // |
| FunctionList : FunctionList Function { |
| $$ = $1; |
| CurFun.FunctionDone(); |
| } |
| | FunctionList FunctionProto { |
| $$ = $1; |
| } |
| | FunctionList MODULE ASM_TOK AsmBlock { |
| $$ = $1; |
| } |
| | FunctionList IMPLEMENTATION { |
| $$ = $1; |
| } |
| | ConstPool { |
| $$ = CurModule.CurrentModule; |
| // Emit an error if there are any unresolved types left. |
| if (!CurModule.LateResolveTypes.empty()) { |
| const ValID &DID = CurModule.LateResolveTypes.begin()->first; |
| if (DID.Type == ValID::NameVal) |
| ThrowException("Reference to an undefined type: '"+DID.getName() + "'"); |
| else |
| ThrowException("Reference to an undefined type: #" + itostr(DID.Num)); |
| } |
| }; |
| |
| // ConstPool - Constants with optional names assigned to them. |
| ConstPool : ConstPool OptAssign TYPE TypesV { |
| // Eagerly resolve types. This is not an optimization, this is a |
| // requirement that is due to the fact that we could have this: |
| // |
| // %list = type { %list * } |
| // %list = type { %list * } ; repeated type decl |
| // |
| // If types are not resolved eagerly, then the two types will not be |
| // determined to be the same type! |
| // |
| ResolveTypeTo($2, *$4); |
| |
| if (!setTypeName(*$4, $2) && !$2) { |
| // If this is a named type that is not a redefinition, add it to the slot |
| // table. |
| CurModule.Types.push_back(*$4); |
| } |
| |
| delete $4; |
| } |
| | ConstPool FunctionProto { // Function prototypes can be in const pool |
| } |
| | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool |
| } |
| | ConstPool OptAssign OptLinkage GlobalType ConstVal { |
| if ($5 == 0) ThrowException("Global value initializer is not a constant!"); |
| CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5); |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool OptAssign EXTERNAL GlobalType Types { |
| CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, |
| $4, *$5, 0); |
| delete $5; |
| } GlobalVarAttributes { |
| CurGV = 0; |
| } |
| | ConstPool TARGET TargetDefinition { |
| } |
| | ConstPool DEPLIBS '=' LibrariesDefinition { |
| } |
| | /* empty: end of list */ { |
| }; |
| |
| |
| AsmBlock : STRINGCONSTANT { |
| const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); |
| char *EndStr = UnEscapeLexed($1, true); |
| std::string NewAsm($1, EndStr); |
| free($1); |
| |
| if (AsmSoFar.empty()) |
| CurModule.CurrentModule->setModuleInlineAsm(NewAsm); |
| else |
| CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm); |
| }; |
| |
| BigOrLittle : BIG { $$ = Module::BigEndian; }; |
| BigOrLittle : LITTLE { $$ = Module::LittleEndian; }; |
| |
| TargetDefinition : ENDIAN '=' BigOrLittle { |
| CurModule.CurrentModule->setEndianness($3); |
| } |
| | POINTERSIZE '=' EUINT64VAL { |
| if ($3 == 32) |
| CurModule.CurrentModule->setPointerSize(Module::Pointer32); |
| else if ($3 == 64) |
| CurModule.CurrentModule->setPointerSize(Module::Pointer64); |
| else |
| ThrowException("Invalid pointer size: '" + utostr($3) + "'!"); |
| } |
| | TRIPLE '=' STRINGCONSTANT { |
| CurModule.CurrentModule->setTargetTriple($3); |
| free($3); |
| }; |
| |
| LibrariesDefinition : '[' LibList ']'; |
| |
| LibList : LibList ',' STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary($3); |
| free($3); |
| } |
| | STRINGCONSTANT { |
| CurModule.CurrentModule->addLibrary($1); |
| free($1); |
| } |
| | /* empty: end of list */ { |
| } |
| ; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Function Headers |
| //===----------------------------------------------------------------------===// |
| |
| Name : VAR_ID | STRINGCONSTANT; |
| OptName : Name | /*empty*/ { $$ = 0; }; |
| |
| ArgVal : Types OptName { |
| if (*$1 == Type::VoidTy) |
| ThrowException("void typed arguments are invalid!"); |
| $$ = new std::pair<PATypeHolder*, char*>($1, $2); |
| }; |
| |
| ArgListH : ArgListH ',' ArgVal { |
| $$ = $1; |
| $1->push_back(*$3); |
| delete $3; |
| } |
| | ArgVal { |
| $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); |
| $$->push_back(*$1); |
| delete $1; |
| }; |
| |
| ArgList : ArgListH { |
| $$ = $1; |
| } |
| | ArgListH ',' DOTDOTDOT { |
| $$ = $1; |
| $$->push_back(std::pair<PATypeHolder*, |
| char*>(new PATypeHolder(Type::VoidTy), 0)); |
| } |
| | DOTDOTDOT { |
| $$ = new std::vector<std::pair<PATypeHolder*,char*> >(); |
| $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0)); |
| } |
| | /* empty */ { |
| $$ = 0; |
| }; |
| |
| FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' |
| OptSection OptAlign { |
| UnEscapeLexed($3); |
| std::string FunctionName($3); |
| free($3); // Free strdup'd memory! |
| |
| if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy) |
| ThrowException("LLVM functions cannot return aggregate types!"); |
| |
| std::vector<const Type*> ParamTypeList; |
| if ($5) { // If there are arguments... |
| for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin(); |
| I != $5->end(); ++I) |
| ParamTypeList.push_back(I->first->get()); |
| } |
| |
| bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; |
| if (isVarArg) ParamTypeList.pop_back(); |
| |
| const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg); |
| const PointerType *PFT = PointerType::get(FT); |
| delete $2; |
| |
| ValID ID; |
| if (!FunctionName.empty()) { |
| ID = ValID::create((char*)FunctionName.c_str()); |
| } else { |
| ID = ValID::create((int)CurModule.Values[PFT].size()); |
| } |
| |
| Function *Fn = 0; |
| // See if this function was forward referenced. If so, recycle the object. |
| if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { |
| // Move the function to the end of the list, from whereever it was |
| // previously inserted. |
| Fn = cast<Function>(FWRef); |
| CurModule.CurrentModule->getFunctionList().remove(Fn); |
| CurModule.CurrentModule->getFunctionList().push_back(Fn); |
| } else if (!FunctionName.empty() && // Merge with an earlier prototype? |
| (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) { |
| // If this is the case, either we need to be a forward decl, or it needs |
| // to be. |
| if (!CurFun.isDeclare && !Fn->isExternal()) |
| ThrowException("Redefinition of function '" + FunctionName + "'!"); |
| |
| // Make sure to strip off any argument names so we can't get conflicts. |
| if (Fn->isExternal()) |
| for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); |
| AI != AE; ++AI) |
| AI->setName(""); |
| |
| } else { // Not already defined? |
| Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName, |
| CurModule.CurrentModule); |
| InsertValue(Fn, CurModule.Values); |
| } |
| |
| CurFun.FunctionStart(Fn); |
| Fn->setCallingConv($1); |
| Fn->setAlignment($8); |
| if ($7) { |
| Fn->setSection($7); |
| free($7); |
| } |
| |
| // Add all of the arguments we parsed to the function... |
| if ($5) { // Is null if empty... |
| if (isVarArg) { // Nuke the last entry |
| assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&& |
| "Not a varargs marker!"); |
| delete $5->back().first; |
| $5->pop_back(); // Delete the last entry |
| } |
| Function::arg_iterator ArgIt = Fn->arg_begin(); |
| for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin(); |
| I != $5->end(); ++I, ++ArgIt) { |
| delete I->first; // Delete the typeholder... |
| |
| setValueName(ArgIt, I->second); // Insert arg into symtab... |
| InsertValue(ArgIt); |
| } |
| |
| delete $5; // We're now done with the argument list |
| } |
| }; |
| |
| BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function |
| |
| FunctionHeader : OptLinkage FunctionHeaderH BEGIN { |
| $$ = CurFun.CurrentFunction; |
| |
| // Make sure that we keep track of the linkage type even if there was a |
| // previous "declare". |
| $$->setLinkage($1); |
| }; |
| |
| END : ENDTOK | '}'; // Allow end of '}' to end a function |
| |
| Function : BasicBlockList END { |
| $$ = $1; |
| }; |
| |
| FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH { |
| $$ = CurFun.CurrentFunction; |
| CurFun.FunctionDone(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Rules to match Basic Blocks |
| //===----------------------------------------------------------------------===// |
| |
| OptSideEffect : /* empty */ { |
| $$ = false; |
| } |
| | SIDEEFFECT { |
| $$ = true; |
| }; |
| |
| ConstValueRef : ESINT64VAL { // A reference to a direct constant |
| $$ = ValID::create($1); |
| } |
| | EUINT64VAL { |
| $$ = ValID::create($1); |
| } |
| | FPVAL { // Perhaps it's an FP constant? |
| $$ = ValID::create($1); |
| } |
| | TRUETOK { |
| $$ = ValID::create(ConstantBool::True); |
| } |
| | FALSETOK { |
| $$ = ValID::create(ConstantBool::False); |
| } |
| | NULL_TOK { |
| $$ = ValID::createNull(); |
| } |
| | UNDEF { |
| $$ = ValID::createUndef(); |
| } |
| | ZEROINITIALIZER { // A vector zero constant. |
| $$ = ValID::createZeroInit(); |
| } |
| | '<' ConstVector '>' { // Nonempty unsized packed vector |
| const Type *ETy = (*$2)[0]->getType(); |
| int NumElements = $2->size(); |
| |
| PackedType* pt = PackedType::get(ETy, NumElements); |
| PATypeHolder* PTy = new PATypeHolder( |
| HandleUpRefs( |
| PackedType::get( |
| ETy, |
| NumElements) |
| ) |
| ); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0; i < $2->size(); i++) { |
| if (ETy != (*$2)[i]->getType()) |
| ThrowException("Element #" + utostr(i) + " is not of type '" + |
| ETy->getDescription() +"' as required!\nIt is of type '" + |
| (*$2)[i]->getType()->getDescription() + "'."); |
| } |
| |
| $$ = ValID::create(ConstantPacked::get(pt, *$2)); |
| delete PTy; delete $2; |
| } |
| | ConstExpr { |
| $$ = ValID::create($1); |
| } |
| | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { |
| char *End = UnEscapeLexed($3, true); |
| std::string AsmStr = std::string($3, End); |
| End = UnEscapeLexed($5, true); |
| std::string Constraints = std::string($5, End); |
| $$ = ValID::createInlineAsm(AsmStr, Constraints, $2); |
| free($3); |
| free($5); |
| }; |
| |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to |
| // another value. |
| // |
| SymbolicValueRef : INTVAL { // Is it an integer reference...? |
| $$ = ValID::create($1); |
| } |
| | Name { // Is it a named reference...? |
| $$ = ValID::create($1); |
| }; |
| |
| // ValueRef - A reference to a definition... either constant or symbolic |
| ValueRef : SymbolicValueRef | ConstValueRef; |
| |
| |
| // ResolvedVal - a <type> <value> pair. This is used only in cases where the |
| // type immediately preceeds the value reference, and allows complex constant |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') |
| ResolvedVal : Types ValueRef { |
| $$ = getVal(*$1, $2); delete $1; |
| }; |
| |
| BasicBlockList : BasicBlockList BasicBlock { |
| $$ = $1; |
| } |
| | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks |
| $$ = $1; |
| }; |
| |
| |
| // Basic blocks are terminated by branching instructions: |
| // br, br/cc, switch, ret |
| // |
| BasicBlock : InstructionList OptAssign BBTerminatorInst { |
| setValueName($3, $2); |
| InsertValue($3); |
| |
| $1->getInstList().push_back($3); |
| InsertValue($1); |
| $$ = $1; |
| }; |
| |
| InstructionList : InstructionList Inst { |
| $1->getInstList().push_back($2); |
| $$ = $1; |
| } |
| | /* empty */ { |
| $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true); |
| |
| // Make sure to move the basic block to the correct location in the |
| // function, instead of leaving it inserted wherever it was first |
| // referenced. |
| Function::BasicBlockListType &BBL = |
| CurFun.CurrentFunction->getBasicBlockList(); |
| BBL.splice(BBL.end(), BBL, $$); |
| } |
| | LABELSTR { |
| $$ = CurBB = getBBVal(ValID::create($1), true); |
| |
| // Make sure to move the basic block to the correct location in the |
| // function, instead of leaving it inserted wherever it was first |
| // referenced. |
| Function::BasicBlockListType &BBL = |
| CurFun.CurrentFunction->getBasicBlockList(); |
| BBL.splice(BBL.end(), BBL, $$); |
| }; |
| |
| BBTerminatorInst : RET ResolvedVal { // Return with a result... |
| $$ = new ReturnInst($2); |
| } |
| | RET VOID { // Return with no result... |
| $$ = new ReturnInst(); |
| } |
| | BR LABEL ValueRef { // Unconditional Branch... |
| $$ = new BranchInst(getBBVal($3)); |
| } // Conditional Branch... |
| | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { |
| $$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3)); |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { |
| SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size()); |
| $$ = S; |
| |
| std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(), |
| E = $8->end(); |
| for (; I != E; ++I) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first)) |
| S->addCase(CI, I->second); |
| else |
| ThrowException("Switch case is constant, but not a simple integer!"); |
| } |
| delete $8; |
| } |
| | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { |
| SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0); |
| $$ = S; |
| } |
| | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')' |
| TO LABEL ValueRef UNWIND LABEL ValueRef { |
| const PointerType *PFTy; |
| const FunctionType *Ty; |
| |
| if (!(PFTy = dyn_cast<PointerType>($3->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| if ($6) { |
| for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end(); |
| I != E; ++I) |
| ParamTypes.push_back((*I)->getType()); |
| } |
| |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| |
| Ty = FunctionType::get($3->get(), ParamTypes, isVarArg); |
| PFTy = PointerType::get(Ty); |
| } |
| |
| Value *V = getVal(PFTy, $4); // Get the function we're calling... |
| |
| BasicBlock *Normal = getBBVal($10); |
| BasicBlock *Except = getBBVal($13); |
| |
| // Create the call node... |
| if (!$6) { // Has no arguments? |
| $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>()); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) |
| if ((*ArgI)->getType() != *I) |
| ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'!"); |
| |
| if (I != E || (ArgI != ArgE && !Ty->isVarArg())) |
| ThrowException("Invalid number of parameters detected!"); |
| |
| $$ = new InvokeInst(V, Normal, Except, *$6); |
| } |
| cast<InvokeInst>($$)->setCallingConv($2); |
| |
| delete $3; |
| delete $6; |
| } |
| | UNWIND { |
| $$ = new UnwindInst(); |
| } |
| | UNREACHABLE { |
| $$ = new UnreachableInst(); |
| }; |
| |
| |
| |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = $1; |
| Constant *V = cast<Constant>(getValNonImprovising($2, $3)); |
| if (V == 0) |
| ThrowException("May only switch on a constant pool value!"); |
| |
| $$->push_back(std::make_pair(V, getBBVal($6))); |
| } |
| | IntType ConstValueRef ',' LABEL ValueRef { |
| $$ = new std::vector<std::pair<Constant*, BasicBlock*> >(); |
| Constant *V = cast<Constant>(getValNonImprovising($1, $2)); |
| |
| if (V == 0) |
| ThrowException("May only switch on a constant pool value!"); |
| |
| $$->push_back(std::make_pair(V, getBBVal($5))); |
| }; |
| |
| Inst : OptAssign InstVal { |
| // Is this definition named?? if so, assign the name... |
| setValueName($2, $1); |
| InsertValue($2); |
| $$ = $2; |
| }; |
| |
| PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes |
| $$ = new std::list<std::pair<Value*, BasicBlock*> >(); |
| $$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5))); |
| delete $1; |
| } |
| | PHIList ',' '[' ValueRef ',' ValueRef ']' { |
| $$ = $1; |
| $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4), |
| getBBVal($6))); |
| }; |
| |
| |
| ValueRefList : ResolvedVal { // Used for call statements, and memory insts... |
| $$ = new std::vector<Value*>(); |
| $$->push_back($1); |
| } |
| | ValueRefList ',' ResolvedVal { |
| $$ = $1; |
| $1->push_back($3); |
| }; |
| |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty! |
| ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; }; |
| |
| OptTailCall : TAIL CALL { |
| $$ = true; |
| } |
| | CALL { |
| $$ = false; |
| }; |
| |
| |
| |
| InstVal : ArithmeticOps Types ValueRef ',' ValueRef { |
| if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && |
| !isa<PackedType>((*$2).get())) |
| ThrowException( |
| "Arithmetic operator requires integer, FP, or packed operands!"); |
| if (isa<PackedType>((*$2).get()) && $1 == Instruction::Rem) |
| ThrowException("Rem not supported on packed types!"); |
| $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | LogicalOps Types ValueRef ',' ValueRef { |
| if (!(*$2)->isIntegral()) { |
| if (!isa<PackedType>($2->get()) || |
| !cast<PackedType>($2->get())->getElementType()->isIntegral()) |
| ThrowException("Logical operator requires integral operands!"); |
| } |
| $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | SetCondOps Types ValueRef ',' ValueRef { |
| if(isa<PackedType>((*$2).get())) { |
| ThrowException( |
| "PackedTypes currently not supported in setcc instructions!"); |
| } |
| $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5)); |
| if ($$ == 0) |
| ThrowException("binary operator returned null!"); |
| delete $2; |
| } |
| | NOT ResolvedVal { |
| std::cerr << "WARNING: Use of eliminated 'not' instruction:" |
| << " Replacing with 'xor'.\n"; |
| |
| Value *Ones = ConstantIntegral::getAllOnesValue($2->getType()); |
| if (Ones == 0) |
| ThrowException("Expected integral type for not instruction!"); |
| |
| $$ = BinaryOperator::create(Instruction::Xor, $2, Ones); |
| if ($$ == 0) |
| ThrowException("Could not create a xor instruction!"); |
| } |
| | ShiftOps ResolvedVal ',' ResolvedVal { |
| if ($4->getType() != Type::UByteTy) |
| ThrowException("Shift amount must be ubyte!"); |
| if (!$2->getType()->isInteger()) |
| ThrowException("Shift constant expression requires integer operand!"); |
| $$ = new ShiftInst($1, $2, $4); |
| } |
| | CAST ResolvedVal TO Types { |
| if (!$4->get()->isFirstClassType()) |
| ThrowException("cast instruction to a non-primitive type: '" + |
| $4->get()->getDescription() + "'!"); |
| $$ = new CastInst($2, *$4); |
| delete $4; |
| } |
| | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if ($2->getType() != Type::BoolTy) |
| ThrowException("select condition must be boolean!"); |
| if ($4->getType() != $6->getType()) |
| ThrowException("select value types should match!"); |
| $$ = new SelectInst($2, $4, $6); |
| } |
| | VAARG ResolvedVal ',' Types { |
| NewVarArgs = true; |
| $$ = new VAArgInst($2, *$4); |
| delete $4; |
| } |
| | VAARG_old ResolvedVal ',' Types { |
| ObsoleteVarArgs = true; |
| const Type* ArgTy = $2->getType(); |
| Function* NF = CurModule.CurrentModule-> |
| getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0); |
| |
| //b = vaarg a, t -> |
| //foo = alloca 1 of t |
| //bar = vacopy a |
| //store bar -> foo |
| //b = vaarg foo, t |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix"); |
| CurBB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, $2); |
| CurBB->getInstList().push_back(bar); |
| CurBB->getInstList().push_back(new StoreInst(bar, foo)); |
| $$ = new VAArgInst(foo, *$4); |
| delete $4; |
| } |
| | VANEXT_old ResolvedVal ',' Types { |
| ObsoleteVarArgs = true; |
| const Type* ArgTy = $2->getType(); |
| Function* NF = CurModule.CurrentModule-> |
| getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0); |
| |
| //b = vanext a, t -> |
| //foo = alloca 1 of t |
| //bar = vacopy a |
| //store bar -> foo |
| //tmp = vaarg foo, t |
| //b = load foo |
| AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix"); |
| CurBB->getInstList().push_back(foo); |
| CallInst* bar = new CallInst(NF, $2); |
| CurBB->getInstList().push_back(bar); |
| CurBB->getInstList().push_back(new StoreInst(bar, foo)); |
| Instruction* tmp = new VAArgInst(foo, *$4); |
| CurBB->getInstList().push_back(tmp); |
| $$ = new LoadInst(foo); |
| delete $4; |
| } |
| | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { |
| if (!ExtractElementInst::isValidOperands($2, $4)) |
| ThrowException("Invalid extractelement operands!"); |
| $$ = new ExtractElementInst($2, $4); |
| } |
| | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!InsertElementInst::isValidOperands($2, $4, $6)) |
| ThrowException("Invalid insertelement operands!"); |
| $$ = new InsertElementInst($2, $4, $6); |
| } |
| | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { |
| if (!ShuffleVectorInst::isValidOperands($2, $4, $6)) |
| ThrowException("Invalid shufflevector operands!"); |
| $$ = new ShuffleVectorInst($2, $4, $6); |
| } |
| | PHI_TOK PHIList { |
| const Type *Ty = $2->front().first->getType(); |
| if (!Ty->isFirstClassType()) |
| ThrowException("PHI node operands must be of first class type!"); |
| $$ = new PHINode(Ty); |
| ((PHINode*)$$)->reserveOperandSpace($2->size()); |
| while ($2->begin() != $2->end()) { |
| if ($2->front().first->getType() != Ty) |
| ThrowException("All elements of a PHI node must be of the same type!"); |
| cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second); |
| $2->pop_front(); |
| } |
| delete $2; // Free the list... |
| } |
| | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' { |
| const PointerType *PFTy; |
| const FunctionType *Ty; |
| |
| if (!(PFTy = dyn_cast<PointerType>($3->get())) || |
| !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { |
| // Pull out the types of all of the arguments... |
| std::vector<const Type*> ParamTypes; |
| if ($6) { |
| for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end(); |
| I != E; ++I) |
| ParamTypes.push_back((*I)->getType()); |
| } |
| |
| bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; |
| if (isVarArg) ParamTypes.pop_back(); |
| |
| if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy) |
| ThrowException("LLVM functions cannot return aggregate types!"); |
| |
| Ty = FunctionType::get($3->get(), ParamTypes, isVarArg); |
| PFTy = PointerType::get(Ty); |
| } |
| |
| Value *V = getVal(PFTy, $4); // Get the function we're calling... |
| |
| // Create the call node... |
| if (!$6) { // Has no arguments? |
| // Make sure no arguments is a good thing! |
| if (Ty->getNumParams() != 0) |
| ThrowException("No arguments passed to a function that " |
| "expects arguments!"); |
| |
| $$ = new CallInst(V, std::vector<Value*>()); |
| } else { // Has arguments? |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly! |
| // |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end(); |
| |
| for (; ArgI != ArgE && I != E; ++ArgI, ++I) |
| if ((*ArgI)->getType() != *I) |
| ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + |
| (*I)->getDescription() + "'!"); |
| |
| if (I != E || (ArgI != ArgE && !Ty->isVarArg())) |
| ThrowException("Invalid number of parameters detected!"); |
| |
| $$ = new CallInst(V, *$6); |
| } |
| cast<CallInst>($$)->setTailCall($1); |
| cast<CallInst>($$)->setCallingConv($2); |
| delete $3; |
| delete $6; |
| } |
| | MemoryInst { |
| $$ = $1; |
| }; |
| |
| |
| // IndexList - List of indices for GEP based instructions... |
| IndexList : ',' ValueRefList { |
| $$ = $2; |
| } | /* empty */ { |
| $$ = new std::vector<Value*>(); |
| }; |
| |
| OptVolatile : VOLATILE { |
| $$ = true; |
| } |
| | /* empty */ { |
| $$ = false; |
| }; |
| |
| |
| |
| MemoryInst : MALLOC Types OptCAlign { |
| $$ = new MallocInst(*$2, 0, $3); |
| delete $2; |
| } |
| | MALLOC Types ',' UINT ValueRef OptCAlign { |
| $$ = new MallocInst(*$2, getVal($4, $5), $6); |
| delete $2; |
| } |
| | ALLOCA Types OptCAlign { |
| $$ = new AllocaInst(*$2, 0, $3); |
| delete $2; |
| } |
| | ALLOCA Types ',' UINT ValueRef OptCAlign { |
| $$ = new AllocaInst(*$2, getVal($4, $5), $6); |
| delete $2; |
| } |
| | FREE ResolvedVal { |
| if (!isa<PointerType>($2->getType())) |
| ThrowException("Trying to free nonpointer type " + |
| $2->getType()->getDescription() + "!"); |
| $$ = new FreeInst($2); |
| } |
| |
| | OptVolatile LOAD Types ValueRef { |
| if (!isa<PointerType>($3->get())) |
| ThrowException("Can't load from nonpointer type: " + |
| (*$3)->getDescription()); |
| if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType()) |
| ThrowException("Can't load from pointer of non-first-class type: " + |
| (*$3)->getDescription()); |
| $$ = new LoadInst(getVal(*$3, $4), "", $1); |
| delete $3; |
| } |
| | OptVolatile STORE ResolvedVal ',' Types ValueRef { |
| const PointerType *PT = dyn_cast<PointerType>($5->get()); |
| if (!PT) |
| ThrowException("Can't store to a nonpointer type: " + |
| (*$5)->getDescription()); |
| const Type *ElTy = PT->getElementType(); |
| if (ElTy != $3->getType()) |
| ThrowException("Can't store '" + $3->getType()->getDescription() + |
| "' into space of type '" + ElTy->getDescription() + "'!"); |
| |
| $$ = new StoreInst($3, getVal(*$5, $6), $1); |
| delete $5; |
| } |
| | GETELEMENTPTR Types ValueRef IndexList { |
| if (!isa<PointerType>($2->get())) |
| ThrowException("getelementptr insn requires pointer operand!"); |
| |
| // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct |
| // indices to uint struct indices for compatibility. |
| generic_gep_type_iterator<std::vector<Value*>::iterator> |
| GTI = gep_type_begin($2->get(), $4->begin(), $4->end()), |
| GTE = gep_type_end($2->get(), $4->begin(), $4->end()); |
| for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI) |
| if (isa<StructType>(*GTI)) // Only change struct indices |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i])) |
| if (CUI->getType() == Type::UByteTy) |
| (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy); |
| |
| if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) |
| ThrowException("Invalid getelementptr indices for type '" + |
| (*$2)->getDescription()+ "'!"); |
| $$ = new GetElementPtrInst(getVal(*$2, $3), *$4); |
| delete $2; delete $4; |
| }; |
| |
| |
| %% |
| int yyerror(const char *ErrorMsg) { |
| std::string where |
| = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename) |
| + ":" + utostr((unsigned) llvmAsmlineno) + ": "; |
| std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading "; |
| if (yychar == YYEMPTY || yychar == 0) |
| errMsg += "end-of-file."; |
| else |
| errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'"; |
| ThrowException(errMsg); |
| return 0; |
| } |