| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "ScheduleDAGSDNodes.h" |
| #include "SelectionDAGBuilder.h" |
| #include "FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionAnalysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); |
| STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); |
| |
| static cl::opt<bool> |
| EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, |
| cl::desc("Enable verbose messages in the \"fast\" " |
| "instruction selector")); |
| static cl::opt<bool> |
| EnableFastISelAbort("fast-isel-abort", cl::Hidden, |
| cl::desc("Enable abort calls when \"fast\" instruction fails")); |
| static cl::opt<bool> |
| SchedLiveInCopies("schedule-livein-copies", cl::Hidden, |
| cl::desc("Schedule copies of livein registers"), |
| cl::init(false)); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize types")); |
| static cl::opt<bool> |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the post legalize types" |
| " dag combine pass")); |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| static cl::opt<bool> |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden, |
| cl::desc("Pop up a window to show SUnit dags after they are processed")); |
| #else |
| static const bool ViewDAGCombine1 = false, |
| ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, |
| ViewDAGCombine2 = false, |
| ViewDAGCombineLT = false, |
| ViewISelDAGs = false, ViewSchedDAGs = false, |
| ViewSUnitDAGs = false; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler> > |
| ISHeuristic("pre-RA-sched", |
| cl::init(&createDefaultScheduler), |
| cl::desc("Instruction schedulers available (before register" |
| " allocation):")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", "Best scheduler for the target", |
| createDefaultScheduler); |
| |
| namespace llvm { |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, |
| CodeGenOpt::Level OptLevel) { |
| const TargetLowering &TLI = IS->getTargetLowering(); |
| |
| if (OptLevel == CodeGenOpt::None) |
| return createFastDAGScheduler(IS, OptLevel); |
| if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) |
| return createTDListDAGScheduler(IS, OptLevel); |
| assert(TLI.getSchedulingPreference() == |
| TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); |
| return createBURRListDAGScheduler(IS, OptLevel); |
| } |
| } |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and this method is called to expand it into a sequence of |
| // instructions, potentially also creating new basic blocks and control flow. |
| // When new basic blocks are inserted and the edges from MBB to its successors |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the |
| // DenseMap. |
| MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB, |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { |
| #ifndef NDEBUG |
| dbgs() << "If a target marks an instruction with " |
| "'usesCustomInserter', it must implement " |
| "TargetLowering::EmitInstrWithCustomInserter!"; |
| #endif |
| llvm_unreachable(0); |
| return 0; |
| } |
| |
| /// EmitLiveInCopy - Emit a copy for a live in physical register. If the |
| /// physical register has only a single copy use, then coalesced the copy |
| /// if possible. |
| static void EmitLiveInCopy(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator &InsertPos, |
| unsigned VirtReg, unsigned PhysReg, |
| const TargetRegisterClass *RC, |
| DenseMap<MachineInstr*, unsigned> &CopyRegMap, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| unsigned NumUses = 0; |
| MachineInstr *UseMI = NULL; |
| for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), |
| UE = MRI.use_end(); UI != UE; ++UI) { |
| UseMI = &*UI; |
| if (++NumUses > 1) |
| break; |
| } |
| |
| // If the number of uses is not one, or the use is not a move instruction, |
| // don't coalesce. Also, only coalesce away a virtual register to virtual |
| // register copy. |
| bool Coalesced = false; |
| unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; |
| if (NumUses == 1 && |
| TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) && |
| TargetRegisterInfo::isVirtualRegister(DstReg)) { |
| VirtReg = DstReg; |
| Coalesced = true; |
| } |
| |
| // Now find an ideal location to insert the copy. |
| MachineBasicBlock::iterator Pos = InsertPos; |
| while (Pos != MBB->begin()) { |
| MachineInstr *PrevMI = prior(Pos); |
| DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI); |
| // copyRegToReg might emit multiple instructions to do a copy. |
| unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; |
| if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg)) |
| // This is what the BB looks like right now: |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov r1024 |
| // |
| // We want to insert "r1025 = mov r1". Inserting this copy below the |
| // move to r1024 makes it impossible for that move to be coalesced. |
| // |
| // r1025 = mov r1 |
| // r1024 = mov r0 |
| // ... |
| // r1 = mov 1024 |
| // r2 = mov 1025 |
| break; // Woot! Found a good location. |
| --Pos; |
| } |
| |
| bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC); |
| assert(Emitted && "Unable to issue a live-in copy instruction!\n"); |
| (void) Emitted; |
| |
| CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); |
| if (Coalesced) { |
| if (&*InsertPos == UseMI) ++InsertPos; |
| MBB->erase(UseMI); |
| } |
| } |
| |
| /// EmitLiveInCopies - If this is the first basic block in the function, |
| /// and if it has live ins that need to be copied into vregs, emit the |
| /// copies into the block. |
| static void EmitLiveInCopies(MachineBasicBlock *EntryMBB, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| const TargetInstrInfo &TII) { |
| if (SchedLiveInCopies) { |
| // Emit the copies at a heuristically-determined location in the block. |
| DenseMap<MachineInstr*, unsigned> CopyRegMap; |
| MachineBasicBlock::iterator InsertPos = EntryMBB->begin(); |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first, |
| RC, CopyRegMap, MRI, TRI, TII); |
| } |
| } else { |
| // Emit the copies into the top of the block. |
| for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), |
| E = MRI.livein_end(); LI != E; ++LI) |
| if (LI->second) { |
| const TargetRegisterClass *RC = MRI.getRegClass(LI->second); |
| bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(), |
| LI->second, LI->first, RC, RC); |
| assert(Emitted && "Unable to issue a live-in copy instruction!\n"); |
| (void) Emitted; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : |
| MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()), |
| FuncInfo(new FunctionLoweringInfo(TLI)), |
| CurDAG(new SelectionDAG(TLI, *FuncInfo)), |
| SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)), |
| GFI(), |
| OptLevel(OL), |
| DAGSize(0) |
| {} |
| |
| SelectionDAGISel::~SelectionDAGISel() { |
| delete SDB; |
| delete CurDAG; |
| delete FuncInfo; |
| } |
| |
| unsigned SelectionDAGISel::MakeReg(EVT VT) { |
| return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<GCModuleInfo>(); |
| AU.addPreserved<GCModuleInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| Function &Fn = *mf.getFunction(); |
| |
| // Do some sanity-checking on the command-line options. |
| assert((!EnableFastISelVerbose || EnableFastISel) && |
| "-fast-isel-verbose requires -fast-isel"); |
| assert((!EnableFastISelAbort || EnableFastISel) && |
| "-fast-isel-abort requires -fast-isel"); |
| |
| // Get alias analysis for load/store combining. |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| MF = &mf; |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| |
| if (Fn.hasGC()) |
| GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn); |
| else |
| GFI = 0; |
| RegInfo = &MF->getRegInfo(); |
| DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); |
| |
| CurDAG->init(*MF); |
| FuncInfo->set(Fn, *MF, EnableFastISel); |
| SDB->init(GFI, *AA); |
| |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) |
| // Mark landing pad. |
| FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); |
| |
| SelectAllBasicBlocks(Fn, *MF, TII); |
| |
| // If the first basic block in the function has live ins that need to be |
| // copied into vregs, emit the copies into the top of the block before |
| // emitting the code for the block. |
| EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII); |
| |
| // Add function live-ins to entry block live-in set. |
| for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), |
| E = RegInfo->livein_end(); I != E; ++I) |
| MF->begin()->addLiveIn(I->first); |
| |
| #ifndef NDEBUG |
| assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() && |
| "Not all catch info was assigned to a landing pad!"); |
| #endif |
| |
| FuncInfo->clear(); |
| |
| return true; |
| } |
| |
| /// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is |
| /// attached with this instruction. |
| static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB, |
| FastISel *FastIS, MachineFunction *MF) { |
| DebugLoc DL = I->getDebugLoc(); |
| if (DL.isUnknown()) return; |
| |
| SDB->setCurDebugLoc(DL); |
| |
| if (FastIS) |
| FastIS->setCurDebugLoc(DL); |
| |
| // If the function doesn't have a default debug location yet, set |
| // it. This is kind of a hack. |
| if (MF->getDefaultDebugLoc().isUnknown()) |
| MF->setDefaultDebugLoc(DL); |
| } |
| |
| /// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown. |
| static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) { |
| SDB->setCurDebugLoc(DebugLoc()); |
| if (FastIS) |
| FastIS->setCurDebugLoc(DebugLoc()); |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, |
| BasicBlock::iterator Begin, |
| BasicBlock::iterator End, |
| bool &HadTailCall) { |
| SDB->setCurrentBasicBlock(BB); |
| |
| // Lower all of the non-terminator instructions. If a call is emitted |
| // as a tail call, cease emitting nodes for this block. |
| for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
| SetDebugLoc(I, SDB, 0, MF); |
| |
| if (!isa<TerminatorInst>(I)) { |
| SDB->visit(*I); |
| |
| // Set the current debug location back to "unknown" so that it doesn't |
| // spuriously apply to subsequent instructions. |
| ResetDebugLoc(SDB, 0); |
| } |
| } |
| |
| if (!SDB->HasTailCall) { |
| // Ensure that all instructions which are used outside of their defining |
| // blocks are available as virtual registers. Invoke is handled elsewhere. |
| for (BasicBlock::iterator I = Begin; I != End; ++I) |
| if (!isa<PHINode>(I) && !isa<InvokeInst>(I)) |
| SDB->CopyToExportRegsIfNeeded(I); |
| |
| // Handle PHI nodes in successor blocks. |
| if (End == LLVMBB->end()) { |
| HandlePHINodesInSuccessorBlocks(LLVMBB); |
| |
| // Lower the terminator after the copies are emitted. |
| SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF); |
| SDB->visit(*LLVMBB->getTerminator()); |
| ResetDebugLoc(SDB, 0); |
| } |
| } |
| |
| // Make sure the root of the DAG is up-to-date. |
| CurDAG->setRoot(SDB->getControlRoot()); |
| |
| // Final step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(); |
| HadTailCall = SDB->HasTailCall; |
| SDB->clear(); |
| } |
| |
| namespace { |
| /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted |
| /// nodes from the worklist. |
| class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener { |
| SmallVector<SDNode*, 128> &Worklist; |
| SmallPtrSet<SDNode*, 128> &InWorklist; |
| public: |
| SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl, |
| SmallPtrSet<SDNode*, 128> &inwl) |
| : Worklist(wl), InWorklist(inwl) {} |
| |
| void RemoveFromWorklist(SDNode *N) { |
| if (!InWorklist.erase(N)) return; |
| |
| SmallVector<SDNode*, 128>::iterator I = |
| std::find(Worklist.begin(), Worklist.end(), N); |
| assert(I != Worklist.end() && "Not in worklist"); |
| |
| *I = Worklist.back(); |
| Worklist.pop_back(); |
| } |
| |
| virtual void NodeDeleted(SDNode *N, SDNode *E) { |
| RemoveFromWorklist(N); |
| } |
| |
| virtual void NodeUpdated(SDNode *N) { |
| // Ignore updates. |
| } |
| }; |
| } |
| |
| /// TrivialTruncElim - Eliminate some trivial nops that can result from |
| /// ShrinkDemandedOps: (trunc (ext n)) -> n. |
| static bool TrivialTruncElim(SDValue Op, |
| TargetLowering::TargetLoweringOpt &TLO) { |
| SDValue N0 = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| if ((N0.getOpcode() == ISD::ZERO_EXTEND || |
| N0.getOpcode() == ISD::SIGN_EXTEND || |
| N0.getOpcode() == ISD::ANY_EXTEND) && |
| N0.getOperand(0).getValueType() == VT) { |
| return TLO.CombineTo(Op, N0.getOperand(0)); |
| } |
| return false; |
| } |
| |
| /// ShrinkDemandedOps - A late transformation pass that shrink expressions |
| /// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts |
| /// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
| void SelectionDAGISel::ShrinkDemandedOps() { |
| SmallVector<SDNode*, 128> Worklist; |
| SmallPtrSet<SDNode*, 128> InWorklist; |
| |
| // Add all the dag nodes to the worklist. |
| Worklist.reserve(CurDAG->allnodes_size()); |
| for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| E = CurDAG->allnodes_end(); I != E; ++I) { |
| Worklist.push_back(I); |
| InWorklist.insert(I); |
| } |
| |
| TargetLowering::TargetLoweringOpt TLO(*CurDAG, true); |
| while (!Worklist.empty()) { |
| SDNode *N = Worklist.pop_back_val(); |
| InWorklist.erase(N); |
| |
| if (N->use_empty() && N != CurDAG->getRoot().getNode()) { |
| // Deleting this node may make its operands dead, add them to the worklist |
| // if they aren't already there. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (InWorklist.insert(N->getOperand(i).getNode())) |
| Worklist.push_back(N->getOperand(i).getNode()); |
| |
| CurDAG->DeleteNode(N); |
| continue; |
| } |
| |
| // Run ShrinkDemandedOp on scalar binary operations. |
| if (N->getNumValues() != 1 || |
| !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger()) |
| continue; |
| |
| unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); |
| APInt Demanded = APInt::getAllOnesValue(BitWidth); |
| APInt KnownZero, KnownOne; |
| if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded, |
| KnownZero, KnownOne, TLO) && |
| (N->getOpcode() != ISD::TRUNCATE || |
| !TrivialTruncElim(SDValue(N, 0), TLO))) |
| continue; |
| |
| // Revisit the node. |
| assert(!InWorklist.count(N) && "Already in worklist"); |
| Worklist.push_back(N); |
| InWorklist.insert(N); |
| |
| // Replace the old value with the new one. |
| DEBUG(errs() << "\nShrinkDemandedOps replacing "; |
| TLO.Old.getNode()->dump(CurDAG); |
| errs() << "\nWith: "; |
| TLO.New.getNode()->dump(CurDAG); |
| errs() << '\n'); |
| |
| if (InWorklist.insert(TLO.New.getNode())) |
| Worklist.push_back(TLO.New.getNode()); |
| |
| SDOPsWorkListRemover DeadNodes(Worklist, InWorklist); |
| CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); |
| |
| if (!TLO.Old.getNode()->use_empty()) continue; |
| |
| for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); |
| i != e; ++i) { |
| SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode(); |
| if (OpNode->hasOneUse()) { |
| // Add OpNode to the end of the list to revisit. |
| DeadNodes.RemoveFromWorklist(OpNode); |
| Worklist.push_back(OpNode); |
| InWorklist.insert(OpNode); |
| } |
| } |
| |
| DeadNodes.RemoveFromWorklist(TLO.Old.getNode()); |
| CurDAG->DeleteNode(TLO.Old.getNode()); |
| } |
| } |
| |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| SmallPtrSet<SDNode*, 128> VisitedNodes; |
| SmallVector<SDNode*, 128> Worklist; |
| |
| Worklist.push_back(CurDAG->getRoot().getNode()); |
| |
| APInt Mask; |
| APInt KnownZero; |
| APInt KnownOne; |
| |
| do { |
| SDNode *N = Worklist.pop_back_val(); |
| |
| // If we've already seen this node, ignore it. |
| if (!VisitedNodes.insert(N)) |
| continue; |
| |
| // Otherwise, add all chain operands to the worklist. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).getValueType() == MVT::Other) |
| Worklist.push_back(N->getOperand(i).getNode()); |
| |
| // If this is a CopyToReg with a vreg dest, process it. |
| if (N->getOpcode() != ISD::CopyToReg) |
| continue; |
| |
| unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DestReg)) |
| continue; |
| |
| // Ignore non-scalar or non-integer values. |
| SDValue Src = N->getOperand(2); |
| EVT SrcVT = Src.getValueType(); |
| if (!SrcVT.isInteger() || SrcVT.isVector()) |
| continue; |
| |
| unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); |
| Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); |
| CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); |
| |
| // Only install this information if it tells us something. |
| if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) { |
| DestReg -= TargetRegisterInfo::FirstVirtualRegister; |
| if (DestReg >= FuncInfo->LiveOutRegInfo.size()) |
| FuncInfo->LiveOutRegInfo.resize(DestReg+1); |
| FunctionLoweringInfo::LiveOutInfo &LOI = |
| FuncInfo->LiveOutRegInfo[DestReg]; |
| LOI.NumSignBits = NumSignBits; |
| LOI.KnownOne = KnownOne; |
| LOI.KnownZero = KnownZero; |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG() { |
| std::string GroupName; |
| if (TimePassesIsEnabled) |
| GroupName = "Instruction Selection and Scheduling"; |
| std::string BlockName; |
| if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || |
| ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || |
| ViewSUnitDAGs) |
| BlockName = MF->getFunction()->getNameStr() + ":" + |
| BB->getBasicBlock()->getNameStr(); |
| |
| DEBUG(dbgs() << "Initial selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 1", GroupName); |
| CurDAG->Combine(Unrestricted, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(Unrestricted, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized lowered selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + |
| BlockName); |
| |
| bool Changed; |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Type Legalization", GroupName); |
| Changed = CurDAG->LegalizeTypes(); |
| } else { |
| Changed = CurDAG->LegalizeTypes(); |
| } |
| |
| DEBUG(dbgs() << "Type-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (Changed) { |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lt input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining after legalize types", GroupName); |
| CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| } |
| |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Vector Legalization", GroupName); |
| Changed = CurDAG->LegalizeVectors(); |
| } else { |
| Changed = CurDAG->LegalizeVectors(); |
| } |
| |
| if (Changed) { |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Type Legalization 2", GroupName); |
| CurDAG->LegalizeTypes(); |
| } else { |
| CurDAG->LegalizeTypes(); |
| } |
| |
| if (ViewDAGCombineLT) |
| CurDAG->viewGraph("dag-combine-lv input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining after legalize vectors", GroupName); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| } |
| |
| if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); |
| |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Legalization", GroupName); |
| CurDAG->Legalize(OptLevel); |
| } else { |
| CurDAG->Legalize(OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); |
| |
| // Run the DAG combiner in post-legalize mode. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("DAG Combining 2", GroupName); |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } else { |
| CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); |
| } |
| |
| DEBUG(dbgs() << "Optimized legalized selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (OptLevel != CodeGenOpt::None) { |
| ShrinkDemandedOps(); |
| ComputeLiveOutVRegInfo(); |
| } |
| |
| if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Selection", GroupName); |
| DoInstructionSelection(); |
| } else { |
| DoInstructionSelection(); |
| } |
| |
| DEBUG(dbgs() << "Selected selection DAG:\n"); |
| DEBUG(CurDAG->dump()); |
| |
| if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); |
| |
| // Schedule machine code. |
| ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling", GroupName); |
| Scheduler->Run(CurDAG, BB, BB->end()); |
| } else { |
| Scheduler->Run(CurDAG, BB, BB->end()); |
| } |
| |
| if (ViewSUnitDAGs) Scheduler->viewGraph(); |
| |
| // Emit machine code to BB. This can change 'BB' to the last block being |
| // inserted into. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Creation", GroupName); |
| BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); |
| } else { |
| BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); |
| } |
| |
| // Free the scheduler state. |
| if (TimePassesIsEnabled) { |
| NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName); |
| delete Scheduler; |
| } else { |
| delete Scheduler; |
| } |
| |
| DEBUG(dbgs() << "Selected machine code:\n"); |
| DEBUG(BB->dump()); |
| } |
| |
| void SelectionDAGISel::DoInstructionSelection() { |
| DEBUG(errs() << "===== Instruction selection begins:\n"); |
| |
| PreprocessISelDAG(); |
| |
| // Select target instructions for the DAG. |
| { |
| // Number all nodes with a topological order and set DAGSize. |
| DAGSize = CurDAG->AssignTopologicalOrder(); |
| |
| // Create a dummy node (which is not added to allnodes), that adds |
| // a reference to the root node, preventing it from being deleted, |
| // and tracking any changes of the root. |
| HandleSDNode Dummy(CurDAG->getRoot()); |
| ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); |
| ++ISelPosition; |
| |
| // The AllNodes list is now topological-sorted. Visit the |
| // nodes by starting at the end of the list (the root of the |
| // graph) and preceding back toward the beginning (the entry |
| // node). |
| while (ISelPosition != CurDAG->allnodes_begin()) { |
| SDNode *Node = --ISelPosition; |
| // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
| // but there are currently some corner cases that it misses. Also, this |
| // makes it theoretically possible to disable the DAGCombiner. |
| if (Node->use_empty()) |
| continue; |
| |
| SDNode *ResNode = Select(Node); |
| |
| // FIXME: This is pretty gross. 'Select' should be changed to not return |
| // anything at all and this code should be nuked with a tactical strike. |
| |
| // If node should not be replaced, continue with the next one. |
| if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| // Replace node. |
| if (ResNode) |
| ReplaceUses(Node, ResNode); |
| |
| // If after the replacement this node is not used any more, |
| // remove this dead node. |
| if (Node->use_empty()) { // Don't delete EntryToken, etc. |
| ISelUpdater ISU(ISelPosition); |
| CurDAG->RemoveDeadNode(Node, &ISU); |
| } |
| } |
| |
| CurDAG->setRoot(Dummy.getValue()); |
| } |
| DEBUG(errs() << "===== Instruction selection ends:\n"); |
| |
| PostprocessISelDAG(); |
| } |
| |
| |
| void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, |
| MachineFunction &MF, |
| const TargetInstrInfo &TII) { |
| // Initialize the Fast-ISel state, if needed. |
| FastISel *FastIS = 0; |
| if (EnableFastISel) |
| FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap, |
| FuncInfo->StaticAllocaMap |
| #ifndef NDEBUG |
| , FuncInfo->CatchInfoLost |
| #endif |
| ); |
| |
| // Iterate over all basic blocks in the function. |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { |
| BasicBlock *LLVMBB = &*I; |
| BB = FuncInfo->MBBMap[LLVMBB]; |
| |
| BasicBlock::iterator const Begin = LLVMBB->begin(); |
| BasicBlock::iterator const End = LLVMBB->end(); |
| BasicBlock::iterator BI = Begin; |
| |
| // Lower any arguments needed in this block if this is the entry block. |
| bool SuppressFastISel = false; |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| LowerArguments(LLVMBB); |
| |
| // If any of the arguments has the byval attribute, forgo |
| // fast-isel in the entry block. |
| if (FastIS) { |
| unsigned j = 1; |
| for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); |
| I != E; ++I, ++j) |
| if (Fn.paramHasAttr(j, Attribute::ByVal)) { |
| if (EnableFastISelVerbose || EnableFastISelAbort) |
| dbgs() << "FastISel skips entry block due to byval argument\n"; |
| SuppressFastISel = true; |
| break; |
| } |
| } |
| } |
| |
| if (BB->isLandingPad()) { |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| MCSymbol *Label = MF.getMMI().addLandingPad(BB); |
| |
| const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL); |
| BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label); |
| |
| // Mark exception register as live in. |
| unsigned Reg = TLI.getExceptionAddressRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // Mark exception selector register as live in. |
| Reg = TLI.getExceptionSelectorRegister(); |
| if (Reg) BB->addLiveIn(Reg); |
| |
| // FIXME: Hack around an exception handling flaw (PR1508): the personality |
| // function and list of typeids logically belong to the invoke (or, if you |
| // like, the basic block containing the invoke), and need to be associated |
| // with it in the dwarf exception handling tables. Currently however the |
| // information is provided by an intrinsic (eh.selector) that can be moved |
| // to unexpected places by the optimizers: if the unwind edge is critical, |
| // then breaking it can result in the intrinsics being in the successor of |
| // the landing pad, not the landing pad itself. This results |
| // in exceptions not being caught because no typeids are associated with |
| // the invoke. This may not be the only way things can go wrong, but it |
| // is the only way we try to work around for the moment. |
| BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); |
| |
| if (Br && Br->isUnconditional()) { // Critical edge? |
| BasicBlock::iterator I, E; |
| for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) |
| if (isa<EHSelectorInst>(I)) |
| break; |
| |
| if (I == E) |
| // No catch info found - try to extract some from the successor. |
| CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF.getMMI(), *FuncInfo); |
| } |
| } |
| |
| // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| if (FastIS && !SuppressFastISel) { |
| // Emit code for any incoming arguments. This must happen before |
| // beginning FastISel on the entry block. |
| if (LLVMBB == &Fn.getEntryBlock()) { |
| CurDAG->setRoot(SDB->getControlRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| FastIS->startNewBlock(BB); |
| // Do FastISel on as many instructions as possible. |
| for (; BI != End; ++BI) { |
| // Just before the terminator instruction, insert instructions to |
| // feed PHI nodes in successor blocks. |
| if (isa<TerminatorInst>(BI)) |
| if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) { |
| ++NumFastIselFailures; |
| ResetDebugLoc(SDB, FastIS); |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel miss: "; |
| BI->dump(); |
| } |
| assert(!EnableFastISelAbort && |
| "FastISel didn't handle a PHI in a successor"); |
| break; |
| } |
| |
| SetDebugLoc(BI, SDB, FastIS, &MF); |
| |
| // Try to select the instruction with FastISel. |
| if (FastIS->SelectInstruction(BI)) { |
| ResetDebugLoc(SDB, FastIS); |
| continue; |
| } |
| |
| // Clear out the debug location so that it doesn't carry over to |
| // unrelated instructions. |
| ResetDebugLoc(SDB, FastIS); |
| |
| // Then handle certain instructions as single-LLVM-Instruction blocks. |
| if (isa<CallInst>(BI)) { |
| ++NumFastIselFailures; |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel missed call: "; |
| BI->dump(); |
| } |
| |
| if (!BI->getType()->isVoidTy()) { |
| unsigned &R = FuncInfo->ValueMap[BI]; |
| if (!R) |
| R = FuncInfo->CreateRegForValue(BI); |
| } |
| |
| bool HadTailCall = false; |
| SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall); |
| |
| // If the call was emitted as a tail call, we're done with the block. |
| if (HadTailCall) { |
| BI = End; |
| break; |
| } |
| |
| // If the instruction was codegen'd with multiple blocks, |
| // inform the FastISel object where to resume inserting. |
| FastIS->setCurrentBlock(BB); |
| continue; |
| } |
| |
| // Otherwise, give up on FastISel for the rest of the block. |
| // For now, be a little lenient about non-branch terminators. |
| if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) { |
| ++NumFastIselFailures; |
| if (EnableFastISelVerbose || EnableFastISelAbort) { |
| dbgs() << "FastISel miss: "; |
| BI->dump(); |
| } |
| if (EnableFastISelAbort) |
| // The "fast" selector couldn't handle something and bailed. |
| // For the purpose of debugging, just abort. |
| llvm_unreachable("FastISel didn't select the entire block"); |
| } |
| break; |
| } |
| } |
| |
| // Run SelectionDAG instruction selection on the remainder of the block |
| // not handled by FastISel. If FastISel is not run, this is the entire |
| // block. |
| if (BI != End) { |
| bool HadTailCall; |
| SelectBasicBlock(LLVMBB, BI, End, HadTailCall); |
| } |
| |
| FinishBasicBlock(); |
| } |
| |
| delete FastIS; |
| } |
| |
| void |
| SelectionDAGISel::FinishBasicBlock() { |
| |
| DEBUG(dbgs() << "Target-post-processed machine code:\n"); |
| DEBUG(BB->dump()); |
| |
| DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| << SDB->PHINodesToUpdate.size() << "\n"); |
| DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) |
| dbgs() << "Node " << i << " : (" |
| << SDB->PHINodesToUpdate[i].first |
| << ", " << SDB->PHINodesToUpdate[i].second << ")\n"); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| if (SDB->SwitchCases.empty() && |
| SDB->JTCases.empty() && |
| SDB->BitTestCases.empty()) { |
| for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (!BB->isSuccessor(PHI->getParent())) |
| continue; |
| PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| SDB->PHINodesToUpdate.clear(); |
| return; |
| } |
| |
| for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->BitTestCases[i].Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->BitTestCases[i].Parent; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitBitTestHeader(SDB->BitTestCases[i]); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| if (j+1 != ej) |
| SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j]); |
| else |
| SDB->visitBitTestCase(SDB->BitTestCases[i].Default, |
| SDB->BitTestCases[i].Reg, |
| SDB->BitTestCases[i].Cases[j]); |
| |
| |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // This is "default" BB. We have two jumps to it. From "header" BB and |
| // from last "case" BB. |
| if (PHIBB == SDB->BitTestCases[i].Default) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. |
| back().ThisBB)); |
| } |
| // One of "cases" BB. |
| for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); |
| j != ej; ++j) { |
| MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; |
| if (cBB->isSuccessor(PHIBB)) { |
| PHI->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(cBB)); |
| } |
| } |
| } |
| } |
| SDB->BitTestCases.clear(); |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->JTCases[i].first.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->JTCases[i].first.HeaderBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| } |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| BB = SDB->JTCases[i].second.MBB; |
| SDB->setCurrentBasicBlock(BB); |
| // Emit the code |
| SDB->visitJumpTable(SDB->JTCases[i].second); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| SDB->clear(); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // "default" BB. We can go there only from header BB. |
| if (PHIBB == SDB->JTCases[i].second.Default) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand |
| (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); |
| } |
| // JT BB. Just iterate over successors here |
| if (BB->isSuccessor(PHIBB)) { |
| PHI->addOperand |
| (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| } |
| SDB->JTCases.clear(); |
| |
| // If the switch block involved a branch to one of the actual successors, we |
| // need to update PHI nodes in that block. |
| for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (BB->isSuccessor(PHI->getParent())) { |
| PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, |
| false)); |
| PHI->addOperand(MachineOperand::CreateMBB(BB)); |
| } |
| } |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB; |
| SDB->setCurrentBasicBlock(BB); |
| |
| // Emit the code |
| SDB->visitSwitchCase(SDB->SwitchCases[i]); |
| CurDAG->setRoot(SDB->getRoot()); |
| CodeGenAndEmitDAG(); |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| while ((BB = SDB->SwitchCases[i].TrueBB)) { // Handle LHS and RHS. |
| // If new BB's are created during scheduling, the edges may have been |
| // updated. That is, the edge from ThisBB to BB may have been split and |
| // BB's predecessor is now another block. |
| DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI = |
| SDB->EdgeMapping.find(BB); |
| if (EI != SDB->EdgeMapping.end()) |
| ThisBB = EI->second; |
| |
| // BB may have been removed from the CFG if a branch was constant folded. |
| if (ThisBB->isSuccessor(BB)) { |
| for (MachineBasicBlock::iterator Phi = BB->begin(); |
| Phi != BB->end() && Phi->isPHI(); |
| ++Phi) { |
| // This value for this PHI node is recorded in PHINodesToUpdate. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != SDB->PHINodesToUpdate.size() && |
| "Didn't find PHI entry!"); |
| if (SDB->PHINodesToUpdate[pn].first == Phi) { |
| Phi->addOperand(MachineOperand:: |
| CreateReg(SDB->PHINodesToUpdate[pn].second, |
| false)); |
| Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Don't process RHS if same block as LHS. |
| if (BB == SDB->SwitchCases[i].FalseBB) |
| SDB->SwitchCases[i].FalseBB = 0; |
| |
| // If we haven't handled the RHS, do so now. Otherwise, we're done. |
| SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB; |
| SDB->SwitchCases[i].FalseBB = 0; |
| } |
| assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0); |
| SDB->clear(); |
| } |
| SDB->SwitchCases.clear(); |
| |
| SDB->PHINodesToUpdate.clear(); |
| } |
| |
| |
| /// Create the scheduler. If a specific scheduler was specified |
| /// via the SchedulerRegistry, use it, otherwise select the |
| /// one preferred by the target. |
| /// |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); |
| |
| if (!Ctor) { |
| Ctor = ISHeuristic; |
| RegisterScheduler::setDefault(Ctor); |
| } |
| |
| return Ctor(this, OptLevel); |
| } |
| |
| ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { |
| return new ScheduleHazardRecognizer(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (ActualMask.intersects(~DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| |
| APInt KnownZero, KnownOne; |
| CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if ((NeededMask & KnownOne) == NeededMask) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel:: |
| SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { |
| std::vector<SDValue> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 |
| Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 |
| Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc |
| |
| unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Flag) |
| --e; // Don't process a flag operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); |
| if (!InlineAsm::isMemKind(Flags)) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, |
| InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); |
| i += InlineAsm::getNumOperandRegisters(Flags) + 1; |
| } else { |
| assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && |
| "Memory operand with multiple values?"); |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDValue> SelOps; |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) |
| llvm_report_error("Could not match memory address. Inline asm" |
| " failure!"); |
| |
| // Add this to the output node. |
| unsigned NewFlags = |
| InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); |
| Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the flag input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |
| |
| /// findFlagUse - Return use of EVT::Flag value produced by the specified |
| /// SDNode. |
| /// |
| static SDNode *findFlagUse(SDNode *N) { |
| unsigned FlagResNo = N->getNumValues()-1; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDUse &Use = I.getUse(); |
| if (Use.getResNo() == FlagResNo) |
| return Use.getUser(); |
| } |
| return NULL; |
| } |
| |
| /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". |
| /// This function recursively traverses up the operand chain, ignoring |
| /// certain nodes. |
| static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, |
| SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, |
| bool IgnoreChains) { |
| // The NodeID's are given uniques ID's where a node ID is guaranteed to be |
| // greater than all of its (recursive) operands. If we scan to a point where |
| // 'use' is smaller than the node we're scanning for, then we know we will |
| // never find it. |
| // |
| // The Use may be -1 (unassigned) if it is a newly allocated node. This can |
| // happen because we scan down to newly selected nodes in the case of flag |
| // uses. |
| if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) |
| return false; |
| |
| // Don't revisit nodes if we already scanned it and didn't fail, we know we |
| // won't fail if we scan it again. |
| if (!Visited.insert(Use)) |
| return false; |
| |
| for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { |
| // Ignore chain uses, they are validated by HandleMergeInputChains. |
| if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) |
| continue; |
| |
| SDNode *N = Use->getOperand(i).getNode(); |
| if (N == Def) { |
| if (Use == ImmedUse || Use == Root) |
| continue; // We are not looking for immediate use. |
| assert(N != Root); |
| return true; |
| } |
| |
| // Traverse up the operand chain. |
| if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| /// operand node N of U during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| return N.hasOneUse(); |
| } |
| |
| /// IsLegalToFold - Returns true if the specific operand node N of |
| /// U can be folded during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
| bool IgnoreChains) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| |
| // If Root use can somehow reach N through a path that that doesn't contain |
| // U then folding N would create a cycle. e.g. In the following |
| // diagram, Root can reach N through X. If N is folded into into Root, then |
| // X is both a predecessor and a successor of U. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ / // |
| // \ / // |
| // [Root*] // |
| // |
| // * indicates nodes to be folded together. |
| // |
| // If Root produces a flag, then it gets (even more) interesting. Since it |
| // will be "glued" together with its flag use in the scheduler, we need to |
| // check if it might reach N. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ \ // |
| // \ | // |
| // [Root*] | // |
| // ^ | // |
| // f | // |
| // | / // |
| // [Y] / // |
| // ^ / // |
| // f / // |
| // | / // |
| // [FU] // |
| // |
| // If FU (flag use) indirectly reaches N (the load), and Root folds N |
| // (call it Fold), then X is a predecessor of FU and a successor of |
| // Fold. But since Fold and FU are flagged together, this will create |
| // a cycle in the scheduling graph. |
| |
| // If the node has flags, walk down the graph to the "lowest" node in the |
| // flagged set. |
| EVT VT = Root->getValueType(Root->getNumValues()-1); |
| while (VT == MVT::Flag) { |
| SDNode *FU = findFlagUse(Root); |
| if (FU == NULL) |
| break; |
| Root = FU; |
| VT = Root->getValueType(Root->getNumValues()-1); |
| |
| // If our query node has a flag result with a use, we've walked up it. If |
| // the user (which has already been selected) has a chain or indirectly uses |
| // the chain, our WalkChainUsers predicate will not consider it. Because of |
| // this, we cannot ignore chains in this predicate. |
| IgnoreChains = false; |
| } |
| |
| |
| SmallPtrSet<SDNode*, 16> Visited; |
| return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); |
| } |
| |
| SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| SelectInlineAsmMemoryOperands(Ops); |
| |
| std::vector<EVT> VTs; |
| VTs.push_back(MVT::Other); |
| VTs.push_back(MVT::Flag); |
| SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), |
| VTs, &Ops[0], Ops.size()); |
| New->setNodeId(-1); |
| return New.getNode(); |
| } |
| |
| SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); |
| } |
| |
| /// GetVBR - decode a vbr encoding whose top bit is set. |
| ALWAYS_INLINE static uint64_t |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
| assert(Val >= 128 && "Not a VBR"); |
| Val &= 127; // Remove first vbr bit. |
| |
| unsigned Shift = 7; |
| uint64_t NextBits; |
| do { |
| NextBits = MatcherTable[Idx++]; |
| Val |= (NextBits&127) << Shift; |
| Shift += 7; |
| } while (NextBits & 128); |
| |
| return Val; |
| } |
| |
| |
| /// UpdateChainsAndFlags - When a match is complete, this method updates uses of |
| /// interior flag and chain results to use the new flag and chain results. |
| void SelectionDAGISel:: |
| UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain, |
| const SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SDValue InputFlag, |
| const SmallVectorImpl<SDNode*> &FlagResultNodesMatched, |
| bool isMorphNodeTo) { |
| SmallVector<SDNode*, 4> NowDeadNodes; |
| |
| ISelUpdater ISU(ISelPosition); |
| |
| // Now that all the normal results are replaced, we replace the chain and |
| // flag results if present. |
| if (!ChainNodesMatched.empty()) { |
| assert(InputChain.getNode() != 0 && |
| "Matched input chains but didn't produce a chain"); |
| // Loop over all of the nodes we matched that produced a chain result. |
| // Replace all the chain results with the final chain we ended up with. |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| SDNode *ChainNode = ChainNodesMatched[i]; |
| |
| // If this node was already deleted, don't look at it. |
| if (ChainNode->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| // Don't replace the results of the root node if we're doing a |
| // MorphNodeTo. |
| if (ChainNode == NodeToMatch && isMorphNodeTo) |
| continue; |
| |
| SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| if (ChainVal.getValueType() == MVT::Flag) |
| ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); |
| assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); |
| CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); |
| |
| // If the node became dead and we haven't already seen it, delete it. |
| if (ChainNode->use_empty() && |
| !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) |
| NowDeadNodes.push_back(ChainNode); |
| } |
| } |
| |
| // If the result produces a flag, update any flag results in the matched |
| // pattern with the flag result. |
| if (InputFlag.getNode() != 0) { |
| // Handle any interior nodes explicitly marked. |
| for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) { |
| SDNode *FRN = FlagResultNodesMatched[i]; |
| |
| // If this node was already deleted, don't look at it. |
| if (FRN->getOpcode() == ISD::DELETED_NODE) |
| continue; |
| |
| assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag && |
| "Doesn't have a flag result"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), |
| InputFlag, &ISU); |
| |
| // If the node became dead and we haven't already seen it, delete it. |
| if (FRN->use_empty() && |
| !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) |
| NowDeadNodes.push_back(FRN); |
| } |
| } |
| |
| if (!NowDeadNodes.empty()) |
| CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); |
| |
| DEBUG(errs() << "ISEL: Match complete!\n"); |
| } |
| |
| enum ChainResult { |
| CR_Simple, |
| CR_InducesCycle, |
| CR_LeadsToInteriorNode |
| }; |
| |
| /// WalkChainUsers - Walk down the users of the specified chained node that is |
| /// part of the pattern we're matching, looking at all of the users we find. |
| /// This determines whether something is an interior node, whether we have a |
| /// non-pattern node in between two pattern nodes (which prevent folding because |
| /// it would induce a cycle) and whether we have a TokenFactor node sandwiched |
| /// between pattern nodes (in which case the TF becomes part of the pattern). |
| /// |
| /// The walk we do here is guaranteed to be small because we quickly get down to |
| /// already selected nodes "below" us. |
| static ChainResult |
| WalkChainUsers(SDNode *ChainedNode, |
| SmallVectorImpl<SDNode*> &ChainedNodesInPattern, |
| SmallVectorImpl<SDNode*> &InteriorChainedNodes) { |
| ChainResult Result = CR_Simple; |
| |
| for (SDNode::use_iterator UI = ChainedNode->use_begin(), |
| E = ChainedNode->use_end(); UI != E; ++UI) { |
| // Make sure the use is of the chain, not some other value we produce. |
| if (UI.getUse().getValueType() != MVT::Other) continue; |
| |
| SDNode *User = *UI; |
| |
| // If we see an already-selected machine node, then we've gone beyond the |
| // pattern that we're selecting down into the already selected chunk of the |
| // DAG. |
| if (User->isMachineOpcode() || |
| User->getOpcode() == ISD::HANDLENODE) // Root of the graph. |
| continue; |
| |
| if (User->getOpcode() == ISD::CopyToReg || |
| User->getOpcode() == ISD::CopyFromReg || |
| User->getOpcode() == ISD::INLINEASM || |
| User->getOpcode() == ISD::EH_LABEL) { |
| // If their node ID got reset to -1 then they've already been selected. |
| // Treat them like a MachineOpcode. |
| if (User->getNodeId() == -1) |
| continue; |
| } |
| |
| // If we have a TokenFactor, we handle it specially. |
| if (User->getOpcode() != ISD::TokenFactor) { |
| // If the node isn't a token factor and isn't part of our pattern, then it |
| // must be a random chained node in between two nodes we're selecting. |
| // This happens when we have something like: |
| // x = load ptr |
| // call |
| // y = x+4 |
| // store y -> ptr |
| // Because we structurally match the load/store as a read/modify/write, |
| // but the call is chained between them. We cannot fold in this case |
| // because it would induce a cycle in the graph. |
| if (!std::count(ChainedNodesInPattern.begin(), |
| ChainedNodesInPattern.end(), User)) |
| return CR_InducesCycle; |
| |
| // Otherwise we found a node that is part of our pattern. For example in: |
| // x = load ptr |
| // y = x+4 |
| // store y -> ptr |
| // This would happen when we're scanning down from the load and see the |
| // store as a user. Record that there is a use of ChainedNode that is |
| // part of the pattern and keep scanning uses. |
| Result = CR_LeadsToInteriorNode; |
| InteriorChainedNodes.push_back(User); |
| continue; |
| } |
| |
| // If we found a TokenFactor, there are two cases to consider: first if the |
| // TokenFactor is just hanging "below" the pattern we're matching (i.e. no |
| // uses of the TF are in our pattern) we just want to ignore it. Second, |
| // the TokenFactor can be sandwiched in between two chained nodes, like so: |
| // [Load chain] |
| // ^ |
| // | |
| // [Load] |
| // ^ ^ |
| // | \ DAG's like cheese |
| // / \ do you? |
| // / | |
| // [TokenFactor] [Op] |
| // ^ ^ |
| // | | |
| // \ / |
| // \ / |
| // [Store] |
| // |
| // In this case, the TokenFactor becomes part of our match and we rewrite it |
| // as a new TokenFactor. |
| // |
| // To distinguish these two cases, do a recursive walk down the uses. |
| switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { |
| case CR_Simple: |
| // If the uses of the TokenFactor are just already-selected nodes, ignore |
| // it, it is "below" our pattern. |
| continue; |
| case CR_InducesCycle: |
| // If the uses of the TokenFactor lead to nodes that are not part of our |
| // pattern that are not selected, folding would turn this into a cycle, |
| // bail out now. |
| return CR_InducesCycle; |
| case CR_LeadsToInteriorNode: |
| break; // Otherwise, keep processing. |
| } |
| |
| // Okay, we know we're in the interesting interior case. The TokenFactor |
| // is now going to be considered part of the pattern so that we rewrite its |
| // uses (it may have uses that are not part of the pattern) with the |
| // ultimate chain result of the generated code. We will also add its chain |
| // inputs as inputs to the ultimate TokenFactor we create. |
| Result = CR_LeadsToInteriorNode; |
| ChainedNodesInPattern.push_back(User); |
| InteriorChainedNodes.push_back(User); |
| continue; |
| } |
| |
| return Result; |
| } |
| |
| /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
| /// operation for when the pattern matched at least one node with a chains. The |
| /// input vector contains a list of all of the chained nodes that we match. We |
| /// must determine if this is a valid thing to cover (i.e. matching it won't |
| /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
| /// be used as the input node chain for the generated nodes. |
| static SDValue |
| HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SelectionDAG *CurDAG) { |
| // Walk all of the chained nodes we've matched, recursively scanning down the |
| // users of the chain result. This adds any TokenFactor nodes that are caught |
| // in between chained nodes to the chained and interior nodes list. |
| SmallVector<SDNode*, 3> InteriorChainedNodes; |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, |
| InteriorChainedNodes) == CR_InducesCycle) |
| return SDValue(); // Would induce a cycle. |
| } |
| |
| // Okay, we have walked all the matched nodes and collected TokenFactor nodes |
| // that we are interested in. Form our input TokenFactor node. |
| SmallVector<SDValue, 3> InputChains; |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| // Add the input chain of this node to the InputChains list (which will be |
| // the operands of the generated TokenFactor) if it's not an interior node. |
| SDNode *N = ChainNodesMatched[i]; |
| if (N->getOpcode() != ISD::TokenFactor) { |
| if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) |
| continue; |
| |
| // Otherwise, add the input chain. |
| SDValue InChain = ChainNodesMatched[i]->getOperand(0); |
| assert(InChain.getValueType() == MVT::Other && "Not a chain"); |
| InputChains.push_back(InChain); |
| continue; |
| } |
| |
| // If we have a token factor, we want to add all inputs of the token factor |
| // that are not part of the pattern we're matching. |
| for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { |
| if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), |
| N->getOperand(op).getNode())) |
| InputChains.push_back(N->getOperand(op)); |
| } |
| } |
| |
| SDValue Res; |
| if (InputChains.size() == 1) |
| return InputChains[0]; |
| return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), |
| MVT::Other, &InputChains[0], InputChains.size()); |
| } |
| |
| /// MorphNode - Handle morphing a node in place for the selector. |
| SDNode *SelectionDAGISel:: |
| MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
| const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { |
| // It is possible we're using MorphNodeTo to replace a node with no |
| // normal results with one that has a normal result (or we could be |
| // adding a chain) and the input could have flags and chains as well. |
| // In this case we need to shift the operands down. |
| // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| // than the old isel though. |
| int OldFlagResultNo = -1, OldChainResultNo = -1; |
| |
| unsigned NTMNumResults = Node->getNumValues(); |
| if (Node->getValueType(NTMNumResults-1) == MVT::Flag) { |
| OldFlagResultNo = NTMNumResults-1; |
| if (NTMNumResults != 1 && |
| Node->getValueType(NTMNumResults-2) == MVT::Other) |
| OldChainResultNo = NTMNumResults-2; |
| } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) |
| OldChainResultNo = NTMNumResults-1; |
| |
| // Call the underlying SelectionDAG routine to do the transmogrification. Note |
| // that this deletes operands of the old node that become dead. |
| SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); |
| |
| // MorphNodeTo can operate in two ways: if an existing node with the |
| // specified operands exists, it can just return it. Otherwise, it |
| // updates the node in place to have the requested operands. |
| if (Res == Node) { |
| // If we updated the node in place, reset the node ID. To the isel, |
| // this should be just like a newly allocated machine node. |
| Res->setNodeId(-1); |
| } |
| |
| unsigned ResNumResults = Res->getNumValues(); |
| // Move the flag if needed. |
| if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 && |
| (unsigned)OldFlagResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| if ((EmitNodeInfo & OPFL_FlagOutput) != 0) |
| --ResNumResults; |
| |
| // Move the chain reference if needed. |
| if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| (unsigned)OldChainResultNo != ResNumResults-1) |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), |
| SDValue(Res, ResNumResults-1)); |
| |
| // Otherwise, no replacement happened because the node already exists. Replace |
| // Uses of the old node with the new one. |
| if (Res != Node) |
| CurDAG->ReplaceAllUsesWith(Node, Res); |
| |
| return Res; |
| } |
| |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| ALWAYS_INLINE static bool |
| CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) { |
| // Accept if it is exactly the same as a previously recorded node. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| return N == RecordedNodes[RecNo]; |
| } |
| |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| ALWAYS_INLINE static bool |
| CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SelectionDAGISel &SDISel) { |
| return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); |
| } |
| |
| /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
| ALWAYS_INLINE static bool |
| CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SelectionDAGISel &SDISel, SDNode *N) { |
| return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDNode *N) { |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| return N->getOpcode() == Opc; |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (N.getValueType() == VT) return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI, |
| unsigned ChildNo) { |
| if (ChildNo >= N.getNumOperands()) |
| return false; // Match fails if out of range child #. |
| return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); |
| } |
| |
| |
| ALWAYS_INLINE static bool |
| CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| return cast<CondCodeSDNode>(N)->get() == |
| (ISD::CondCode)MatcherTable[MatcherIndex++]; |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering &TLI) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (cast<VTSDNode>(N)->getVT() == VT) |
| return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); |
| return C != 0 && C->getSExtValue() == Val; |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::AND) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); |
| } |
| |
| ALWAYS_INLINE static bool |
| CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::OR) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); |
| } |
| |
| /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
| /// scope, evaluate the current node. If the current predicate is known to |
| /// fail, set Result=true and return anything. If the current predicate is |
| /// known to pass, set Result=false and return the MatcherIndex to continue |
| /// with. If the current predicate is unknown, set Result=false and return the |
| /// MatcherIndex to continue with. |
| static unsigned IsPredicateKnownToFail(const unsigned char *Table, |
| unsigned Index, SDValue N, |
| bool &Result, SelectionDAGISel &SDISel, |
| SmallVectorImpl<SDValue> &RecordedNodes){ |
| switch (Table[Index++]) { |
| default: |
| Result = false; |
| return Index-1; // Could not evaluate this predicate. |
| case SelectionDAGISel::OPC_CheckSame: |
| Result = !::CheckSame(Table, Index, N, RecordedNodes); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPatternPredicate: |
| Result = !::CheckPatternPredicate(Table, Index, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPredicate: |
| Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOpcode: |
| Result = !::CheckOpcode(Table, Index, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckType: |
| Result = !::CheckType(Table, Index, N, SDISel.TLI); |
| return Index; |
| case SelectionDAGISel::OPC_CheckChild0Type: |
| case SelectionDAGISel::OPC_CheckChild1Type: |
| case SelectionDAGISel::OPC_CheckChild2Type: |
| case SelectionDAGISel::OPC_CheckChild3Type: |
| case SelectionDAGISel::OPC_CheckChild4Type: |
| case SelectionDAGISel::OPC_CheckChild5Type: |
| case SelectionDAGISel::OPC_CheckChild6Type: |
| case SelectionDAGISel::OPC_CheckChild7Type: |
| Result = !::CheckChildType(Table, Index, N, SDISel.TLI, |
| Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); |
| return Index; |
| case SelectionDAGISel::OPC_CheckCondCode: |
| Result = !::CheckCondCode(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckValueType: |
| Result = !::CheckValueType(Table, Index, N, SDISel.TLI); |
| return Index; |
| case SelectionDAGISel::OPC_CheckInteger: |
| Result = !::CheckInteger(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckAndImm: |
| Result = !::CheckAndImm(Table, Index, N, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOrImm: |
| Result = !::CheckOrImm(Table, Index, N, SDISel); |
| return Index; |
| } |
| } |
| |
| |
| struct MatchScope { |
| /// FailIndex - If this match fails, this is the index to continue with. |
| unsigned FailIndex; |
| |
| /// NodeStack - The node stack when the scope was formed. |
| SmallVector<SDValue, 4> NodeStack; |
| |
| /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| unsigned NumRecordedNodes; |
| |
| /// NumMatchedMemRefs - The number of matched memref entries. |
| unsigned NumMatchedMemRefs; |
| |
| /// InputChain/InputFlag - The current chain/flag |
| SDValue InputChain, InputFlag; |
| |
| /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| bool HasChainNodesMatched, HasFlagResultNodesMatched; |
| }; |
| |
| SDNode *SelectionDAGISel:: |
| SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, |
| unsigned TableSize) { |
| // FIXME: Should these even be selected? Handle these cases in the caller? |
| switch (NodeToMatch->getOpcode()) { |
| default: |
| break; |
| case ISD::EntryToken: // These nodes remain the same. |
| case ISD::BasicBlock: |
| case ISD::Register: |
| //case ISD::VALUETYPE: |
| //case ISD::CONDCODE: |
| case ISD::HANDLENODE: |
| case ISD::MDNODE_SDNODE: |
| case ISD::TargetConstant: |
| case ISD::TargetConstantFP: |
| case ISD::TargetConstantPool: |
| case ISD::TargetFrameIndex: |
| case ISD::TargetExternalSymbol: |
| case ISD::TargetBlockAddress: |
| case ISD::TargetJumpTable: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::TargetGlobalAddress: |
| case ISD::TokenFactor: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| case ISD::EH_LABEL: |
| NodeToMatch->setNodeId(-1); // Mark selected. |
| return 0; |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), |
| NodeToMatch->getOperand(0)); |
| return 0; |
| case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); |
| case ISD::UNDEF: return Select_UNDEF(NodeToMatch); |
| } |
| |
| assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); |
| |
| // Set up the node stack with NodeToMatch as the only node on the stack. |
| SmallVector<SDValue, 8> NodeStack; |
| SDValue N = SDValue(NodeToMatch, 0); |
| NodeStack.push_back(N); |
| |
| // MatchScopes - Scopes used when matching, if a match failure happens, this |
| // indicates where to continue checking. |
| SmallVector<MatchScope, 8> MatchScopes; |
| |
| // RecordedNodes - This is the set of nodes that have been recorded by the |
| // state machine. |
| SmallVector<SDValue, 8> RecordedNodes; |
| |
| // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| // pattern. |
| SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| |
| // These are the current input chain and flag for use when generating nodes. |
| // Various Emit operations change these. For example, emitting a copytoreg |
| // uses and updates these. |
| SDValue InputChain, InputFlag; |
| |
| // ChainNodesMatched - If a pattern matches nodes that have input/output |
| // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| // which ones they are. The result is captured into this list so that we can |
| // update the chain results when the pattern is complete. |
| SmallVector<SDNode*, 3> ChainNodesMatched; |
| SmallVector<SDNode*, 3> FlagResultNodesMatched; |
| |
| DEBUG(errs() << "ISEL: Starting pattern match on root node: "; |
| NodeToMatch->dump(CurDAG); |
| errs() << '\n'); |
| |
| // Determine where to start the interpreter. Normally we start at opcode #0, |
| // but if the state machine starts with an OPC_SwitchOpcode, then we |
| // accelerate the first lookup (which is guaranteed to be hot) with the |
| // OpcodeOffset table. |
| unsigned MatcherIndex = 0; |
| |
| if (!OpcodeOffset.empty()) { |
| // Already computed the OpcodeOffset table, just index into it. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); |
| |
| } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
| // Otherwise, the table isn't computed, but the state machine does start |
| // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
| // is the first time we're selecting an instruction. |
| unsigned Idx = 1; |
| while (1) { |
| // Get the size of this case. |
| unsigned CaseSize = MatcherTable[Idx++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, Idx); |
| if (CaseSize == 0) break; |
| |
| // Get the opcode, add the index to the table. |
| uint16_t Opc = MatcherTable[Idx++]; |
| Opc |= (unsigned short)MatcherTable[Idx++] << 8; |
| if (Opc >= OpcodeOffset.size()) |
| OpcodeOffset.resize((Opc+1)*2); |
| OpcodeOffset[Opc] = Idx; |
| Idx += CaseSize; |
| } |
| |
| // Okay, do the lookup for the first opcode. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| } |
| |
| while (1) { |
| assert(MatcherIndex < TableSize && "Invalid index"); |
| #ifndef NDEBUG |
| unsigned CurrentOpcodeIndex = MatcherIndex; |
| #endif |
| BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; |
| switch (Opcode) { |
| case OPC_Scope: { |
| // Okay, the semantics of this operation are that we should push a scope |
| // then evaluate the first child. However, pushing a scope only to have |
| // the first check fail (which then pops it) is inefficient. If we can |
| // determine immediately that the first check (or first several) will |
| // immediately fail, don't even bother pushing a scope for them. |
| unsigned FailIndex; |
| |
| while (1) { |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| // Found the end of the scope with no match. |
| if (NumToSkip == 0) { |
| FailIndex = 0; |
| break; |
| } |
| |
| FailIndex = MatcherIndex+NumToSkip; |
| |
| unsigned MatcherIndexOfPredicate = MatcherIndex; |
| (void)MatcherIndexOfPredicate; // silence warning. |
| |
| // If we can't evaluate this predicate without pushing a scope (e.g. if |
| // it is a 'MoveParent') or if the predicate succeeds on this node, we |
| // push the scope and evaluate the full predicate chain. |
| bool Result; |
| MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, |
| Result, *this, RecordedNodes); |
| if (!Result) |
| break; |
| |
| DEBUG(errs() << " Skipped scope entry (due to false predicate) at " |
| << "index " << MatcherIndexOfPredicate |
| << ", continuing at " << FailIndex << "\n"); |
| ++NumDAGIselRetries; |
| |
| // Otherwise, we know that this case of the Scope is guaranteed to fail, |
| // move to the next case. |
| MatcherIndex = FailIndex; |
| } |
| |
| // If the whole scope failed to match, bail. |
| if (FailIndex == 0) break; |
| |
| // Push a MatchScope which indicates where to go if the first child fails |
| // to match. |
| MatchScope NewEntry; |
| NewEntry.FailIndex = FailIndex; |
| NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); |
| NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| NewEntry.InputChain = InputChain; |
| NewEntry.InputFlag = InputFlag; |
| NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty(); |
| MatchScopes.push_back(NewEntry); |
| continue; |
| } |
| case OPC_RecordNode: |
| // Remember this node, it may end up being an operand in the pattern. |
| RecordedNodes.push_back(N); |
| continue; |
| |
| case OPC_RecordChild0: case OPC_RecordChild1: |
| case OPC_RecordChild2: case OPC_RecordChild3: |
| case OPC_RecordChild4: case OPC_RecordChild5: |
| case OPC_RecordChild6: case OPC_RecordChild7: { |
| unsigned ChildNo = Opcode-OPC_RecordChild0; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| |
| RecordedNodes.push_back(N->getOperand(ChildNo)); |
| continue; |
| } |
| case OPC_RecordMemRef: |
| MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); |
| continue; |
| |
| case OPC_CaptureFlagInput: |
| // If the current node has an input flag, capture it in InputFlag. |
| if (N->getNumOperands() != 0 && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) |
| InputFlag = N->getOperand(N->getNumOperands()-1); |
| continue; |
| |
| case OPC_MoveChild: { |
| unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| N = N.getOperand(ChildNo); |
| NodeStack.push_back(N); |
| continue; |
| } |
| |
| case OPC_MoveParent: |
| // Pop the current node off the NodeStack. |
| NodeStack.pop_back(); |
| assert(!NodeStack.empty() && "Node stack imbalance!"); |
| N = NodeStack.back(); |
| continue; |
| |
| case OPC_CheckSame: |
| if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
| continue; |
| case OPC_CheckPatternPredicate: |
| if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; |
| continue; |
| case OPC_CheckPredicate: |
| if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, |
| N.getNode())) |
| break; |
| continue; |
| case OPC_CheckComplexPat: { |
| unsigned CPNum = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); |
| if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum, |
| RecordedNodes)) |
| break; |
| continue; |
| } |
| case OPC_CheckOpcode: |
| if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; |
| continue; |
| |
| case OPC_CheckType: |
| if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; |
| continue; |
| |
| case OPC_SwitchOpcode: { |
| unsigned CurNodeOpcode = N.getOpcode(); |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (1) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| |
| // If the opcode matches, then we will execute this case. |
| if (CurNodeOpcode == Opc) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| DEBUG(errs() << " OpcodeSwitch from " << SwitchStart |
| << " to " << MatcherIndex << "\n"); |
| continue; |
| } |
| |
| case OPC_SwitchType: { |
| MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy; |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (1) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| MVT::SimpleValueType CaseVT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (CaseVT == MVT::iPTR) |
| CaseVT = TLI.getPointerTy().SimpleTy; |
| |
| // If the VT matches, then we will execute this case. |
| if (CurNodeVT == CaseVT) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() |
| << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); |
| continue; |
| } |
| case OPC_CheckChild0Type: case OPC_CheckChild1Type: |
| case OPC_CheckChild2Type: case OPC_CheckChild3Type: |
| case OPC_CheckChild4Type: case OPC_CheckChild5Type: |
| case OPC_CheckChild6Type: case OPC_CheckChild7Type: |
| if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, |
| Opcode-OPC_CheckChild0Type)) |
| break; |
| continue; |
| case OPC_CheckCondCode: |
| if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckValueType: |
| if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; |
| continue; |
| case OPC_CheckInteger: |
| if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckAndImm: |
| if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| case OPC_CheckOrImm: |
| if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| |
| case OPC_CheckFoldableChainNode: { |
| assert(NodeStack.size() != 1 && "No parent node"); |
| // Verify that all intermediate nodes between the root and this one have |
| // a single use. |
| bool HasMultipleUses = false; |
| for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) |
| if (!NodeStack[i].hasOneUse()) { |
| HasMultipleUses = true; |
| break; |
| } |
| if (HasMultipleUses) break; |
| |
| // Check to see that the target thinks this is profitable to fold and that |
| // we can fold it without inducing cycles in the graph. |
| if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch) || |
| !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch, true/*We validate our own chains*/)) |
| break; |
| |
| continue; |
| } |
| case OPC_EmitInteger: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT)); |
| continue; |
| } |
| case OPC_EmitRegister: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT)); |
| continue; |
| } |
| |
| case OPC_EmitConvertToTarget: { |
| // Convert from IMM/FPIMM to target version. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Imm = RecordedNodes[RecNo]; |
| |
| if (Imm->getOpcode() == ISD::Constant) { |
| int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); |
| Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); |
| } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); |
| Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); |
| } |
| |
| RecordedNodes.push_back(Imm); |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
| case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 |
| // These are space-optimized forms of OPC_EmitMergeInputChains. |
| assert(InputChain.getNode() == 0 && |
| "EmitMergeInputChains should be the first chain producing node"); |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (InputChain.getNode() == 0) |
| break; // Failed to merge. |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains: { |
| assert(InputChain.getNode() == 0 && |
| "EmitMergeInputChains should be the first chain producing node"); |
| // This node gets a list of nodes we matched in the input that have |
| // chains. We want to token factor all of the input chains to these nodes |
| // together. However, if any of the input chains is actually one of the |
| // nodes matched in this pattern, then we have an intra-match reference. |
| // Ignore these because the newly token factored chain should not refer to |
| // the old nodes. |
| unsigned NumChains = MatcherTable[MatcherIndex++]; |
| assert(NumChains != 0 && "Can't TF zero chains"); |
| |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| for (unsigned i = 0; i != NumChains; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| } |
| |
| // If the inner loop broke out, the match fails. |
| if (ChainNodesMatched.empty()) |
| break; |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (InputChain.getNode() == 0) |
| break; // Failed to merge. |
| |
| continue; |
| } |
| |
| case OPC_EmitCopyToReg: { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| |
| if (InputChain.getNode() == 0) |
| InputChain = CurDAG->getEntryNode(); |
| |
| InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), |
| DestPhysReg, RecordedNodes[RecNo], |
| InputFlag); |
| |
| InputFlag = InputChain.getValue(1); |
| continue; |
| } |
| |
| case OPC_EmitNodeXForm: { |
| unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo)); |
| continue; |
| } |
| |
| case OPC_EmitNode: |
| case OPC_MorphNodeTo: { |
| uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| // Get the result VT list. |
| unsigned NumVTs = MatcherTable[MatcherIndex++]; |
| SmallVector<EVT, 4> VTs; |
| for (unsigned i = 0; i != NumVTs; ++i) { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; |
| VTs.push_back(VT); |
| } |
| |
| if (EmitNodeInfo & OPFL_Chain) |
| VTs.push_back(MVT::Other); |
| if (EmitNodeInfo & OPFL_FlagOutput) |
| VTs.push_back(MVT::Flag); |
| |
| // This is hot code, so optimize the two most common cases of 1 and 2 |
| // results. |
| SDVTList VTList; |
| if (VTs.size() == 1) |
| VTList = CurDAG->getVTList(VTs[0]); |
| else if (VTs.size() == 2) |
| VTList = CurDAG->getVTList(VTs[0], VTs[1]); |
| else |
| VTList = CurDAG->getVTList(VTs.data(), VTs.size()); |
| |
| // Get the operand list. |
| unsigned NumOps = MatcherTable[MatcherIndex++]; |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); |
| Ops.push_back(RecordedNodes[RecNo]); |
| } |
| |
| // If there are variadic operands to add, handle them now. |
| if (EmitNodeInfo & OPFL_VariadicInfo) { |
| // Determine the start index to copy from. |
| unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); |
| FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| "Invalid variadic node"); |
| // Copy all of the variadic operands, not including a potential flag |
| // input. |
| for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| i != e; ++i) { |
| SDValue V = NodeToMatch->getOperand(i); |
| if (V.getValueType() == MVT::Flag) break; |
| Ops.push_back(V); |
| } |
| } |
| |
| // If this has chain/flag inputs, add them. |
| if (EmitNodeInfo & OPFL_Chain) |
| Ops.push_back(InputChain); |
| if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0) |
| Ops.push_back(InputFlag); |
| |
| // Create the node. |
| SDNode *Res = 0; |
| if (Opcode != OPC_MorphNodeTo) { |
| // If this is a normal EmitNode command, just create the new node and |
| // add the results to the RecordedNodes list. |
| Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), |
| VTList, Ops.data(), Ops.size()); |
| |
| // Add all the non-flag/non-chain results to the RecordedNodes list. |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break; |
| RecordedNodes.push_back(SDValue(Res, i)); |
| } |
| |
| } else { |
| Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), |
| EmitNodeInfo); |
| } |
| |
| // If the node had chain/flag results, update our notion of the current |
| // chain and flag. |
| if (EmitNodeInfo & OPFL_FlagOutput) { |
| InputFlag = SDValue(Res, VTs.size()-1); |
| if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-2); |
| } else if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-1); |
| |
| // If the OPFL_MemRefs flag is set on this node, slap all of the |
| // accumulated memrefs onto it. |
| // |
| // FIXME: This is vastly incorrect for patterns with multiple outputs |
| // instructions that access memory and for ComplexPatterns that match |
| // loads. |
| if (EmitNodeInfo & OPFL_MemRefs) { |
| MachineSDNode::mmo_iterator MemRefs = |
| MF->allocateMemRefsArray(MatchedMemRefs.size()); |
| std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs); |
| cast<MachineSDNode>(Res) |
| ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size()); |
| } |
| |
| DEBUG(errs() << " " |
| << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") |
| << " node: "; Res->dump(CurDAG); errs() << "\n"); |
| |
| // If this was a MorphNodeTo then we're completely done! |
| if (Opcode == OPC_MorphNodeTo) { |
| // Update chain and flag uses. |
| UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, |
| InputFlag, FlagResultNodesMatched, true); |
| return Res; |
| } |
| |
| continue; |
| } |
| |
| case OPC_MarkFlagResults: { |
| unsigned NumNodes = MatcherTable[MatcherIndex++]; |
| |
| // Read and remember all the flag-result nodes. |
| for (unsigned i = 0; i != NumNodes; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode()); |
| } |
| continue; |
| } |
| |
| case OPC_CompleteMatch: { |
| // The match has been completed, and any new nodes (if any) have been |
| // created. Patch up references to the matched dag to use the newly |
| // created nodes. |
| unsigned NumResults = MatcherTable[MatcherIndex++]; |
| |
| for (unsigned i = 0; i != NumResults; ++i) { |
| unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| if (ResSlot & 128) |
| ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); |
| |
| assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); |
| SDValue Res = RecordedNodes[ResSlot]; |
| |
| assert(i < NodeToMatch->getNumValues() && |
| NodeToMatch->getValueType(i) != MVT::Other && |
| NodeToMatch->getValueType(i) != MVT::Flag && |
| "Invalid number of results to complete!"); |
| assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| NodeToMatch->getValueType(i) == MVT::iPTR || |
| Res.getValueType() == MVT::iPTR || |
| NodeToMatch->getValueType(i).getSizeInBits() == |
| Res.getValueType().getSizeInBits()) && |
| "invalid replacement"); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); |
| } |
| |
| // If the root node defines a flag, add it to the flag nodes to update |
| // list. |
| if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag) |
| FlagResultNodesMatched.push_back(NodeToMatch); |
| |
| // Update chain and flag uses. |
| UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, |
| InputFlag, FlagResultNodesMatched, false); |
| |
| assert(NodeToMatch->use_empty() && |
| "Didn't replace all uses of the node?"); |
| |
| // FIXME: We just return here, which interacts correctly with SelectRoot |
| // above. We should fix this to not return an SDNode* anymore. |
| return 0; |
| } |
| } |
| |
| // If the code reached this point, then the match failed. See if there is |
| // another child to try in the current 'Scope', otherwise pop it until we |
| // find a case to check. |
| DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); |
| ++NumDAGIselRetries; |
| while (1) { |
| if (MatchScopes.empty()) { |
| CannotYetSelect(NodeToMatch); |
| return 0; |
| } |
| |
| // Restore the interpreter state back to the point where the scope was |
| // formed. |
| MatchScope &LastScope = MatchScopes.back(); |
| RecordedNodes.resize(LastScope.NumRecordedNodes); |
| NodeStack.clear(); |
| NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); |
| N = NodeStack.back(); |
| |
| if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); |
| MatcherIndex = LastScope.FailIndex; |
| |
| DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); |
| |
| InputChain = LastScope.InputChain; |
| InputFlag = LastScope.InputFlag; |
| if (!LastScope.HasChainNodesMatched) |
| ChainNodesMatched.clear(); |
| if (!LastScope.HasFlagResultNodesMatched) |
| FlagResultNodesMatched.clear(); |
| |
| // Check to see what the offset is at the new MatcherIndex. If it is zero |
| // we have reached the end of this scope, otherwise we have another child |
| // in the current scope to try. |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| |
| // If we have another child in this scope to match, update FailIndex and |
| // try it. |
| if (NumToSkip != 0) { |
| LastScope.FailIndex = MatcherIndex+NumToSkip; |
| break; |
| } |
| |
| // End of this scope, pop it and try the next child in the containing |
| // scope. |
| MatchScopes.pop_back(); |
| } |
| } |
| } |
| |
| |
| |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Cannot yet select: "; |
| |
| if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_VOID) { |
| N->printrFull(Msg, CurDAG); |
| } else { |
| bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; |
| unsigned iid = |
| cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); |
| if (iid < Intrinsic::num_intrinsics) |
| Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); |
| else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) |
| Msg << "target intrinsic %" << TII->getName(iid); |
| else |
| Msg << "unknown intrinsic #" << iid; |
| } |
| llvm_report_error(Msg.str()); |
| } |
| |
| char SelectionDAGISel::ID = 0; |