| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for PowerPC, |
| // converting from a legalized dag to a PPC dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPC.h" |
| #include "PPCTargetMachine.h" |
| #include "PPCISelLowering.h" |
| #include "PPCHazardRecognizers.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <iostream> |
| #include <set> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); |
| |
| //===--------------------------------------------------------------------===// |
| /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
| /// instructions for SelectionDAG operations. |
| /// |
| class PPCDAGToDAGISel : public SelectionDAGISel { |
| PPCTargetMachine &TM; |
| PPCTargetLowering PPCLowering; |
| unsigned GlobalBaseReg; |
| public: |
| PPCDAGToDAGISel(PPCTargetMachine &tm) |
| : SelectionDAGISel(PPCLowering), TM(tm), |
| PPCLowering(*TM.getTargetLowering()) {} |
| |
| virtual bool runOnFunction(Function &Fn) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseReg = 0; |
| SelectionDAGISel::runOnFunction(Fn); |
| |
| InsertVRSaveCode(Fn); |
| return true; |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDOperand getI32Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
| /// base register. Return the virtual register that holds this value. |
| SDOperand getGlobalBaseReg(); |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| void Select(SDOperand &Result, SDOperand Op); |
| |
| SDNode *SelectBitfieldInsert(SDNode *N); |
| |
| /// SelectCC - Select a comparison of the specified values with the |
| /// specified condition code, returning the CR# of the expression. |
| SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); |
| |
| /// SelectAddrImm - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement [r+imm]. |
| bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base); |
| |
| /// SelectAddrIdx - Given the specified addressed, check to see if it can be |
| /// represented as an indexed [r+r] operation. Returns false if it can |
| /// be represented by [r+imm], which are preferred. |
| bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index); |
| |
| /// SelectAddrIdxOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index); |
| |
| /// SelectAddrImmShift - Returns true if the address N can be represented by |
| /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable |
| /// for use by STD and friends. |
| bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base); |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op, |
| char ConstraintCode, |
| std::vector<SDOperand> &OutOps, |
| SelectionDAG &DAG) { |
| SDOperand Op0, Op1; |
| switch (ConstraintCode) { |
| default: return true; |
| case 'm': // memory |
| if (!SelectAddrIdx(Op, Op0, Op1)) |
| SelectAddrImm(Op, Op0, Op1); |
| break; |
| case 'o': // offsetable |
| if (!SelectAddrImm(Op, Op0, Op1)) { |
| Select(Op0, Op); // r+0. |
| Op1 = getI32Imm(0); |
| } |
| break; |
| case 'v': // not offsetable |
| SelectAddrIdxOnly(Op, Op0, Op1); |
| break; |
| } |
| |
| OutOps.push_back(Op0); |
| OutOps.push_back(Op1); |
| return false; |
| } |
| |
| SDOperand BuildSDIVSequence(SDNode *N); |
| SDOperand BuildUDIVSequence(SDNode *N); |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); |
| |
| void InsertVRSaveCode(Function &Fn); |
| |
| virtual const char *getPassName() const { |
| return "PowerPC DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this |
| /// target when scheduling the DAG. |
| virtual HazardRecognizer *CreateTargetHazardRecognizer() { |
| // Should use subtarget info to pick the right hazard recognizer. For |
| // now, always return a PPC970 recognizer. |
| const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo(); |
| assert(II && "No InstrInfo?"); |
| return new PPCHazardRecognizer970(*II); |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "PPCGenDAGISel.inc" |
| |
| private: |
| SDOperand SelectSETCC(SDOperand Op); |
| SDOperand SelectCALL(SDOperand Op); |
| }; |
| } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| DEBUG(BB->dump()); |
| |
| // The selection process is inherently a bottom-up recursive process (users |
| // select their uses before themselves). Given infinite stack space, we |
| // could just start selecting on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, select the entry node, then all its uses, |
| // iteratively instead of recursively. |
| std::vector<SDOperand> Worklist; |
| Worklist.push_back(DAG.getEntryNode()); |
| |
| // Note that we can do this in the PPC target (scanning forward across token |
| // chain edges) because no nodes ever get folded across these edges. On a |
| // target like X86 which supports load/modify/store operations, this would |
| // have to be more careful. |
| while (!Worklist.empty()) { |
| SDOperand Node = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // Chose from the least deep of the top two nodes. |
| if (!Worklist.empty() && |
| Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) |
| std::swap(Worklist.back(), Node); |
| |
| if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && |
| Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || |
| CodeGenMap.count(Node)) continue; |
| |
| for (SDNode::use_iterator UI = Node.Val->use_begin(), |
| E = Node.Val->use_end(); UI != E; ++UI) { |
| // Scan the values. If this use has a value that is a token chain, add it |
| // to the worklist. |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) |
| if (User->getValueType(i) == MVT::Other) { |
| Worklist.push_back(SDOperand(User, i)); |
| break; |
| } |
| } |
| |
| // Finally, legalize this node. |
| SDOperand Dummy; |
| Select(Dummy, Node); |
| } |
| |
| // Select target instructions for the DAG. |
| DAG.setRoot(SelectRoot(DAG.getRoot())); |
| CodeGenMap.clear(); |
| DAG.RemoveDeadNodes(); |
| |
| // Emit machine code to BB. |
| ScheduleAndEmitDAG(DAG); |
| } |
| |
| /// InsertVRSaveCode - Once the entire function has been instruction selected, |
| /// all virtual registers are created and all machine instructions are built, |
| /// check to see if we need to save/restore VRSAVE. If so, do it. |
| void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) { |
| // Check to see if this function uses vector registers, which means we have to |
| // save and restore the VRSAVE register and update it with the regs we use. |
| // |
| // In this case, there will be virtual registers of vector type type created |
| // by the scheduler. Detect them now. |
| MachineFunction &Fn = MachineFunction::get(&F); |
| SSARegMap *RegMap = Fn.getSSARegMap(); |
| bool HasVectorVReg = false; |
| for (unsigned i = MRegisterInfo::FirstVirtualRegister, |
| e = RegMap->getLastVirtReg()+1; i != e; ++i) |
| if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) { |
| HasVectorVReg = true; |
| break; |
| } |
| if (!HasVectorVReg) return; // nothing to do. |
| |
| // If we have a vector register, we want to emit code into the entry and exit |
| // blocks to save and restore the VRSAVE register. We do this here (instead |
| // of marking all vector instructions as clobbering VRSAVE) for two reasons: |
| // |
| // 1. This (trivially) reduces the load on the register allocator, by not |
| // having to represent the live range of the VRSAVE register. |
| // 2. This (more significantly) allows us to create a temporary virtual |
| // register to hold the saved VRSAVE value, allowing this temporary to be |
| // register allocated, instead of forcing it to be spilled to the stack. |
| |
| // Create two vregs - one to hold the VRSAVE register that is live-in to the |
| // function and one for the value after having bits or'd into it. |
| unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass); |
| |
| MachineBasicBlock &EntryBB = *Fn.begin(); |
| // Emit the following code into the entry block: |
| // InVRSAVE = MFVRSAVE |
| // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE |
| // MTVRSAVE UpdatedVRSAVE |
| MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point |
| BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE); |
| BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE); |
| BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE); |
| |
| // Find all return blocks, outputting a restore in each epilog. |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { |
| if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) { |
| IP = BB->end(); --IP; |
| |
| // Skip over all terminator instructions, which are part of the return |
| // sequence. |
| MachineBasicBlock::iterator I2 = IP; |
| while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode())) |
| IP = I2; |
| |
| // Emit: MTVRSAVE InVRSave |
| BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE); |
| } |
| } |
| } |
| |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| SDOperand PPCDAGToDAGISel::getGlobalBaseReg() { |
| if (!GlobalBaseReg) { |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = BB->getParent()->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| SSARegMap *RegMap = BB->getParent()->getSSARegMap(); |
| // FIXME: when we get to LP64, we will need to create the appropriate |
| // type of register here. |
| GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass); |
| BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); |
| BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); |
| } |
| return CurDAG->getRegister(GlobalBaseReg, MVT::i32); |
| } |
| |
| |
| // isIntImmediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isIntImmediate(SDNode *N, unsigned& Imm) { |
| if (N->getOpcode() == ISD::Constant) { |
| Imm = cast<ConstantSDNode>(N)->getValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with |
| // any number of 0s on either side. The 1s are allowed to wrap from LSB to |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is |
| // not, since all 1s are not contiguous. |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { |
| if (isShiftedMask_32(Val)) { |
| // look for the first non-zero bit |
| MB = CountLeadingZeros_32(Val); |
| // look for the first zero bit after the run of ones |
| ME = CountLeadingZeros_32((Val - 1) ^ Val); |
| return true; |
| } else { |
| Val = ~Val; // invert mask |
| if (isShiftedMask_32(Val)) { |
| // effectively look for the first zero bit |
| ME = CountLeadingZeros_32(Val) - 1; |
| // effectively look for the first one bit after the run of zeros |
| MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; |
| return true; |
| } |
| } |
| // no run present |
| return false; |
| } |
| |
| // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate |
| // and mask opcode and mask operation. |
| static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, |
| unsigned &SH, unsigned &MB, unsigned &ME) { |
| // Don't even go down this path for i64, since different logic will be |
| // necessary for rldicl/rldicr/rldimi. |
| if (N->getValueType(0) != MVT::i32) |
| return false; |
| |
| unsigned Shift = 32; |
| unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
| unsigned Opcode = N->getOpcode(); |
| if (N->getNumOperands() != 2 || |
| !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) |
| return false; |
| |
| if (Opcode == ISD::SHL) { |
| // apply shift left to mask if it comes first |
| if (IsShiftMask) Mask = Mask << Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu << Shift); |
| } else if (Opcode == ISD::SRL) { |
| // apply shift right to mask if it comes first |
| if (IsShiftMask) Mask = Mask >> Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu >> Shift); |
| // adjust for the left rotate |
| Shift = 32 - Shift; |
| } else { |
| return false; |
| } |
| |
| // if the mask doesn't intersect any Indeterminant bits |
| if (Mask && !(Mask & Indeterminant)) { |
| SH = Shift; |
| // make sure the mask is still a mask (wrap arounds may not be) |
| return isRunOfOnes(Mask, MB, ME); |
| } |
| return false; |
| } |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm); |
| } |
| |
| // isIntImmediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isIntImmediate(SDOperand N, unsigned& Imm) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| Imm = (unsigned)CN->getSignExtended(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// SelectBitfieldInsert - turn an or of two masked values into |
| /// the rotate left word immediate then mask insert (rlwimi) instruction. |
| /// Returns true on success, false if the caller still needs to select OR. |
| /// |
| /// Patterns matched: |
| /// 1. or shl, and 5. or and, and |
| /// 2. or and, shl 6. or shl, shr |
| /// 3. or shr, and 7. or shr, shl |
| /// 4. or and, shr |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { |
| bool IsRotate = false; |
| unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0; |
| unsigned Value; |
| |
| SDOperand Op0 = N->getOperand(0); |
| SDOperand Op1 = N->getOperand(1); |
| |
| unsigned Op0Opc = Op0.getOpcode(); |
| unsigned Op1Opc = Op1.getOpcode(); |
| |
| // Verify that we have the correct opcodes |
| if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) |
| return false; |
| if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) |
| return false; |
| |
| // Generate Mask value for Target |
| if (isIntImmediate(Op0.getOperand(1), Value)) { |
| switch(Op0Opc) { |
| case ISD::SHL: TgtMask <<= Value; break; |
| case ISD::SRL: TgtMask >>= Value; break; |
| case ISD::AND: TgtMask &= Value; break; |
| } |
| } else { |
| return 0; |
| } |
| |
| // Generate Mask value for Insert |
| if (!isIntImmediate(Op1.getOperand(1), Value)) |
| return 0; |
| |
| switch(Op1Opc) { |
| case ISD::SHL: |
| SH = Value; |
| InsMask <<= SH; |
| if (Op0Opc == ISD::SRL) IsRotate = true; |
| break; |
| case ISD::SRL: |
| SH = Value; |
| InsMask >>= SH; |
| SH = 32-SH; |
| if (Op0Opc == ISD::SHL) IsRotate = true; |
| break; |
| case ISD::AND: |
| InsMask &= Value; |
| break; |
| } |
| |
| // If both of the inputs are ANDs and one of them has a logical shift by |
| // constant as its input, make that AND the inserted value so that we can |
| // combine the shift into the rotate part of the rlwimi instruction |
| bool IsAndWithShiftOp = false; |
| if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
| if (Op1.getOperand(0).getOpcode() == ISD::SHL || |
| Op1.getOperand(0).getOpcode() == ISD::SRL) { |
| if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { |
| SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; |
| IsAndWithShiftOp = true; |
| } |
| } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
| Op0.getOperand(0).getOpcode() == ISD::SRL) { |
| if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { |
| std::swap(Op0, Op1); |
| std::swap(TgtMask, InsMask); |
| SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; |
| IsAndWithShiftOp = true; |
| } |
| } |
| } |
| |
| // Verify that the Target mask and Insert mask together form a full word mask |
| // and that the Insert mask is a run of set bits (which implies both are runs |
| // of set bits). Given that, Select the arguments and generate the rlwimi |
| // instruction. |
| unsigned MB, ME; |
| if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { |
| bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; |
| bool Op0IsAND = Op0Opc == ISD::AND; |
| // Check for rotlwi / rotrwi here, a special case of bitfield insert |
| // where both bitfield halves are sourced from the same value. |
| if (IsRotate && fullMask && |
| N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) { |
| SDOperand Tmp; |
| Select(Tmp, N->getOperand(0).getOperand(0)); |
| return CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Tmp, |
| getI32Imm(SH), getI32Imm(0), getI32Imm(31)); |
| } |
| SDOperand Tmp1, Tmp2; |
| Select(Tmp1, ((Op0IsAND && fullMask) ? Op0.getOperand(0) : Op0)); |
| Select(Tmp2, (IsAndWithShiftOp ? Op1.getOperand(0).getOperand(0) |
| : Op1.getOperand(0))); |
| return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, |
| getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); |
| } |
| return 0; |
| } |
| |
| /// SelectAddrImm - Returns true if the address N can be represented by |
| /// a base register plus a signed 16-bit displacement [r+imm]. |
| bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp, |
| SDOperand &Base) { |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddrIdx(N, Disp, Base)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| unsigned imm = 0; |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) { |
| Disp = getI32Imm(imm & 0xFFFF); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| unsigned imm = 0; |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, |
| LHSKnownZero, LHSKnownOne); |
| if ((LHSKnownZero|~imm) == ~0U) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = getI32Imm(imm & 0xFFFF); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. |
| int Addr = (int)CN->getValue(); |
| |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0" |
| if (Addr == (short)Addr) { |
| Disp = getI32Imm(Addr); |
| Base = CurDAG->getRegister(PPC::R0, MVT::i32); |
| return true; |
| } |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = getI32Imm((short)Addr); |
| Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32); |
| return true; |
| } |
| |
| Disp = getI32Imm(0); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| /// SelectAddrIdx - Given the specified addressed, check to see if it can be |
| /// represented as an indexed [r+r] operation. Returns false if it can |
| /// be represented by [r+imm], which are preferred. |
| bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base, |
| SDOperand &Index) { |
| unsigned imm = 0; |
| if (N.getOpcode() == ISD::ADD) { |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) |
| return false; // r+i |
| if (N.getOperand(1).getOpcode() == PPCISD::Lo) |
| return false; // r+i |
| |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } else if (N.getOpcode() == ISD::OR) { |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) |
| return false; // r+i can fold it if we can. |
| |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are provably |
| // disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| uint64_t RHSKnownZero, RHSKnownOne; |
| PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, |
| LHSKnownZero, LHSKnownOne); |
| |
| if (LHSKnownZero) { |
| PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U, |
| RHSKnownZero, RHSKnownOne); |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| if ((LHSKnownZero | RHSKnownZero) == ~0U) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// SelectAddrIdxOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base, |
| SDOperand &Index) { |
| // Check to see if we can easily represent this as an [r+r] address. This |
| // will fail if it thinks that the address is more profitably represented as |
| // reg+imm, e.g. where imm = 0. |
| if (SelectAddrIdx(N, Base, Index)) |
| return true; |
| |
| // If the operand is an addition, always emit this as [r+r], since this is |
| // better (for code size, and execution, as the memop does the add for free) |
| // than emitting an explicit add. |
| if (N.getOpcode() == ISD::ADD) { |
| Base = N.getOperand(0); |
| Index = N.getOperand(1); |
| return true; |
| } |
| |
| // Otherwise, do it the hard way, using R0 as the base register. |
| Base = CurDAG->getRegister(PPC::R0, MVT::i32); |
| Index = N; |
| return true; |
| } |
| |
| /// SelectAddrImmShift - Returns true if the address N can be represented by |
| /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable |
| /// for use by STD and friends. |
| bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp, |
| SDOperand &Base) { |
| // If this can be more profitably realized as r+r, fail. |
| if (SelectAddrIdx(N, Disp, Base)) |
| return false; |
| |
| if (N.getOpcode() == ISD::ADD) { |
| unsigned imm = 0; |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) && |
| (imm & 3) == 0) { |
| Disp = getI32Imm((imm & 0xFFFF) >> 2); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { |
| Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| } else { |
| Base = N.getOperand(0); |
| } |
| return true; // [r+i] |
| } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue() |
| && "Cannot handle constant offsets yet!"); |
| Disp = N.getOperand(1).getOperand(0); // The global address. |
| assert(Disp.getOpcode() == ISD::TargetGlobalAddress || |
| Disp.getOpcode() == ISD::TargetConstantPool || |
| Disp.getOpcode() == ISD::TargetJumpTable); |
| Base = N.getOperand(0); |
| return true; // [&g+r] |
| } |
| } else if (N.getOpcode() == ISD::OR) { |
| unsigned imm = 0; |
| if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) && |
| (imm & 3) == 0) { |
| // If this is an or of disjoint bitfields, we can codegen this as an add |
| // (for better address arithmetic) if the LHS and RHS of the OR are |
| // provably disjoint. |
| uint64_t LHSKnownZero, LHSKnownOne; |
| PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U, |
| LHSKnownZero, LHSKnownOne); |
| if ((LHSKnownZero|~imm) == ~0U) { |
| // If all of the bits are known zero on the LHS or RHS, the add won't |
| // carry. |
| Base = N.getOperand(0); |
| Disp = getI32Imm((imm & 0xFFFF) >> 2); |
| return true; |
| } |
| } |
| } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| // Loading from a constant address. |
| int Addr = (int)CN->getValue(); |
| if ((Addr & 3) == 0) { |
| // If this address fits entirely in a 16-bit sext immediate field, codegen |
| // this as "d, 0" |
| if (Addr == (short)Addr) { |
| Disp = getI32Imm(Addr >> 2); |
| Base = CurDAG->getRegister(PPC::R0, MVT::i32); |
| return true; |
| } |
| |
| // Otherwise, break this down into an LIS + disp. |
| Disp = getI32Imm((short)Addr >> 2); |
| Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32); |
| return true; |
| } |
| } |
| |
| Disp = getI32Imm(0); |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) |
| Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| else |
| Base = N; |
| return true; // [r+0] |
| } |
| |
| |
| /// SelectCC - Select a comparison of the specified values with the specified |
| /// condition code, returning the CR# of the expression. |
| SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, |
| ISD::CondCode CC) { |
| // Always select the LHS. |
| Select(LHS, LHS); |
| |
| // Use U to determine whether the SETCC immediate range is signed or not. |
| if (MVT::isInteger(LHS.getValueType())) { |
| bool U = ISD::isUnsignedIntSetCC(CC); |
| unsigned Imm; |
| if (isIntImmediate(RHS, Imm) && |
| ((U && isUInt16(Imm)) || (!U && isInt16(Imm)))) |
| return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, |
| MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); |
| Select(RHS, RHS); |
| return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32, |
| LHS, RHS), 0); |
| } else if (LHS.getValueType() == MVT::f32) { |
| Select(RHS, RHS); |
| return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0); |
| } else { |
| Select(RHS, RHS); |
| return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0); |
| } |
| } |
| |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding |
| /// to Condition. |
| static unsigned getBCCForSetCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETOEQ: // FIXME: This is incorrect see PR642. |
| case ISD::SETEQ: return PPC::BEQ; |
| case ISD::SETONE: // FIXME: This is incorrect see PR642. |
| case ISD::SETNE: return PPC::BNE; |
| case ISD::SETOLT: // FIXME: This is incorrect see PR642. |
| case ISD::SETULT: |
| case ISD::SETLT: return PPC::BLT; |
| case ISD::SETOLE: // FIXME: This is incorrect see PR642. |
| case ISD::SETULE: |
| case ISD::SETLE: return PPC::BLE; |
| case ISD::SETOGT: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGT: |
| case ISD::SETGT: return PPC::BGT; |
| case ISD::SETOGE: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGE: |
| case ISD::SETGE: return PPC::BGE; |
| |
| case ISD::SETO: return PPC::BUN; |
| case ISD::SETUO: return PPC::BNU; |
| } |
| return 0; |
| } |
| |
| /// getCRIdxForSetCC - Return the index of the condition register field |
| /// associated with the SetCC condition, and whether or not the field is |
| /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETOLT: // FIXME: This is incorrect see PR642. |
| case ISD::SETULT: |
| case ISD::SETLT: Inv = false; return 0; |
| case ISD::SETOGE: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGE: |
| case ISD::SETGE: Inv = true; return 0; |
| case ISD::SETOGT: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGT: |
| case ISD::SETGT: Inv = false; return 1; |
| case ISD::SETOLE: // FIXME: This is incorrect see PR642. |
| case ISD::SETULE: |
| case ISD::SETLE: Inv = true; return 1; |
| case ISD::SETOEQ: // FIXME: This is incorrect see PR642. |
| case ISD::SETEQ: Inv = false; return 2; |
| case ISD::SETONE: // FIXME: This is incorrect see PR642. |
| case ISD::SETNE: Inv = true; return 2; |
| case ISD::SETO: Inv = true; return 3; |
| case ISD::SETUO: Inv = false; return 3; |
| } |
| return 0; |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) { |
| SDNode *N = Op.Val; |
| unsigned Imm; |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| if (isIntImmediate(N->getOperand(1), Imm)) { |
| // We can codegen setcc op, imm very efficiently compared to a brcond. |
| // Check for those cases here. |
| // setcc op, 0 |
| if (Imm == 0) { |
| SDOperand Op; |
| Select(Op, N->getOperand(0)); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0); |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), |
| getI32Imm(5), getI32Imm(31)); |
| case ISD::SETNE: { |
| SDOperand AD = |
| SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(~0U)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, |
| AD.getValue(1)); |
| } |
| case ISD::SETLT: |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| case ISD::SETGT: { |
| SDOperand T = |
| SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0); |
| T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0); |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| } |
| } |
| } else if (Imm == ~0U) { // setcc op, -1 |
| SDOperand Op; |
| Select(Op, N->getOperand(0)); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(1)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32, |
| getI32Imm(0)), 0), |
| Op.getValue(1)); |
| case ISD::SETNE: { |
| Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0); |
| SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(~0U)); |
| return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op, |
| SDOperand(AD, 1)); |
| } |
| case ISD::SETLT: { |
| SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, |
| getI32Imm(1)), 0); |
| SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, |
| Op), 0); |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| } |
| case ISD::SETGT: |
| Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, |
| getI32Imm(1), getI32Imm(31), |
| getI32Imm(31)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); |
| } |
| } |
| } |
| |
| bool Inv; |
| unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); |
| SDOperand IntCR; |
| |
| // Force the ccreg into CR7. |
| SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
| |
| SDOperand InFlag(0, 0); // Null incoming flag value. |
| CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, |
| InFlag).getValue(1); |
| |
| if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) |
| IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, |
| CCReg), 0); |
| else |
| IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0); |
| |
| if (!Inv) { |
| return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, |
| getI32Imm((32-(3-Idx)) & 31), |
| getI32Imm(31), getI32Imm(31)); |
| } else { |
| SDOperand Tmp = |
| SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, |
| getI32Imm((32-(3-Idx)) & 31), |
| getI32Imm(31),getI32Imm(31)), 0); |
| return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); |
| } |
| } |
| |
| /// isCallCompatibleAddress - Return true if the specified 32-bit value is |
| /// representable in the immediate field of a Bx instruction. |
| static bool isCallCompatibleAddress(ConstantSDNode *C) { |
| int Addr = C->getValue(); |
| if (Addr & 3) return false; // Low 2 bits are implicitly zero. |
| return (Addr << 6 >> 6) == Addr; // Top 6 bits have to be sext of immediate. |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) { |
| SDNode *N = Op.Val; |
| SDOperand Chain; |
| Select(Chain, N->getOperand(0)); |
| |
| unsigned CallOpcode; |
| std::vector<SDOperand> CallOperands; |
| |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) { |
| CallOpcode = PPC::BL; |
| CallOperands.push_back(N->getOperand(1)); |
| } else if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) { |
| CallOpcode = PPC::BL; |
| CallOperands.push_back(N->getOperand(1)); |
| } else if (isa<ConstantSDNode>(N->getOperand(1)) && |
| isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) { |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); |
| CallOpcode = PPC::BLA; |
| CallOperands.push_back(getI32Imm((int)C->getValue() >> 2)); |
| } else { |
| // Copy the callee address into the CTR register. |
| SDOperand Callee; |
| Select(Callee, N->getOperand(1)); |
| Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, |
| Chain), 0); |
| |
| // Copy the callee address into R12 on darwin. |
| SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32); |
| Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee); |
| |
| CallOperands.push_back(R12); |
| CallOpcode = PPC::BCTRL; |
| } |
| |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| SDOperand InFlag; // Null incoming flag value. |
| |
| for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) { |
| unsigned DestReg = 0; |
| MVT::ValueType RegTy = N->getOperand(i).getValueType(); |
| if (RegTy == MVT::i32) { |
| assert(GPR_idx < 8 && "Too many int args"); |
| DestReg = GPR[GPR_idx++]; |
| } else { |
| assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) && |
| "Unpromoted integer arg?"); |
| assert(FPR_idx < 13 && "Too many fp args"); |
| DestReg = FPR[FPR_idx++]; |
| } |
| |
| if (N->getOperand(i).getOpcode() != ISD::UNDEF) { |
| SDOperand Val; |
| Select(Val, N->getOperand(i)); |
| Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag); |
| InFlag = Chain.getValue(1); |
| CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy)); |
| } |
| } |
| |
| // Finally, once everything is in registers to pass to the call, emit the |
| // call itself. |
| if (InFlag.Val) |
| CallOperands.push_back(InFlag); // Strong dep on register copies. |
| else |
| CallOperands.push_back(Chain); // Weak dep on whatever occurs before |
| Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, |
| CallOperands), 0); |
| |
| std::vector<SDOperand> CallResults; |
| |
| // If the call has results, copy the values out of the ret val registers. |
| switch (N->getValueType(0)) { |
| default: assert(0 && "Unexpected ret value!"); |
| case MVT::Other: break; |
| case MVT::i32: |
| if (N->getValueType(1) == MVT::i32) { |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| } else { |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0), |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| break; |
| } |
| |
| CallResults.push_back(Chain); |
| for (unsigned i = 0, e = CallResults.size(); i != e; ++i) |
| CodeGenMap[Op.getValue(i)] = CallResults[i]; |
| return CallResults[Op.ResNo]; |
| } |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) { |
| SDNode *N = Op.Val; |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END && |
| N->getOpcode() < PPCISD::FIRST_NUMBER) { |
| Result = Op; |
| return; // Already selected. |
| } |
| |
| // If this has already been converted, use it. |
| std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op); |
| if (CGMI != CodeGenMap.end()) { |
| Result = CGMI->second; |
| return; |
| } |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::SETCC: |
| Result = SelectSETCC(Op); |
| return; |
| case PPCISD::CALL: |
| Result = SelectCALL(Op); |
| return; |
| case PPCISD::GlobalBaseReg: |
| Result = getGlobalBaseReg(); |
| return; |
| |
| case ISD::FrameIndex: { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| if (N->hasOneUse()) { |
| Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32, |
| CurDAG->getTargetFrameIndex(FI, MVT::i32), |
| getI32Imm(0)); |
| return; |
| } |
| Result = CodeGenMap[Op] = |
| SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, |
| CurDAG->getTargetFrameIndex(FI, MVT::i32), |
| getI32Imm(0)), 0); |
| return; |
| } |
| |
| case PPCISD::MFCR: { |
| SDOperand InFlag; |
| Select(InFlag, N->getOperand(1)); |
| // Use MFOCRF if supported. |
| if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) |
| Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, |
| N->getOperand(0), InFlag), 0); |
| else |
| Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0); |
| CodeGenMap[Op] = Result; |
| return; |
| } |
| |
| case ISD::SDIV: { |
| // FIXME: since this depends on the setting of the carry flag from the srawi |
| // we should really be making notes about that for the scheduler. |
| // FIXME: It sure would be nice if we could cheaply recognize the |
| // srl/add/sra pattern the dag combiner will generate for this as |
| // sra/addze rather than having to handle sdiv ourselves. oh well. |
| unsigned Imm; |
| if (isIntImmediate(N->getOperand(1), Imm)) { |
| SDOperand N0; |
| Select(N0, N->getOperand(0)); |
| if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { |
| SDNode *Op = |
| CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, |
| N0, getI32Imm(Log2_32(Imm))); |
| Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| SDOperand(Op, 0), SDOperand(Op, 1)); |
| } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { |
| SDNode *Op = |
| CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, |
| N0, getI32Imm(Log2_32(-Imm))); |
| SDOperand PT = |
| SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, |
| SDOperand(Op, 0), SDOperand(Op, 1)), |
| 0); |
| Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); |
| } |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::AND: { |
| unsigned Imm, Imm2; |
| // If this is an and of a value rotated between 0 and 31 bits and then and'd |
| // with a mask, emit rlwinm |
| if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) || |
| isShiftedMask_32(~Imm))) { |
| SDOperand Val; |
| unsigned SH, MB, ME; |
| if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) { |
| Select(Val, N->getOperand(0).getOperand(0)); |
| } else if (Imm == 0) { |
| // AND X, 0 -> 0, not "rlwinm 32". |
| Select(Result, N->getOperand(1)); |
| return ; |
| } else { |
| Select(Val, N->getOperand(0)); |
| isRunOfOnes(Imm, MB, ME); |
| SH = 0; |
| } |
| Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, |
| getI32Imm(SH), getI32Imm(MB), |
| getI32Imm(ME)); |
| return; |
| } |
| // ISD::OR doesn't get all the bitfield insertion fun. |
| // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert |
| if (isIntImmediate(N->getOperand(1), Imm) && |
| N->getOperand(0).getOpcode() == ISD::OR && |
| isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) { |
| unsigned MB, ME; |
| Imm = ~(Imm^Imm2); |
| if (isRunOfOnes(Imm, MB, ME)) { |
| SDOperand Tmp1, Tmp2; |
| Select(Tmp1, N->getOperand(0).getOperand(0)); |
| Select(Tmp2, N->getOperand(0).getOperand(1)); |
| Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, |
| Tmp1, Tmp2, |
| getI32Imm(0), getI32Imm(MB), |
| getI32Imm(ME)), 0); |
| return; |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::OR: |
| if (SDNode *I = SelectBitfieldInsert(N)) { |
| Result = CodeGenMap[Op] = SDOperand(I, 0); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| case ISD::SHL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDOperand Val; |
| Select(Val, N->getOperand(0).getOperand(0)); |
| Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, |
| Val, getI32Imm(SH), getI32Imm(MB), |
| getI32Imm(ME)); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SRL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| SDOperand Val; |
| Select(Val, N->getOperand(0).getOperand(0)); |
| Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, |
| Val, getI32Imm(SH & 0x1F), getI32Imm(MB), |
| getI32Imm(ME)); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SELECT_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| |
| // handle the setcc cases here. select_cc lhs, 0, 1, 0, cc |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| if (N1C->isNullValue() && N3C->isNullValue() && |
| N2C->getValue() == 1ULL && CC == ISD::SETNE) { |
| SDOperand LHS; |
| Select(LHS, N->getOperand(0)); |
| SDNode *Tmp = |
| CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| LHS, getI32Imm(~0U)); |
| Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, |
| SDOperand(Tmp, 0), LHS, |
| SDOperand(Tmp, 1)); |
| return; |
| } |
| |
| SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); |
| unsigned BROpc = getBCCForSetCC(CC); |
| |
| bool isFP = MVT::isFloatingPoint(N->getValueType(0)); |
| unsigned SelectCCOp; |
| if (MVT::isInteger(N->getValueType(0))) |
| SelectCCOp = PPC::SELECT_CC_Int; |
| else if (N->getValueType(0) == MVT::f32) |
| SelectCCOp = PPC::SELECT_CC_F4; |
| else if (N->getValueType(0) == MVT::f64) |
| SelectCCOp = PPC::SELECT_CC_F8; |
| else |
| SelectCCOp = PPC::SELECT_CC_VRRC; |
| |
| SDOperand N2, N3; |
| Select(N2, N->getOperand(2)); |
| Select(N3, N->getOperand(3)); |
| Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, |
| N2, N3, getI32Imm(BROpc)); |
| return; |
| } |
| case ISD::BR_CC: { |
| SDOperand Chain; |
| Select(Chain, N->getOperand(0)); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); |
| Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, |
| CondCode, getI32Imm(getBCCForSetCC(CC)), |
| N->getOperand(4), Chain); |
| return; |
| } |
| case ISD::BRIND: { |
| SDOperand Chain, Target; |
| Select(Chain, N->getOperand(0)); |
| Select(Target,N->getOperand(1)); |
| Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Target, |
| Chain), 0); |
| Result = CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain); |
| return; |
| } |
| } |
| |
| SelectCode(Result, Op); |
| } |
| |
| |
| /// createPPCISelDag - This pass converts a legalized DAG into a |
| /// PowerPC-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { |
| return new PPCDAGToDAGISel(TM); |
| } |
| |