| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the pass that transforms the X86 machine instructions into | 
 | // relocatable machine code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "x86-emitter" | 
 | #include "X86InstrInfo.h" | 
 | #include "X86JITInfo.h" | 
 | #include "X86Subtarget.h" | 
 | #include "X86TargetMachine.h" | 
 | #include "X86Relocations.h" | 
 | #include "X86.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/CodeGen/JITCodeEmitter.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/MC/MCCodeEmitter.h" | 
 | #include "llvm/MC/MCExpr.h" | 
 | #include "llvm/MC/MCInst.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumEmitted, "Number of machine instructions emitted"); | 
 |  | 
 | namespace { | 
 |   template<class CodeEmitter> | 
 |   class Emitter : public MachineFunctionPass { | 
 |     const X86InstrInfo  *II; | 
 |     const TargetData    *TD; | 
 |     X86TargetMachine    &TM; | 
 |     CodeEmitter         &MCE; | 
 |     MachineModuleInfo   *MMI; | 
 |     intptr_t PICBaseOffset; | 
 |     bool Is64BitMode; | 
 |     bool IsPIC; | 
 |   public: | 
 |     static char ID; | 
 |     explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) | 
 |       : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),  | 
 |       MCE(mce), PICBaseOffset(0), Is64BitMode(false), | 
 |       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} | 
 |     Emitter(X86TargetMachine &tm, CodeEmitter &mce, | 
 |             const X86InstrInfo &ii, const TargetData &td, bool is64) | 
 |       : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),  | 
 |       MCE(mce), PICBaseOffset(0), Is64BitMode(is64), | 
 |       IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF); | 
 |  | 
 |     virtual const char *getPassName() const { | 
 |       return "X86 Machine Code Emitter"; | 
 |     } | 
 |  | 
 |     void emitInstruction(const MachineInstr &MI, | 
 |                          const TargetInstrDesc *Desc); | 
 |      | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesAll(); | 
 |       AU.addRequired<MachineModuleInfo>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); | 
 |     void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, | 
 |                            intptr_t Disp = 0, intptr_t PCAdj = 0, | 
 |                            bool Indirect = false); | 
 |     void emitExternalSymbolAddress(const char *ES, unsigned Reloc); | 
 |     void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, | 
 |                               intptr_t PCAdj = 0); | 
 |     void emitJumpTableAddress(unsigned JTI, unsigned Reloc, | 
 |                               intptr_t PCAdj = 0); | 
 |  | 
 |     void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, | 
 |                                intptr_t Adj = 0, bool IsPCRel = true); | 
 |  | 
 |     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); | 
 |     void emitRegModRMByte(unsigned RegOpcodeField); | 
 |     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); | 
 |     void emitConstant(uint64_t Val, unsigned Size); | 
 |  | 
 |     void emitMemModRMByte(const MachineInstr &MI, | 
 |                           unsigned Op, unsigned RegOpcodeField, | 
 |                           intptr_t PCAdj = 0); | 
 |  | 
 |     unsigned getX86RegNum(unsigned RegNo) const; | 
 |   }; | 
 |  | 
 | template<class CodeEmitter> | 
 |   char Emitter<CodeEmitter>::ID = 0; | 
 | } // end anonymous namespace. | 
 |  | 
 | /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code | 
 | /// to the specified templated MachineCodeEmitter object. | 
 | FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, | 
 |                                                 JITCodeEmitter &JCE) { | 
 |   return new Emitter<JITCodeEmitter>(TM, JCE); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { | 
 |   MMI = &getAnalysis<MachineModuleInfo>(); | 
 |   MCE.setModuleInfo(MMI); | 
 |    | 
 |   II = TM.getInstrInfo(); | 
 |   TD = TM.getTargetData(); | 
 |   Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); | 
 |   IsPIC = TM.getRelocationModel() == Reloc::PIC_; | 
 |    | 
 |   do { | 
 |     DEBUG(dbgs() << "JITTing function '"  | 
 |           << MF.getFunction()->getName() << "'\n"); | 
 |     MCE.startFunction(MF); | 
 |     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();  | 
 |          MBB != E; ++MBB) { | 
 |       MCE.StartMachineBasicBlock(MBB); | 
 |       for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); | 
 |            I != E; ++I) { | 
 |         const TargetInstrDesc &Desc = I->getDesc(); | 
 |         emitInstruction(*I, &Desc); | 
 |         // MOVPC32r is basically a call plus a pop instruction. | 
 |         if (Desc.getOpcode() == X86::MOVPC32r) | 
 |           emitInstruction(*I, &II->get(X86::POP32r)); | 
 |         NumEmitted++;  // Keep track of the # of mi's emitted | 
 |       } | 
 |     } | 
 |   } while (MCE.finishFunction(MF)); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// emitPCRelativeBlockAddress - This method keeps track of the information | 
 | /// necessary to resolve the address of this block later and emits a dummy | 
 | /// value. | 
 | /// | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { | 
 |   // Remember where this reference was and where it is to so we can | 
 |   // deal with it later. | 
 |   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), | 
 |                                              X86::reloc_pcrel_word, MBB)); | 
 |   MCE.emitWordLE(0); | 
 | } | 
 |  | 
 | /// emitGlobalAddress - Emit the specified address to the code stream assuming | 
 | /// this is part of a "take the address of a global" instruction. | 
 | /// | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, | 
 |                                 intptr_t Disp /* = 0 */, | 
 |                                 intptr_t PCAdj /* = 0 */, | 
 |                                 bool Indirect /* = false */) { | 
 |   intptr_t RelocCST = Disp; | 
 |   if (Reloc == X86::reloc_picrel_word) | 
 |     RelocCST = PICBaseOffset; | 
 |   else if (Reloc == X86::reloc_pcrel_word) | 
 |     RelocCST = PCAdj; | 
 |   MachineRelocation MR = Indirect | 
 |     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, | 
 |                                            GV, RelocCST, false) | 
 |     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, | 
 |                                GV, RelocCST, false); | 
 |   MCE.addRelocation(MR); | 
 |   // The relocated value will be added to the displacement | 
 |   if (Reloc == X86::reloc_absolute_dword) | 
 |     MCE.emitDWordLE(Disp); | 
 |   else | 
 |     MCE.emitWordLE((int32_t)Disp); | 
 | } | 
 |  | 
 | /// emitExternalSymbolAddress - Arrange for the address of an external symbol to | 
 | /// be emitted to the current location in the function, and allow it to be PC | 
 | /// relative. | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, | 
 |                                                      unsigned Reloc) { | 
 |   intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; | 
 |  | 
 |   // X86 never needs stubs because instruction selection will always pick | 
 |   // an instruction sequence that is large enough to hold any address | 
 |   // to a symbol. | 
 |   // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) | 
 |   bool NeedStub = false; | 
 |   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), | 
 |                                                  Reloc, ES, RelocCST, | 
 |                                                  0, NeedStub)); | 
 |   if (Reloc == X86::reloc_absolute_dword) | 
 |     MCE.emitDWordLE(0); | 
 |   else | 
 |     MCE.emitWordLE(0); | 
 | } | 
 |  | 
 | /// emitConstPoolAddress - Arrange for the address of an constant pool | 
 | /// to be emitted to the current location in the function, and allow it to be PC | 
 | /// relative. | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, | 
 |                                    intptr_t Disp /* = 0 */, | 
 |                                    intptr_t PCAdj /* = 0 */) { | 
 |   intptr_t RelocCST = 0; | 
 |   if (Reloc == X86::reloc_picrel_word) | 
 |     RelocCST = PICBaseOffset; | 
 |   else if (Reloc == X86::reloc_pcrel_word) | 
 |     RelocCST = PCAdj; | 
 |   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), | 
 |                                                     Reloc, CPI, RelocCST)); | 
 |   // The relocated value will be added to the displacement | 
 |   if (Reloc == X86::reloc_absolute_dword) | 
 |     MCE.emitDWordLE(Disp); | 
 |   else | 
 |     MCE.emitWordLE((int32_t)Disp); | 
 | } | 
 |  | 
 | /// emitJumpTableAddress - Arrange for the address of a jump table to | 
 | /// be emitted to the current location in the function, and allow it to be PC | 
 | /// relative. | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, | 
 |                                    intptr_t PCAdj /* = 0 */) { | 
 |   intptr_t RelocCST = 0; | 
 |   if (Reloc == X86::reloc_picrel_word) | 
 |     RelocCST = PICBaseOffset; | 
 |   else if (Reloc == X86::reloc_pcrel_word) | 
 |     RelocCST = PCAdj; | 
 |   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), | 
 |                                                     Reloc, JTI, RelocCST)); | 
 |   // The relocated value will be added to the displacement | 
 |   if (Reloc == X86::reloc_absolute_dword) | 
 |     MCE.emitDWordLE(0); | 
 |   else | 
 |     MCE.emitWordLE(0); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const { | 
 |   return X86RegisterInfo::getX86RegNum(RegNo); | 
 | } | 
 |  | 
 | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, | 
 |                                       unsigned RM) { | 
 |   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); | 
 |   return RM | (RegOpcode << 3) | (Mod << 6); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, | 
 |                                             unsigned RegOpcodeFld){ | 
 |   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { | 
 |   MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,  | 
 |                                        unsigned Index, | 
 |                                        unsigned Base) { | 
 |   // SIB byte is in the same format as the ModRMByte... | 
 |   MCE.emitByte(ModRMByte(SS, Index, Base)); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { | 
 |   // Output the constant in little endian byte order... | 
 |   for (unsigned i = 0; i != Size; ++i) { | 
 |     MCE.emitByte(Val & 255); | 
 |     Val >>= 8; | 
 |   } | 
 | } | 
 |  | 
 | /// isDisp8 - Return true if this signed displacement fits in a 8-bit  | 
 | /// sign-extended field.  | 
 | static bool isDisp8(int Value) { | 
 |   return Value == (signed char)Value; | 
 | } | 
 |  | 
 | static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, | 
 |                               const TargetMachine &TM) { | 
 |   // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer | 
 |   // mechanism as 32-bit mode. | 
 |   if (TM.getSubtarget<X86Subtarget>().is64Bit() &&  | 
 |       !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) | 
 |     return false; | 
 |    | 
 |   // Return true if this is a reference to a stub containing the address of the | 
 |   // global, not the global itself. | 
 |   return isGlobalStubReference(GVOp.getTargetFlags()); | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, | 
 |                                                  int DispVal, | 
 |                                                  intptr_t Adj /* = 0 */, | 
 |                                                  bool IsPCRel /* = true */) { | 
 |   // If this is a simple integer displacement that doesn't require a relocation, | 
 |   // emit it now. | 
 |   if (!RelocOp) { | 
 |     emitConstant(DispVal, 4); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, this is something that requires a relocation.  Emit it as such | 
 |   // now. | 
 |   unsigned RelocType = Is64BitMode ? | 
 |     (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) | 
 |     : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | 
 |   if (RelocOp->isGlobal()) { | 
 |     // In 64-bit static small code model, we could potentially emit absolute. | 
 |     // But it's probably not beneficial. If the MCE supports using RIP directly | 
 |     // do it, otherwise fallback to absolute (this is determined by IsPCRel).  | 
 |     //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative | 
 |     //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute | 
 |     bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); | 
 |     emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), | 
 |                       Adj, Indirect); | 
 |   } else if (RelocOp->isSymbol()) { | 
 |     emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); | 
 |   } else if (RelocOp->isCPI()) { | 
 |     emitConstPoolAddress(RelocOp->getIndex(), RelocType, | 
 |                          RelocOp->getOffset(), Adj); | 
 |   } else { | 
 |     assert(RelocOp->isJTI() && "Unexpected machine operand!"); | 
 |     emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); | 
 |   } | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, | 
 |                                             unsigned Op,unsigned RegOpcodeField, | 
 |                                             intptr_t PCAdj) { | 
 |   const MachineOperand &Op3 = MI.getOperand(Op+3); | 
 |   int DispVal = 0; | 
 |   const MachineOperand *DispForReloc = 0; | 
 |    | 
 |   // Figure out what sort of displacement we have to handle here. | 
 |   if (Op3.isGlobal()) { | 
 |     DispForReloc = &Op3; | 
 |   } else if (Op3.isSymbol()) { | 
 |     DispForReloc = &Op3; | 
 |   } else if (Op3.isCPI()) { | 
 |     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { | 
 |       DispForReloc = &Op3; | 
 |     } else { | 
 |       DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); | 
 |       DispVal += Op3.getOffset(); | 
 |     } | 
 |   } else if (Op3.isJTI()) { | 
 |     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { | 
 |       DispForReloc = &Op3; | 
 |     } else { | 
 |       DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); | 
 |     } | 
 |   } else { | 
 |     DispVal = Op3.getImm(); | 
 |   } | 
 |  | 
 |   const MachineOperand &Base     = MI.getOperand(Op); | 
 |   const MachineOperand &Scale    = MI.getOperand(Op+1); | 
 |   const MachineOperand &IndexReg = MI.getOperand(Op+2); | 
 |  | 
 |   unsigned BaseReg = Base.getReg(); | 
 |  | 
 |   // Indicate that the displacement will use an pcrel or absolute reference | 
 |   // by default. MCEs able to resolve addresses on-the-fly use pcrel by default | 
 |   // while others, unless explicit asked to use RIP, use absolute references. | 
 |   bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; | 
 |  | 
 |   // Is a SIB byte needed? | 
 |   // If no BaseReg, issue a RIP relative instruction only if the MCE can  | 
 |   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table | 
 |   // 2-7) and absolute references. | 
 |   unsigned BaseRegNo = -1U; | 
 |   if (BaseReg != 0 && BaseReg != X86::RIP) | 
 |     BaseRegNo = getX86RegNum(BaseReg); | 
 |  | 
 |   if (// The SIB byte must be used if there is an index register. | 
 |       IndexReg.getReg() == 0 &&  | 
 |       // The SIB byte must be used if the base is ESP/RSP/R12, all of which | 
 |       // encode to an R/M value of 4, which indicates that a SIB byte is | 
 |       // present. | 
 |       BaseRegNo != N86::ESP && | 
 |       // If there is no base register and we're in 64-bit mode, we need a SIB | 
 |       // byte to emit an addr that is just 'disp32' (the non-RIP relative form). | 
 |       (!Is64BitMode || BaseReg != 0)) { | 
 |     if (BaseReg == 0 ||          // [disp32]     in X86-32 mode | 
 |         BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode | 
 |       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); | 
 |       emitDisplacementField(DispForReloc, DispVal, PCAdj, true); | 
 |       return; | 
 |     } | 
 |      | 
 |     // If the base is not EBP/ESP and there is no displacement, use simple | 
 |     // indirect register encoding, this handles addresses like [EAX].  The | 
 |     // encoding for [EBP] with no displacement means [disp32] so we handle it | 
 |     // by emitting a displacement of 0 below. | 
 |     if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { | 
 |       MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. | 
 |     if (!DispForReloc && isDisp8(DispVal)) { | 
 |       MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); | 
 |       emitConstant(DispVal, 1); | 
 |       return; | 
 |     } | 
 |      | 
 |     // Otherwise, emit the most general non-SIB encoding: [REG+disp32] | 
 |     MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); | 
 |     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. | 
 |   assert(IndexReg.getReg() != X86::ESP && | 
 |          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); | 
 |  | 
 |   bool ForceDisp32 = false; | 
 |   bool ForceDisp8  = false; | 
 |   if (BaseReg == 0) { | 
 |     // If there is no base register, we emit the special case SIB byte with | 
 |     // MOD=0, BASE=4, to JUST get the index, scale, and displacement. | 
 |     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
 |     ForceDisp32 = true; | 
 |   } else if (DispForReloc) { | 
 |     // Emit the normal disp32 encoding. | 
 |     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); | 
 |     ForceDisp32 = true; | 
 |   } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) { | 
 |     // Emit no displacement ModR/M byte | 
 |     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); | 
 |   } else if (isDisp8(DispVal)) { | 
 |     // Emit the disp8 encoding... | 
 |     MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); | 
 |     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP | 
 |   } else { | 
 |     // Emit the normal disp32 encoding... | 
 |     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); | 
 |   } | 
 |  | 
 |   // Calculate what the SS field value should be... | 
 |   static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; | 
 |   unsigned SS = SSTable[Scale.getImm()]; | 
 |  | 
 |   if (BaseReg == 0) { | 
 |     // Handle the SIB byte for the case where there is no base, see Intel  | 
 |     // Manual 2A, table 2-7. The displacement has already been output. | 
 |     unsigned IndexRegNo; | 
 |     if (IndexReg.getReg()) | 
 |       IndexRegNo = getX86RegNum(IndexReg.getReg()); | 
 |     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) | 
 |       IndexRegNo = 4; | 
 |     emitSIBByte(SS, IndexRegNo, 5); | 
 |   } else { | 
 |     unsigned BaseRegNo = getX86RegNum(BaseReg); | 
 |     unsigned IndexRegNo; | 
 |     if (IndexReg.getReg()) | 
 |       IndexRegNo = getX86RegNum(IndexReg.getReg()); | 
 |     else | 
 |       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4] | 
 |     emitSIBByte(SS, IndexRegNo, BaseRegNo); | 
 |   } | 
 |  | 
 |   // Do we need to output a displacement? | 
 |   if (ForceDisp8) { | 
 |     emitConstant(DispVal, 1); | 
 |   } else if (DispVal != 0 || ForceDisp32) { | 
 |     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); | 
 |   } | 
 | } | 
 |  | 
 | template<class CodeEmitter> | 
 | void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, | 
 |                                            const TargetInstrDesc *Desc) { | 
 |   DEBUG(dbgs() << MI); | 
 |  | 
 |   MCE.processDebugLoc(MI.getDebugLoc(), true); | 
 |  | 
 |   unsigned Opcode = Desc->Opcode; | 
 |  | 
 |   // Emit the lock opcode prefix as needed. | 
 |   if (Desc->TSFlags & X86II::LOCK) | 
 |     MCE.emitByte(0xF0); | 
 |  | 
 |   // Emit segment override opcode prefix as needed. | 
 |   switch (Desc->TSFlags & X86II::SegOvrMask) { | 
 |   case X86II::FS: | 
 |     MCE.emitByte(0x64); | 
 |     break; | 
 |   case X86II::GS: | 
 |     MCE.emitByte(0x65); | 
 |     break; | 
 |   default: llvm_unreachable("Invalid segment!"); | 
 |   case 0: break;  // No segment override! | 
 |   } | 
 |  | 
 |   // Emit the repeat opcode prefix as needed. | 
 |   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) | 
 |     MCE.emitByte(0xF3); | 
 |  | 
 |   // Emit the operand size opcode prefix as needed. | 
 |   if (Desc->TSFlags & X86II::OpSize) | 
 |     MCE.emitByte(0x66); | 
 |  | 
 |   // Emit the address size opcode prefix as needed. | 
 |   if (Desc->TSFlags & X86II::AdSize) | 
 |     MCE.emitByte(0x67); | 
 |  | 
 |   bool Need0FPrefix = false; | 
 |   switch (Desc->TSFlags & X86II::Op0Mask) { | 
 |   case X86II::TB:  // Two-byte opcode prefix | 
 |   case X86II::T8:  // 0F 38 | 
 |   case X86II::TA:  // 0F 3A | 
 |     Need0FPrefix = true; | 
 |     break; | 
 |   case X86II::TF: // F2 0F 38 | 
 |     MCE.emitByte(0xF2); | 
 |     Need0FPrefix = true; | 
 |     break; | 
 |   case X86II::REP: break; // already handled. | 
 |   case X86II::XS:   // F3 0F | 
 |     MCE.emitByte(0xF3); | 
 |     Need0FPrefix = true; | 
 |     break; | 
 |   case X86II::XD:   // F2 0F | 
 |     MCE.emitByte(0xF2); | 
 |     Need0FPrefix = true; | 
 |     break; | 
 |   case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: | 
 |   case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: | 
 |     MCE.emitByte(0xD8+ | 
 |                  (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) | 
 |                                    >> X86II::Op0Shift)); | 
 |     break; // Two-byte opcode prefix | 
 |   default: llvm_unreachable("Invalid prefix!"); | 
 |   case 0: break;  // No prefix! | 
 |   } | 
 |  | 
 |   // Handle REX prefix. | 
 |   if (Is64BitMode) { | 
 |     if (unsigned REX = X86InstrInfo::determineREX(MI)) | 
 |       MCE.emitByte(0x40 | REX); | 
 |   } | 
 |  | 
 |   // 0x0F escape code must be emitted just before the opcode. | 
 |   if (Need0FPrefix) | 
 |     MCE.emitByte(0x0F); | 
 |  | 
 |   switch (Desc->TSFlags & X86II::Op0Mask) { | 
 |   case X86II::TF:    // F2 0F 38 | 
 |   case X86II::T8:    // 0F 38 | 
 |     MCE.emitByte(0x38); | 
 |     break; | 
 |   case X86II::TA:    // 0F 3A | 
 |     MCE.emitByte(0x3A); | 
 |     break; | 
 |   } | 
 |  | 
 |   // If this is a two-address instruction, skip one of the register operands. | 
 |   unsigned NumOps = Desc->getNumOperands(); | 
 |   unsigned CurOp = 0; | 
 |   if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) | 
 |     ++CurOp; | 
 |   else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) | 
 |     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 | 
 |     --NumOps; | 
 |  | 
 |   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); | 
 |   switch (Desc->TSFlags & X86II::FormMask) { | 
 |   default: | 
 |     llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); | 
 |   case X86II::Pseudo: | 
 |     // Remember the current PC offset, this is the PIC relocation | 
 |     // base address. | 
 |     switch (Opcode) { | 
 |     default:  | 
 |       llvm_unreachable("psuedo instructions should be removed before code" | 
 |                        " emission"); | 
 |       break; | 
 |     case TargetOpcode::INLINEASM: | 
 |       // We allow inline assembler nodes with empty bodies - they can | 
 |       // implicitly define registers, which is ok for JIT. | 
 |       if (MI.getOperand(0).getSymbolName()[0]) | 
 |         llvm_report_error("JIT does not support inline asm!"); | 
 |       break; | 
 |     case TargetOpcode::DBG_LABEL: | 
 |     case TargetOpcode::GC_LABEL: | 
 |     case TargetOpcode::EH_LABEL: | 
 |       MCE.emitLabel(MI.getOperand(0).getMCSymbol()); | 
 |       break; | 
 |          | 
 |     case TargetOpcode::IMPLICIT_DEF: | 
 |     case TargetOpcode::KILL: | 
 |     case X86::FP_REG_KILL: | 
 |       break; | 
 |     case X86::MOVPC32r: { | 
 |       // This emits the "call" portion of this pseudo instruction. | 
 |       MCE.emitByte(BaseOpcode); | 
 |       emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); | 
 |       // Remember PIC base. | 
 |       PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); | 
 |       X86JITInfo *JTI = TM.getJITInfo(); | 
 |       JTI->setPICBase(MCE.getCurrentPCValue()); | 
 |       break; | 
 |     } | 
 |     } | 
 |     CurOp = NumOps; | 
 |     break; | 
 |   case X86II::RawFrm: { | 
 |     MCE.emitByte(BaseOpcode); | 
 |  | 
 |     if (CurOp == NumOps) | 
 |       break; | 
 |        | 
 |     const MachineOperand &MO = MI.getOperand(CurOp++); | 
 |  | 
 |     DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); | 
 |     DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); | 
 |     DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); | 
 |     DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); | 
 |     DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); | 
 |  | 
 |     if (MO.isMBB()) { | 
 |       emitPCRelativeBlockAddress(MO.getMBB()); | 
 |       break; | 
 |     } | 
 |      | 
 |     if (MO.isGlobal()) { | 
 |       emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, | 
 |                         MO.getOffset(), 0); | 
 |       break; | 
 |     } | 
 |      | 
 |     if (MO.isSymbol()) { | 
 |       emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); | 
 |       break; | 
 |     } | 
 |  | 
 |     // FIXME: Only used by hackish MCCodeEmitter, remove when dead. | 
 |     if (MO.isJTI()) { | 
 |       emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); | 
 |       break; | 
 |     } | 
 |      | 
 |     assert(MO.isImm() && "Unknown RawFrm operand!"); | 
 |     if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { | 
 |       // Fix up immediate operand for pc relative calls. | 
 |       intptr_t Imm = (intptr_t)MO.getImm(); | 
 |       Imm = Imm - MCE.getCurrentPCValue() - 4; | 
 |       emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     } else | 
 |       emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     break; | 
 |   } | 
 |        | 
 |   case X86II::AddRegFrm: { | 
 |     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); | 
 |      | 
 |     if (CurOp == NumOps) | 
 |       break; | 
 |        | 
 |     const MachineOperand &MO1 = MI.getOperand(CurOp++); | 
 |     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); | 
 |     if (MO1.isImm()) { | 
 |       emitConstant(MO1.getImm(), Size); | 
 |       break; | 
 |     } | 
 |      | 
 |     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word | 
 |       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | 
 |     if (Opcode == X86::MOV64ri64i32) | 
 |       rt = X86::reloc_absolute_word;  // FIXME: add X86II flag? | 
 |     // This should not occur on Darwin for relocatable objects. | 
 |     if (Opcode == X86::MOV64ri) | 
 |       rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag? | 
 |     if (MO1.isGlobal()) { | 
 |       bool Indirect = gvNeedsNonLazyPtr(MO1, TM); | 
 |       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, | 
 |                         Indirect); | 
 |     } else if (MO1.isSymbol()) | 
 |       emitExternalSymbolAddress(MO1.getSymbolName(), rt); | 
 |     else if (MO1.isCPI()) | 
 |       emitConstPoolAddress(MO1.getIndex(), rt); | 
 |     else if (MO1.isJTI()) | 
 |       emitJumpTableAddress(MO1.getIndex(), rt); | 
 |     break; | 
 |   } | 
 |  | 
 |   case X86II::MRMDestReg: { | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitRegModRMByte(MI.getOperand(CurOp).getReg(), | 
 |                      getX86RegNum(MI.getOperand(CurOp+1).getReg())); | 
 |     CurOp += 2; | 
 |     if (CurOp != NumOps) | 
 |       emitConstant(MI.getOperand(CurOp++).getImm(), | 
 |                    X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     break; | 
 |   } | 
 |   case X86II::MRMDestMem: { | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitMemModRMByte(MI, CurOp, | 
 |                      getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands) | 
 |                                   .getReg())); | 
 |     CurOp +=  X86AddrNumOperands + 1; | 
 |     if (CurOp != NumOps) | 
 |       emitConstant(MI.getOperand(CurOp++).getImm(), | 
 |                    X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     break; | 
 |   } | 
 |  | 
 |   case X86II::MRMSrcReg: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), | 
 |                      getX86RegNum(MI.getOperand(CurOp).getReg())); | 
 |     CurOp += 2; | 
 |     if (CurOp != NumOps) | 
 |       emitConstant(MI.getOperand(CurOp++).getImm(), | 
 |                    X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     break; | 
 |  | 
 |   case X86II::MRMSrcMem: { | 
 |     // FIXME: Maybe lea should have its own form? | 
 |     int AddrOperands; | 
 |     if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || | 
 |         Opcode == X86::LEA16r || Opcode == X86::LEA32r) | 
 |       AddrOperands = X86AddrNumOperands - 1; // No segment register | 
 |     else | 
 |       AddrOperands = X86AddrNumOperands; | 
 |  | 
 |     intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? | 
 |       X86II::getSizeOfImm(Desc->TSFlags) : 0; | 
 |  | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), | 
 |                      PCAdj); | 
 |     CurOp += AddrOperands + 1; | 
 |     if (CurOp != NumOps) | 
 |       emitConstant(MI.getOperand(CurOp++).getImm(), | 
 |                    X86II::getSizeOfImm(Desc->TSFlags)); | 
 |     break; | 
 |   } | 
 |  | 
 |   case X86II::MRM0r: case X86II::MRM1r: | 
 |   case X86II::MRM2r: case X86II::MRM3r: | 
 |   case X86II::MRM4r: case X86II::MRM5r: | 
 |   case X86II::MRM6r: case X86II::MRM7r: { | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitRegModRMByte(MI.getOperand(CurOp++).getReg(), | 
 |                      (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); | 
 |  | 
 |     if (CurOp == NumOps) | 
 |       break; | 
 |      | 
 |     const MachineOperand &MO1 = MI.getOperand(CurOp++); | 
 |     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); | 
 |     if (MO1.isImm()) { | 
 |       emitConstant(MO1.getImm(), Size); | 
 |       break; | 
 |     } | 
 |      | 
 |     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word | 
 |       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | 
 |     if (Opcode == X86::MOV64ri32) | 
 |       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag? | 
 |     if (MO1.isGlobal()) { | 
 |       bool Indirect = gvNeedsNonLazyPtr(MO1, TM); | 
 |       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, | 
 |                         Indirect); | 
 |     } else if (MO1.isSymbol()) | 
 |       emitExternalSymbolAddress(MO1.getSymbolName(), rt); | 
 |     else if (MO1.isCPI()) | 
 |       emitConstPoolAddress(MO1.getIndex(), rt); | 
 |     else if (MO1.isJTI()) | 
 |       emitJumpTableAddress(MO1.getIndex(), rt); | 
 |     break; | 
 |   } | 
 |  | 
 |   case X86II::MRM0m: case X86II::MRM1m: | 
 |   case X86II::MRM2m: case X86II::MRM3m: | 
 |   case X86II::MRM4m: case X86II::MRM5m: | 
 |   case X86II::MRM6m: case X86II::MRM7m: { | 
 |     intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ? | 
 |       (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?  | 
 |           X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; | 
 |  | 
 |     MCE.emitByte(BaseOpcode); | 
 |     emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, | 
 |                      PCAdj); | 
 |     CurOp += X86AddrNumOperands; | 
 |  | 
 |     if (CurOp == NumOps) | 
 |       break; | 
 |      | 
 |     const MachineOperand &MO = MI.getOperand(CurOp++); | 
 |     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); | 
 |     if (MO.isImm()) { | 
 |       emitConstant(MO.getImm(), Size); | 
 |       break; | 
 |     } | 
 |      | 
 |     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word | 
 |       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | 
 |     if (Opcode == X86::MOV64mi32) | 
 |       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag? | 
 |     if (MO.isGlobal()) { | 
 |       bool Indirect = gvNeedsNonLazyPtr(MO, TM); | 
 |       emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, | 
 |                         Indirect); | 
 |     } else if (MO.isSymbol()) | 
 |       emitExternalSymbolAddress(MO.getSymbolName(), rt); | 
 |     else if (MO.isCPI()) | 
 |       emitConstPoolAddress(MO.getIndex(), rt); | 
 |     else if (MO.isJTI()) | 
 |       emitJumpTableAddress(MO.getIndex(), rt); | 
 |     break; | 
 |   } | 
 |  | 
 |   case X86II::MRMInitReg: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). | 
 |     emitRegModRMByte(MI.getOperand(CurOp).getReg(), | 
 |                      getX86RegNum(MI.getOperand(CurOp).getReg())); | 
 |     ++CurOp; | 
 |     break; | 
 |        | 
 |   case X86II::MRM_C1: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     MCE.emitByte(0xC1); | 
 |     break; | 
 |   case X86II::MRM_C8: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     MCE.emitByte(0xC8); | 
 |     break; | 
 |   case X86II::MRM_C9: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     MCE.emitByte(0xC9); | 
 |     break; | 
 |   case X86II::MRM_E8: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     MCE.emitByte(0xE8); | 
 |     break; | 
 |   case X86II::MRM_F0: | 
 |     MCE.emitByte(BaseOpcode); | 
 |     MCE.emitByte(0xF0); | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!Desc->isVariadic() && CurOp != NumOps) { | 
 | #ifndef NDEBUG | 
 |     dbgs() << "Cannot encode all operands of: " << MI << "\n"; | 
 | #endif | 
 |     llvm_unreachable(0); | 
 |   } | 
 |  | 
 |   MCE.processDebugLoc(MI.getDebugLoc(), false); | 
 | } |