| //===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// |
| // |
| // This file defines a simple peephole instruction selector for the x86 platform |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iOperators.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/Type.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/Support/InstVisitor.h" |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| |
| unsigned CurReg; |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| ISel(TargetMachine &tm) |
| : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| F = &MachineFunction::construct(&Fn, TM); |
| visit(Fn); |
| RegMap.clear(); |
| F = 0; |
| return false; // We never modify the LLVM itself. |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = new MachineBasicBlock(&LLVM_BB); |
| // FIXME: Use the auto-insert form when it's available |
| F->getBasicBlockList().push_back(BB); |
| } |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed X86 code for each instruction. |
| // |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| |
| // Arithmetic operators |
| void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); |
| void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } |
| void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } |
| void visitMul(BinaryOperator &B); |
| |
| void visitDiv(BinaryOperator &B) { visitDivRem(B); } |
| void visitRem(BinaryOperator &B) { visitDivRem(B); } |
| void visitDivRem(BinaryOperator &B); |
| |
| // Bitwise operators |
| void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } |
| void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } |
| void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } |
| |
| // Binary comparison operators |
| |
| // Other operators |
| void visitShiftInst(ShiftInst &I); |
| void visitSetCondInst(SetCondInst &I); |
| void visitPHINode(PHINode &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(Constant *C, unsigned Reg); |
| |
| /// getReg - This method turns an LLVM value into a register number. This |
| /// is guaranteed to produce the same register number for a particular value |
| /// every time it is queried. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) |
| Reg = CurReg++; |
| |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) |
| copyConstantToRegister(C, Reg); |
| |
| return Reg; |
| } |
| }; |
| } |
| |
| /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 |
| /// Representation. |
| /// |
| enum TypeClass { |
| cByte, cShort, cInt, cLong, cFloat, cDouble |
| }; |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline TypeClass getClass(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return cByte; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return cShort; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return cInt; // Int's and pointers are class #2 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: return cLong; // Longs are class #3 |
| case Type::FloatTyID: return cFloat; // Float is class #4 |
| case Type::DoubleTyID: return cDouble; // Doubles are class #5 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return cByte; // not reached |
| } |
| } |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(Constant *C, unsigned R) { |
| assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n"); |
| |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClass(C->getType()); |
| assert(Class != 3 && "Type not handled yet!"); |
| |
| static const unsigned IntegralOpcodeTab[] = { |
| X86::MOVir8, X86::MOVir16, X86::MOVir32 |
| }; |
| |
| if (C->getType()->isSigned()) { |
| ConstantSInt *CSI = cast<ConstantSInt>(C); |
| BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue()); |
| } else { |
| ConstantUInt *CUI = cast<ConstantUInt>(C); |
| BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue()); |
| } |
| } else { |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized |
| /// register, then move it to wherever the result should be. |
| /// We handle FP setcc instructions by pushing them, doing a |
| /// compare-and-pop-twice, and then copying the concodes to the main |
| /// processor's concodes (I didn't make this up, it's in the Intel manual) |
| /// |
| void |
| ISel::visitSetCondInst (SetCondInst & I) |
| { |
| // The arguments are already supposed to be of the same type. |
| Value *var1 = I.getOperand (0); |
| Value *var2 = I.getOperand (1); |
| unsigned reg1 = getReg (var1); |
| unsigned reg2 = getReg (var2); |
| unsigned resultReg = getReg (I); |
| unsigned comparisonWidth = var1->getType ()->getPrimitiveSize (); |
| unsigned unsignedComparison = var1->getType ()->isUnsigned (); |
| unsigned resultWidth = I.getType ()->getPrimitiveSize (); |
| bool fpComparison = var1->getType ()->isFloatingPoint (); |
| if (fpComparison) |
| { |
| // Push the variables on the stack with fldl opcodes. |
| // FIXME: assuming var1, var2 are in memory, if not, spill to |
| // stack first |
| switch (comparisonWidth) |
| { |
| case 4: |
| BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg1); |
| break; |
| case 8: |
| BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg1); |
| break; |
| default: |
| visitInstruction (I); |
| break; |
| } |
| switch (comparisonWidth) |
| { |
| case 4: |
| BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg2); |
| break; |
| case 8: |
| BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg2); |
| break; |
| default: |
| visitInstruction (I); |
| break; |
| } |
| // (Non-trapping) compare and pop twice. |
| BuildMI (BB, X86::FUCOMPP, 0); |
| // Move fp status word (concodes) to ax. |
| BuildMI (BB, X86::FNSTSWr8, 1, X86::AX); |
| // Load real concodes from ax. |
| BuildMI (BB, X86::SAHF, 1, X86::EFLAGS).addReg(X86::AH); |
| } |
| else |
| { // integer comparison |
| // Emit: cmp <var1>, <var2> (do the comparison). We can |
| // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with |
| // 32-bit. |
| switch (comparisonWidth) |
| { |
| case 1: |
| BuildMI (BB, X86::CMPrr8, 2, |
| X86::EFLAGS).addReg (reg1).addReg (reg2); |
| break; |
| case 2: |
| BuildMI (BB, X86::CMPrr16, 2, |
| X86::EFLAGS).addReg (reg1).addReg (reg2); |
| break; |
| case 4: |
| BuildMI (BB, X86::CMPrr32, 2, |
| X86::EFLAGS).addReg (reg1).addReg (reg2); |
| break; |
| case 8: |
| default: |
| visitInstruction (I); |
| break; |
| } |
| } |
| // Emit setOp instruction (extract concode; clobbers ax), |
| // using the following mapping: |
| // LLVM -> X86 signed X86 unsigned |
| // ----- ----- ----- |
| // seteq -> sete sete |
| // setne -> setne setne |
| // setlt -> setl setb |
| // setgt -> setg seta |
| // setle -> setle setbe |
| // setge -> setge setae |
| switch (I.getOpcode ()) |
| { |
| case Instruction::SetEQ: |
| BuildMI (BB, X86::SETE, 0, X86::AL); |
| break; |
| case Instruction::SetGE: |
| if (unsignedComparison) |
| BuildMI (BB, X86::SETAE, 0, X86::AL); |
| else |
| BuildMI (BB, X86::SETGE, 0, X86::AL); |
| break; |
| case Instruction::SetGT: |
| if (unsignedComparison) |
| BuildMI (BB, X86::SETA, 0, X86::AL); |
| else |
| BuildMI (BB, X86::SETG, 0, X86::AL); |
| break; |
| case Instruction::SetLE: |
| if (unsignedComparison) |
| BuildMI (BB, X86::SETBE, 0, X86::AL); |
| else |
| BuildMI (BB, X86::SETLE, 0, X86::AL); |
| break; |
| case Instruction::SetLT: |
| if (unsignedComparison) |
| BuildMI (BB, X86::SETB, 0, X86::AL); |
| else |
| BuildMI (BB, X86::SETL, 0, X86::AL); |
| break; |
| case Instruction::SetNE: |
| BuildMI (BB, X86::SETNE, 0, X86::AL); |
| break; |
| default: |
| visitInstruction (I); |
| break; |
| } |
| // Put it in the result using a move. |
| switch (resultWidth) |
| { |
| case 1: |
| BuildMI (BB, X86::MOVrr8, 1, resultReg).addReg (X86::AL); |
| break; |
| case 2: |
| BuildMI (BB, X86::MOVZXr16r8, 1, resultReg).addReg (X86::AL); |
| break; |
| case 4: |
| BuildMI (BB, X86::MOVZXr32r8, 1, resultReg).addReg (X86::AL); |
| break; |
| case 8: |
| default: |
| visitInstruction (I); |
| break; |
| } |
| } |
| |
| |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, |
| /// we have the following possibilities: |
| /// |
| /// ret void: No return value, simply emit a 'ret' instruction |
| /// ret sbyte, ubyte : Extend value into EAX and return |
| /// ret short, ushort: Extend value into EAX and return |
| /// ret int, uint : Move value into EAX and return |
| /// ret pointer : Move value into EAX and return |
| /// ret long, ulong : Move value into EAX/EDX (?) and return |
| /// ret float/double : ? Top of FP stack? XMM0? |
| /// |
| void ISel::visitReturnInst (ReturnInst & I) { |
| if (I.getNumOperands() == 0) { |
| // Emit a 'ret' instruction |
| BuildMI(BB, X86::RET, 0); |
| return; |
| } |
| |
| unsigned val = getReg(I.getOperand(0)); |
| unsigned Class = getClass(I.getType()); |
| bool isUnsigned = I.getOperand(0)->getType()->isUnsigned(); |
| switch (Class) { |
| case cByte: |
| // ret sbyte, ubyte: Extend value into EAX and return |
| if (isUnsigned) { |
| BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val); |
| } else { |
| BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val); |
| } |
| break; |
| case cShort: |
| // ret short, ushort: Extend value into EAX and return |
| if (unsignedReturnValue) { |
| BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val); |
| } else { |
| BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val); |
| } |
| break; |
| case cInt: |
| // ret int, uint, ptr: Move value into EAX and return |
| // MOV EAX, <val> |
| BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val); |
| break; |
| |
| // ret float/double: top of FP stack |
| // FLD <val> |
| case cFloat: // Floats |
| BuildMI(BB, X86::FLDr4, 1).addReg(val); |
| break; |
| case cDouble: // Doubles |
| BuildMI(BB, X86::FLDr8, 1).addReg(val); |
| break; |
| case cLong: |
| // ret long: use EAX(least significant 32 bits)/EDX (most |
| // significant 32)...uh, I think so Brain, but how do i call |
| // up the two parts of the value from inside this mouse |
| // cage? *zort* |
| default: |
| visitInstruction(I); |
| } |
| |
| // Emit a 'ret' instruction |
| BuildMI(BB, X86::RET, 0); |
| } |
| |
| /// visitBranchInst - Handle conditional and unconditional branches here. Note |
| /// that since code layout is frozen at this point, that if we are trying to |
| /// jump to a block that is the immediate successor of the current block, we can |
| /// just make a fall-through. (but we don't currently). |
| /// |
| void ISel::visitBranchInst(BranchInst &BI) { |
| if (BI.isConditional()) // Only handles unconditional branches so far... |
| visitInstruction(BI); |
| |
| BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); |
| } |
| |
| |
| /// visitSimpleBinary - Implement simple binary operators for integral types... |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, |
| /// 4 for Xor. |
| /// |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { |
| if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals |
| visitInstruction(B); |
| |
| unsigned Class = getClass(B.getType()); |
| if (Class > 2) // FIXME: Handle longs |
| visitInstruction(B); |
| |
| static const unsigned OpcodeTab[][4] = { |
| // Arithmetic operators |
| { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD |
| { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB |
| |
| // Bitwise operators |
| { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND |
| { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR |
| { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass][Class]; |
| unsigned Op0r = getReg(B.getOperand(0)); |
| unsigned Op1r = getReg(B.getOperand(1)); |
| BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r); |
| } |
| |
| /// visitMul - Multiplies are not simple binary operators because they must deal |
| /// with the EAX register explicitly. |
| /// |
| void ISel::visitMul(BinaryOperator &I) { |
| unsigned Class = getClass(I.getType()); |
| if (Class > 2) // FIXME: Handle longs |
| visitInstruction(I); |
| |
| static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; |
| static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 }; |
| static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; |
| |
| unsigned Reg = Regs[Class]; |
| unsigned Op0Reg = getReg(I.getOperand(1)); |
| unsigned Op1Reg = getReg(I.getOperand(1)); |
| |
| // Put the first operand into one of the A registers... |
| BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); |
| |
| // Emit the appropriate multiple instruction... |
| // FIXME: We need to mark that this modified AH, DX, or EDX also!! |
| BuildMI(BB, MulOpcode[Class], 2, Reg).addReg(Reg).addReg(Op1Reg); |
| |
| // Put the result into the destination register... |
| BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg); |
| } |
| |
| /// visitDivRem - Handle division and remainder instructions... these |
| /// instruction both require the same instructions to be generated, they just |
| /// select the result from a different register. Note that both of these |
| /// instructions work differently for signed and unsigned operands. |
| /// |
| void ISel::visitDivRem(BinaryOperator &I) { |
| unsigned Class = getClass(I.getType()); |
| if (Class > 2) // FIXME: Handle longs |
| visitInstruction(I); |
| |
| static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; |
| static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 }; |
| static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ }; |
| static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 }; |
| static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; |
| |
| static const unsigned DivOpcode[][4] = { |
| { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division |
| { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division |
| }; |
| |
| bool isSigned = I.getType()->isSigned(); |
| unsigned Reg = Regs[Class]; |
| unsigned ExtReg = ExtRegs[Class]; |
| unsigned Op0Reg = getReg(I.getOperand(1)); |
| unsigned Op1Reg = getReg(I.getOperand(1)); |
| |
| // Put the first operand into one of the A registers... |
| BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); |
| |
| if (isSigned) { |
| // Emit a sign extension instruction... |
| BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg); |
| } else { |
| // If unsigned, emit a zeroing instruction... (reg = xor reg, reg) |
| BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg); |
| } |
| |
| // Figure out which register we want to pick the result out of... |
| unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg; |
| |
| // Emit the appropriate divide or remainder instruction... |
| // FIXME: We need to mark that this modified AH, DX, or EDX also!! |
| BuildMI(BB,DivOpcode[isSigned][Class], 2, DestReg).addReg(Reg).addReg(Op1Reg); |
| |
| // Put the result into the destination register... |
| BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg); |
| } |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void ISel::visitShiftInst (ShiftInst &I) { |
| unsigned Op0r = getReg (I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| bool isLeftShift = I.getOpcode() == Instruction::Shl; |
| bool isOperandSigned = I.getType()->isUnsigned(); |
| unsigned OperandClass = getClass(I.getType()); |
| |
| if (OperandClass > 2) |
| visitInstruction(I); // Can't handle longs yet! |
| |
| if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1))) |
| { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| unsigned char shAmt = CUI->getValue(); |
| |
| static const unsigned ConstantOperand[][4] = { |
| { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR |
| { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL |
| { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| ConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.) |
| BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt); |
| } |
| else |
| { |
| // The shift amount is non-constant. |
| // |
| // In fact, you can only shift with a variable shift amount if |
| // that amount is already in the CL register, so we have to put it |
| // there first. |
| // |
| |
| // Emit: move cl, shiftAmount (put the shift amount in CL.) |
| BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1))); |
| |
| // This is a shift right (SHR). |
| static const unsigned NonConstantOperand[][4] = { |
| { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR |
| { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL |
| { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL |
| }; |
| |
| const unsigned *OpTab = // Figure out the operand table to use |
| NonConstantOperand[isLeftShift*2+isOperandSigned]; |
| |
| BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL); |
| } |
| } |
| |
| /// visitPHINode - Turn an LLVM PHI node into an X86 PHI node... |
| /// |
| void ISel::visitPHINode(PHINode &PN) { |
| MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN)); |
| |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| // FIXME: This will put constants after the PHI nodes in the block, which |
| // is invalid. They should be put inline into the PHI node eventually. |
| // |
| MI->addRegOperand(getReg(PN.getIncomingValue(i))); |
| MI->addPCDispOperand(PN.getIncomingBlock(i)); |
| } |
| } |
| |
| |
| /// createSimpleX86InstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| Pass *createSimpleX86InstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |