| //===-- ExternalFunctions.cpp - Implement External Functions --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains both code to deal with invoking "external" functions, but |
| // also contains code that implements "exported" external functions. |
| // |
| // There are currently two mechanisms for handling external functions in the |
| // Interpreter. The first is to implement lle_* wrapper functions that are |
| // specific to well-known library functions which manually translate the |
| // arguments from GenericValues and make the call. If such a wrapper does |
| // not exist, and libffi is available, then the Interpreter will attempt to |
| // invoke the function using libffi, after finding its address. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Config/config.h" // Detect libffi |
| #include "llvm/Support/Streams.h" |
| #include "llvm/System/DynamicLibrary.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/System/Mutex.h" |
| #include <csignal> |
| #include <cstdio> |
| #include <map> |
| #include <cmath> |
| #include <cstring> |
| |
| #ifdef HAVE_FFI_CALL |
| #ifdef HAVE_FFI_H |
| #include <ffi.h> |
| #define USE_LIBFFI |
| #elif HAVE_FFI_FFI_H |
| #include <ffi/ffi.h> |
| #define USE_LIBFFI |
| #endif |
| #endif |
| |
| using namespace llvm; |
| |
| static ManagedStatic<sys::Mutex> FunctionsLock; |
| |
| typedef GenericValue (*ExFunc)(const FunctionType *, |
| const std::vector<GenericValue> &); |
| static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; |
| static std::map<std::string, ExFunc> FuncNames; |
| |
| #ifdef USE_LIBFFI |
| typedef void (*RawFunc)(void); |
| static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; |
| #endif |
| |
| static Interpreter *TheInterpreter; |
| |
| static char getTypeID(const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return 'V'; |
| case Type::IntegerTyID: |
| switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| case 1: return 'o'; |
| case 8: return 'B'; |
| case 16: return 'S'; |
| case 32: return 'I'; |
| case 64: return 'L'; |
| default: return 'N'; |
| } |
| case Type::FloatTyID: return 'F'; |
| case Type::DoubleTyID: return 'D'; |
| case Type::PointerTyID: return 'P'; |
| case Type::FunctionTyID:return 'M'; |
| case Type::StructTyID: return 'T'; |
| case Type::ArrayTyID: return 'A'; |
| case Type::OpaqueTyID: return 'O'; |
| default: return 'U'; |
| } |
| } |
| |
| // Try to find address of external function given a Function object. |
| // Please note, that interpreter doesn't know how to assemble a |
| // real call in general case (this is JIT job), that's why it assumes, |
| // that all external functions has the same (and pretty "general") signature. |
| // The typical example of such functions are "lle_X_" ones. |
| static ExFunc lookupFunction(const Function *F) { |
| // Function not found, look it up... start by figuring out what the |
| // composite function name should be. |
| std::string ExtName = "lle_"; |
| const FunctionType *FT = F->getFunctionType(); |
| for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) |
| ExtName += getTypeID(FT->getContainedType(i)); |
| ExtName += "_" + F->getName(); |
| |
| sys::ScopedLock Writer(*FunctionsLock); |
| ExFunc FnPtr = FuncNames[ExtName]; |
| if (FnPtr == 0) |
| FnPtr = FuncNames["lle_X_"+F->getName()]; |
| if (FnPtr == 0) // Try calling a generic function... if it exists... |
| FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( |
| ("lle_X_"+F->getName()).c_str()); |
| if (FnPtr != 0) |
| ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later |
| return FnPtr; |
| } |
| |
| #ifdef USE_LIBFFI |
| static ffi_type *ffiTypeFor(const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return &ffi_type_void; |
| case Type::IntegerTyID: |
| switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| case 8: return &ffi_type_sint8; |
| case 16: return &ffi_type_sint16; |
| case 32: return &ffi_type_sint32; |
| case 64: return &ffi_type_sint64; |
| } |
| case Type::FloatTyID: return &ffi_type_float; |
| case Type::DoubleTyID: return &ffi_type_double; |
| case Type::PointerTyID: return &ffi_type_pointer; |
| default: break; |
| } |
| // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
| cerr << "Type could not be mapped for use with libffi.\n"; |
| abort(); |
| return NULL; |
| } |
| |
| static void *ffiValueFor(const Type *Ty, const GenericValue &AV, |
| void *ArgDataPtr) { |
| switch (Ty->getTypeID()) { |
| case Type::IntegerTyID: |
| switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| case 8: { |
| int8_t *I8Ptr = (int8_t *) ArgDataPtr; |
| *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); |
| return ArgDataPtr; |
| } |
| case 16: { |
| int16_t *I16Ptr = (int16_t *) ArgDataPtr; |
| *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); |
| return ArgDataPtr; |
| } |
| case 32: { |
| int32_t *I32Ptr = (int32_t *) ArgDataPtr; |
| *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); |
| return ArgDataPtr; |
| } |
| case 64: { |
| int64_t *I64Ptr = (int64_t *) ArgDataPtr; |
| *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); |
| return ArgDataPtr; |
| } |
| } |
| case Type::FloatTyID: { |
| float *FloatPtr = (float *) ArgDataPtr; |
| *FloatPtr = AV.DoubleVal; |
| return ArgDataPtr; |
| } |
| case Type::DoubleTyID: { |
| double *DoublePtr = (double *) ArgDataPtr; |
| *DoublePtr = AV.DoubleVal; |
| return ArgDataPtr; |
| } |
| case Type::PointerTyID: { |
| void **PtrPtr = (void **) ArgDataPtr; |
| *PtrPtr = GVTOP(AV); |
| return ArgDataPtr; |
| } |
| default: break; |
| } |
| // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. |
| cerr << "Type value could not be mapped for use with libffi.\n"; |
| abort(); |
| return NULL; |
| } |
| |
| static bool ffiInvoke(RawFunc Fn, Function *F, |
| const std::vector<GenericValue> &ArgVals, |
| const TargetData *TD, GenericValue &Result) { |
| ffi_cif cif; |
| const FunctionType *FTy = F->getFunctionType(); |
| const unsigned NumArgs = F->arg_size(); |
| |
| // TODO: We don't have type information about the remaining arguments, because |
| // this information is never passed into ExecutionEngine::runFunction(). |
| if (ArgVals.size() > NumArgs && F->isVarArg()) { |
| cerr << "Calling external var arg function '" << F->getName() |
| << "' is not supported by the Interpreter.\n"; |
| abort(); |
| } |
| |
| unsigned ArgBytes = 0; |
| |
| std::vector<ffi_type*> args(NumArgs); |
| for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
| A != E; ++A) { |
| const unsigned ArgNo = A->getArgNo(); |
| const Type *ArgTy = FTy->getParamType(ArgNo); |
| args[ArgNo] = ffiTypeFor(ArgTy); |
| ArgBytes += TD->getTypeStoreSize(ArgTy); |
| } |
| |
| uint8_t *ArgData = (uint8_t*) alloca(ArgBytes); |
| uint8_t *ArgDataPtr = ArgData; |
| std::vector<void*> values(NumArgs); |
| for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); |
| A != E; ++A) { |
| const unsigned ArgNo = A->getArgNo(); |
| const Type *ArgTy = FTy->getParamType(ArgNo); |
| values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); |
| ArgDataPtr += TD->getTypeStoreSize(ArgTy); |
| } |
| |
| const Type *RetTy = FTy->getReturnType(); |
| ffi_type *rtype = ffiTypeFor(RetTy); |
| |
| if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { |
| void *ret = NULL; |
| if (RetTy->getTypeID() != Type::VoidTyID) |
| ret = alloca(TD->getTypeStoreSize(RetTy)); |
| ffi_call(&cif, Fn, ret, &values[0]); |
| switch (RetTy->getTypeID()) { |
| case Type::IntegerTyID: |
| switch (cast<IntegerType>(RetTy)->getBitWidth()) { |
| case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break; |
| case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break; |
| case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break; |
| case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break; |
| } |
| break; |
| case Type::FloatTyID: Result.FloatVal = *(float *) ret; break; |
| case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break; |
| case Type::PointerTyID: Result.PointerVal = *(void **) ret; break; |
| default: break; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| #endif // USE_LIBFFI |
| |
| GenericValue Interpreter::callExternalFunction(Function *F, |
| const std::vector<GenericValue> &ArgVals) { |
| TheInterpreter = this; |
| |
| FunctionsLock->acquire(); |
| |
| // Do a lookup to see if the function is in our cache... this should just be a |
| // deferred annotation! |
| std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); |
| if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) |
| : FI->second) { |
| FunctionsLock->release(); |
| return Fn(F->getFunctionType(), ArgVals); |
| } |
| |
| #ifdef USE_LIBFFI |
| std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); |
| RawFunc RawFn; |
| if (RF == RawFunctions->end()) { |
| RawFn = (RawFunc)(intptr_t) |
| sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); |
| if (RawFn != 0) |
| RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later |
| } else { |
| RawFn = RF->second; |
| } |
| |
| FunctionsLock->release(); |
| |
| GenericValue Result; |
| if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) |
| return Result; |
| #endif // USE_LIBFFI |
| |
| cerr << "Tried to execute an unknown external function: " |
| << F->getType()->getDescription() << " " << F->getName() << "\n"; |
| if (F->getName() != "__main") |
| abort(); |
| return GenericValue(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Functions "exported" to the running application... |
| // |
| extern "C" { // Don't add C++ manglings to llvm mangling :) |
| |
| // void atexit(Function*) |
| GenericValue lle_X_atexit(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); |
| GenericValue GV; |
| GV.IntVal = 0; |
| return GV; |
| } |
| |
| // void exit(int) |
| GenericValue lle_X_exit(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| TheInterpreter->exitCalled(Args[0]); |
| return GenericValue(); |
| } |
| |
| // void abort(void) |
| GenericValue lle_X_abort(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| raise (SIGABRT); |
| return GenericValue(); |
| } |
| |
| // int sprintf(char *, const char *, ...) - a very rough implementation to make |
| // output useful. |
| GenericValue lle_X_sprintf(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| char *OutputBuffer = (char *)GVTOP(Args[0]); |
| const char *FmtStr = (const char *)GVTOP(Args[1]); |
| unsigned ArgNo = 2; |
| |
| // printf should return # chars printed. This is completely incorrect, but |
| // close enough for now. |
| GenericValue GV; |
| GV.IntVal = APInt(32, strlen(FmtStr)); |
| while (1) { |
| switch (*FmtStr) { |
| case 0: return GV; // Null terminator... |
| default: // Normal nonspecial character |
| sprintf(OutputBuffer++, "%c", *FmtStr++); |
| break; |
| case '\\': { // Handle escape codes |
| sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); |
| FmtStr += 2; OutputBuffer += 2; |
| break; |
| } |
| case '%': { // Handle format specifiers |
| char FmtBuf[100] = "", Buffer[1000] = ""; |
| char *FB = FmtBuf; |
| *FB++ = *FmtStr++; |
| char Last = *FB++ = *FmtStr++; |
| unsigned HowLong = 0; |
| while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && |
| Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && |
| Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && |
| Last != 'p' && Last != 's' && Last != '%') { |
| if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's |
| Last = *FB++ = *FmtStr++; |
| } |
| *FB = 0; |
| |
| switch (Last) { |
| case '%': |
| strcpy(Buffer, "%"); break; |
| case 'c': |
| sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| break; |
| case 'd': case 'i': |
| case 'u': case 'o': |
| case 'x': case 'X': |
| if (HowLong >= 1) { |
| if (HowLong == 1 && |
| TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && |
| sizeof(long) < sizeof(int64_t)) { |
| // Make sure we use %lld with a 64 bit argument because we might be |
| // compiling LLI on a 32 bit compiler. |
| unsigned Size = strlen(FmtBuf); |
| FmtBuf[Size] = FmtBuf[Size-1]; |
| FmtBuf[Size+1] = 0; |
| FmtBuf[Size-1] = 'l'; |
| } |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); |
| } else |
| sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); |
| break; |
| case 'e': case 'E': case 'g': case 'G': case 'f': |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; |
| case 'p': |
| sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; |
| case 's': |
| sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; |
| default: cerr << "<unknown printf code '" << *FmtStr << "'!>"; |
| ArgNo++; break; |
| } |
| strcpy(OutputBuffer, Buffer); |
| OutputBuffer += strlen(Buffer); |
| } |
| break; |
| } |
| } |
| return GV; |
| } |
| |
| // int printf(const char *, ...) - a very rough implementation to make output |
| // useful. |
| GenericValue lle_X_printf(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| char Buffer[10000]; |
| std::vector<GenericValue> NewArgs; |
| NewArgs.push_back(PTOGV((void*)&Buffer[0])); |
| NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); |
| GenericValue GV = lle_X_sprintf(FT, NewArgs); |
| cout << Buffer; |
| return GV; |
| } |
| |
| static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, |
| void *Arg2, void *Arg3, void *Arg4, void *Arg5, |
| void *Arg6, void *Arg7, void *Arg8) { |
| void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; |
| |
| // Loop over the format string, munging read values as appropriate (performs |
| // byteswaps as necessary). |
| unsigned ArgNo = 0; |
| while (*Fmt) { |
| if (*Fmt++ == '%') { |
| // Read any flag characters that may be present... |
| bool Suppress = false; |
| bool Half = false; |
| bool Long = false; |
| bool LongLong = false; // long long or long double |
| |
| while (1) { |
| switch (*Fmt++) { |
| case '*': Suppress = true; break; |
| case 'a': /*Allocate = true;*/ break; // We don't need to track this |
| case 'h': Half = true; break; |
| case 'l': Long = true; break; |
| case 'q': |
| case 'L': LongLong = true; break; |
| default: |
| if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs |
| goto Out; |
| } |
| } |
| Out: |
| |
| // Read the conversion character |
| if (!Suppress && Fmt[-1] != '%') { // Nothing to do? |
| unsigned Size = 0; |
| const Type *Ty = 0; |
| |
| switch (Fmt[-1]) { |
| case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': |
| case 'd': |
| if (Long || LongLong) { |
| Size = 8; Ty = Type::Int64Ty; |
| } else if (Half) { |
| Size = 4; Ty = Type::Int16Ty; |
| } else { |
| Size = 4; Ty = Type::Int32Ty; |
| } |
| break; |
| |
| case 'e': case 'g': case 'E': |
| case 'f': |
| if (Long || LongLong) { |
| Size = 8; Ty = Type::DoubleTy; |
| } else { |
| Size = 4; Ty = Type::FloatTy; |
| } |
| break; |
| |
| case 's': case 'c': case '[': // No byteswap needed |
| Size = 1; |
| Ty = Type::Int8Ty; |
| break; |
| |
| default: break; |
| } |
| |
| if (Size) { |
| GenericValue GV; |
| void *Arg = Args[ArgNo++]; |
| memcpy(&GV, Arg, Size); |
| TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); |
| } |
| } |
| } |
| } |
| } |
| |
| // int sscanf(const char *format, ...); |
| GenericValue lle_X_sscanf(const FunctionType *FT, |
| const std::vector<GenericValue> &args) { |
| assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); |
| |
| char *Args[10]; |
| for (unsigned i = 0; i < args.size(); ++i) |
| Args[i] = (char*)GVTOP(args[i]); |
| |
| GenericValue GV; |
| GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], |
| Args[5], Args[6], Args[7], Args[8], Args[9])); |
| ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], |
| Args[5], Args[6], Args[7], Args[8], Args[9], 0); |
| return GV; |
| } |
| |
| // int scanf(const char *format, ...); |
| GenericValue lle_X_scanf(const FunctionType *FT, |
| const std::vector<GenericValue> &args) { |
| assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); |
| |
| char *Args[10]; |
| for (unsigned i = 0; i < args.size(); ++i) |
| Args[i] = (char*)GVTOP(args[i]); |
| |
| GenericValue GV; |
| GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], |
| Args[5], Args[6], Args[7], Args[8], Args[9])); |
| ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], |
| Args[5], Args[6], Args[7], Args[8], Args[9]); |
| return GV; |
| } |
| |
| // int fprintf(FILE *, const char *, ...) - a very rough implementation to make |
| // output useful. |
| GenericValue lle_X_fprintf(const FunctionType *FT, |
| const std::vector<GenericValue> &Args) { |
| assert(Args.size() >= 2); |
| char Buffer[10000]; |
| std::vector<GenericValue> NewArgs; |
| NewArgs.push_back(PTOGV(Buffer)); |
| NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); |
| GenericValue GV = lle_X_sprintf(FT, NewArgs); |
| |
| fputs(Buffer, (FILE *) GVTOP(Args[0])); |
| return GV; |
| } |
| |
| } // End extern "C" |
| |
| |
| void Interpreter::initializeExternalFunctions() { |
| sys::ScopedLock Writer(*FunctionsLock); |
| FuncNames["lle_X_atexit"] = lle_X_atexit; |
| FuncNames["lle_X_exit"] = lle_X_exit; |
| FuncNames["lle_X_abort"] = lle_X_abort; |
| |
| FuncNames["lle_X_printf"] = lle_X_printf; |
| FuncNames["lle_X_sprintf"] = lle_X_sprintf; |
| FuncNames["lle_X_sscanf"] = lle_X_sscanf; |
| FuncNames["lle_X_scanf"] = lle_X_scanf; |
| FuncNames["lle_X_fprintf"] = lle_X_fprintf; |
| } |
| |