| //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the target-independent ELF writer. This file writes out |
| // the ELF file in the following order: |
| // |
| // #1. ELF Header |
| // #2. '.text' section |
| // #3. '.data' section |
| // #4. '.bss' section (conceptual position in file) |
| // ... |
| // #X. '.shstrtab' section |
| // #Y. Section Table |
| // |
| // The entries in the section table are laid out as: |
| // #0. Null entry [required] |
| // #1. ".text" entry - the program code |
| // #2. ".data" entry - global variables with initializers. [ if needed ] |
| // #3. ".bss" entry - global variables without initializers. [ if needed ] |
| // ... |
| // #N. ".shstrtab" entry - String table for the section names. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "elfwriter" |
| #include "ELF.h" |
| #include "ELFWriter.h" |
| #include "ELFCodeEmitter.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/CodeGen/BinaryObject.h" |
| #include "llvm/CodeGen/FileWriters.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/ObjectCodeEmitter.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/Target/TargetAsmInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetELFWriterInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace llvm; |
| |
| char ELFWriter::ID = 0; |
| |
| /// AddELFWriter - Add the ELF writer to the function pass manager |
| ObjectCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM, |
| raw_ostream &O, |
| TargetMachine &TM) { |
| ELFWriter *EW = new ELFWriter(O, TM); |
| PM.add(EW); |
| return EW->getObjectCodeEmitter(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ELFWriter Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm) |
| : MachineFunctionPass(&ID), O(o), TM(tm), |
| is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64), |
| isLittleEndian(TM.getTargetData()->isLittleEndian()), |
| ElfHdr(isLittleEndian, is64Bit) { |
| |
| TAI = TM.getTargetAsmInfo(); |
| TEW = TM.getELFWriterInfo(); |
| |
| // Create the object code emitter object for this target. |
| ElfCE = new ELFCodeEmitter(*this); |
| |
| // Inital number of sections |
| NumSections = 0; |
| } |
| |
| ELFWriter::~ELFWriter() { |
| delete ElfCE; |
| } |
| |
| // doInitialization - Emit the file header and all of the global variables for |
| // the module to the ELF file. |
| bool ELFWriter::doInitialization(Module &M) { |
| Mang = new Mangler(M); |
| |
| // ELF Header |
| // ---------- |
| // Fields e_shnum e_shstrndx are only known after all section have |
| // been emitted. They locations in the ouput buffer are recorded so |
| // to be patched up later. |
| // |
| // Note |
| // ---- |
| // emitWord method behaves differently for ELF32 and ELF64, writing |
| // 4 bytes in the former and 8 in the last for *_off and *_addr elf types |
| |
| ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0] |
| ElfHdr.emitByte('E'); // e_ident[EI_MAG1] |
| ElfHdr.emitByte('L'); // e_ident[EI_MAG2] |
| ElfHdr.emitByte('F'); // e_ident[EI_MAG3] |
| |
| ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS] |
| ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA] |
| ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION] |
| ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD] |
| |
| ElfHdr.emitWord16(ET_REL); // e_type |
| ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target |
| ElfHdr.emitWord32(EV_CURRENT); // e_version |
| ElfHdr.emitWord(0); // e_entry, no entry point in .o file |
| ElfHdr.emitWord(0); // e_phoff, no program header for .o |
| ELFHdr_e_shoff_Offset = ElfHdr.size(); |
| ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes |
| ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants |
| ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size |
| ElfHdr.emitWord16(0); // e_phentsize = prog header entry size |
| ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0 |
| |
| // e_shentsize = Section header entry size |
| ElfHdr.emitWord16(TEW->getSHdrSize()); |
| |
| // e_shnum = # of section header ents |
| ELFHdr_e_shnum_Offset = ElfHdr.size(); |
| ElfHdr.emitWord16(0); // Placeholder |
| |
| // e_shstrndx = Section # of '.shstrtab' |
| ELFHdr_e_shstrndx_Offset = ElfHdr.size(); |
| ElfHdr.emitWord16(0); // Placeholder |
| |
| // Add the null section, which is required to be first in the file. |
| getNullSection(); |
| |
| // The first entry in the symtab is the null symbol and the second |
| // is a local symbol containing the module/file name |
| SymbolList.push_back(new ELFSym()); |
| SymbolList.push_back(ELFSym::getFileSym()); |
| |
| return false; |
| } |
| |
| // addGlobalSymbol - Add a global to be processed and to the |
| // global symbol lookup, use a zero index for non private symbols |
| // because the table index will be determined later. |
| void ELFWriter::addGlobalSymbol(const GlobalValue *GV) { |
| PendingGlobals.insert(GV); |
| } |
| |
| // addExternalSymbol - Add the external to be processed and to the |
| // external symbol lookup, use a zero index because the symbol |
| // table index will be determined later |
| void ELFWriter::addExternalSymbol(const char *External) { |
| PendingExternals.insert(External); |
| ExtSymLookup[External] = 0; |
| } |
| |
| // Get jump table section on the section name returned by TAI |
| ELFSection &ELFWriter::getJumpTableSection() { |
| unsigned Align = TM.getTargetData()->getPointerABIAlignment(); |
| return getSection(TAI->getJumpTableDataSection(), |
| ELFSection::SHT_PROGBITS, |
| ELFSection::SHF_ALLOC, Align); |
| } |
| |
| // Get a constant pool section based on the section name returned by TAI |
| ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) { |
| SectionKind Kind; |
| switch (CPE.getRelocationInfo()) { |
| default: llvm_unreachable("Unknown section kind"); |
| case 2: Kind = SectionKind::get(SectionKind::ReadOnlyWithRel,false); break; |
| case 1: |
| Kind = SectionKind::get(SectionKind::ReadOnlyWithRelLocal,false); |
| break; |
| case 0: |
| switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { |
| case 4: Kind = SectionKind::get(SectionKind::MergeableConst4,false); break; |
| case 8: Kind = SectionKind::get(SectionKind::MergeableConst8,false); break; |
| case 16: Kind = SectionKind::get(SectionKind::MergeableConst16,false);break; |
| default: Kind = SectionKind::get(SectionKind::MergeableConst,false); break; |
| } |
| } |
| |
| const TargetLoweringObjectFile &TLOF = |
| TM.getTargetLowering()->getObjFileLowering(); |
| |
| return getSection(TLOF.getSectionForMergeableConstant(Kind)->getName(), |
| ELFSection::SHT_PROGBITS, |
| ELFSection::SHF_MERGE | ELFSection::SHF_ALLOC, |
| CPE.getAlignment()); |
| } |
| |
| // Return the relocation section of section 'S'. 'RelA' is true |
| // if the relocation section contains entries with addends. |
| ELFSection &ELFWriter::getRelocSection(ELFSection &S) { |
| unsigned SectionHeaderTy = TEW->hasRelocationAddend() ? |
| ELFSection::SHT_RELA : ELFSection::SHT_REL; |
| std::string RelSName(".rel"); |
| if (TEW->hasRelocationAddend()) |
| RelSName.append("a"); |
| RelSName.append(S.getName()); |
| |
| return getSection(RelSName, SectionHeaderTy, 0, TEW->getPrefELFAlignment()); |
| } |
| |
| // getGlobalELFVisibility - Returns the ELF specific visibility type |
| unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) { |
| switch (GV->getVisibility()) { |
| default: |
| llvm_unreachable("unknown visibility type"); |
| case GlobalValue::DefaultVisibility: |
| return ELFSym::STV_DEFAULT; |
| case GlobalValue::HiddenVisibility: |
| return ELFSym::STV_HIDDEN; |
| case GlobalValue::ProtectedVisibility: |
| return ELFSym::STV_PROTECTED; |
| } |
| return 0; |
| } |
| |
| // getGlobalELFBinding - Returns the ELF specific binding type |
| unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) { |
| if (GV->hasInternalLinkage()) |
| return ELFSym::STB_LOCAL; |
| |
| if (GV->hasWeakLinkage()) |
| return ELFSym::STB_WEAK; |
| |
| return ELFSym::STB_GLOBAL; |
| } |
| |
| // getGlobalELFType - Returns the ELF specific type for a global |
| unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) { |
| if (GV->isDeclaration()) |
| return ELFSym::STT_NOTYPE; |
| |
| if (isa<Function>(GV)) |
| return ELFSym::STT_FUNC; |
| |
| return ELFSym::STT_OBJECT; |
| } |
| |
| // getElfSectionFlags - Get the ELF Section Header flags based |
| // on the flags defined in ELFTargetAsmInfo. |
| unsigned ELFWriter::getElfSectionFlags(SectionKind Kind) { |
| unsigned ElfSectionFlags = ELFSection::SHF_ALLOC; |
| |
| if (Kind.isText()) |
| ElfSectionFlags |= ELFSection::SHF_EXECINSTR; |
| if (Kind.isWriteable()) |
| ElfSectionFlags |= ELFSection::SHF_WRITE; |
| if (Kind.isMergeableConst()) |
| ElfSectionFlags |= ELFSection::SHF_MERGE; |
| if (Kind.isThreadLocal()) |
| ElfSectionFlags |= ELFSection::SHF_TLS; |
| if (Kind.isMergeableCString()) |
| ElfSectionFlags |= ELFSection::SHF_STRINGS; |
| |
| return ElfSectionFlags; |
| } |
| |
| // isELFUndefSym - the symbol has no section and must be placed in |
| // the symbol table with a reference to the null section. |
| static bool isELFUndefSym(const GlobalValue *GV) { |
| return GV->isDeclaration(); |
| } |
| |
| // isELFBssSym - for an undef or null value, the symbol must go to a bss |
| // section if it's not weak for linker, otherwise it's a common sym. |
| static bool isELFBssSym(const GlobalVariable *GV) { |
| const Constant *CV = GV->getInitializer(); |
| return ((CV->isNullValue() || isa<UndefValue>(CV)) && !GV->isWeakForLinker()); |
| } |
| |
| // isELFCommonSym - for an undef or null value, the symbol must go to a |
| // common section if it's weak for linker, otherwise bss. |
| static bool isELFCommonSym(const GlobalVariable *GV) { |
| const Constant *CV = GV->getInitializer(); |
| return ((CV->isNullValue() || isa<UndefValue>(CV)) && GV->isWeakForLinker()); |
| } |
| |
| // isELFDataSym - if the symbol is an initialized but no null constant |
| // it must go to some kind of data section gathered from TAI |
| static bool isELFDataSym(const Constant *CV) { |
| return (!(CV->isNullValue() || isa<UndefValue>(CV))); |
| } |
| |
| // EmitGlobal - Choose the right section for global and emit it |
| void ELFWriter::EmitGlobal(const GlobalValue *GV) { |
| |
| // Check if the referenced symbol is already emitted |
| if (GblSymLookup.find(GV) != GblSymLookup.end()) |
| return; |
| |
| // If the global is a function already emited in the text section |
| // just add it to the global symbol lookup with a zero index to be |
| // patched up later. |
| if (isa<Function>(GV) && !GV->isDeclaration()) { |
| GblSymLookup[GV] = 0; |
| return; |
| } |
| |
| // Handle ELF Bind, Visibility and Type for the current symbol |
| unsigned SymBind = getGlobalELFBinding(GV); |
| ELFSym *GblSym = ELFSym::getGV(GV, SymBind, getGlobalELFType(GV), |
| getGlobalELFVisibility(GV)); |
| |
| if (isELFUndefSym(GV)) { |
| GblSym->SectionIdx = ELFSection::SHN_UNDEF; |
| } else { |
| assert(isa<GlobalVariable>(GV) && "GV not a global variable!"); |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| |
| const TargetLoweringObjectFile &TLOF = |
| TM.getTargetLowering()->getObjFileLowering(); |
| |
| // Get the ELF section where this global belongs from TLOF |
| const Section *S = TLOF.SectionForGlobal(GV, Mang, TM); |
| unsigned SectionFlags = getElfSectionFlags(S->getKind()); |
| |
| // The symbol align should update the section alignment if needed |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Align = TD->getPreferredAlignment(GVar); |
| unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType()); |
| GblSym->Size = Size; |
| |
| if (isELFCommonSym(GVar)) { |
| GblSym->SectionIdx = ELFSection::SHN_COMMON; |
| getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags, 1); |
| |
| // A new linkonce section is created for each global in the |
| // common section, the default alignment is 1 and the symbol |
| // value contains its alignment. |
| GblSym->Value = Align; |
| |
| } else if (isELFBssSym(GVar)) { |
| ELFSection &ES = |
| getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags); |
| GblSym->SectionIdx = ES.SectionIdx; |
| |
| // Update the size with alignment and the next object can |
| // start in the right offset in the section |
| if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1); |
| ES.Align = std::max(ES.Align, Align); |
| |
| // GblSym->Value should contain the virtual offset inside the section. |
| // Virtual because the BSS space is not allocated on ELF objects |
| GblSym->Value = ES.Size; |
| ES.Size += Size; |
| |
| } else if (isELFDataSym(GV)) { |
| ELFSection &ES = |
| getSection(S->getName(), ELFSection::SHT_PROGBITS, SectionFlags); |
| GblSym->SectionIdx = ES.SectionIdx; |
| |
| // GblSym->Value should contain the symbol offset inside the section, |
| // and all symbols should start on their required alignment boundary |
| ES.Align = std::max(ES.Align, Align); |
| GblSym->Value = (ES.size() + (Align-1)) & (-Align); |
| ES.emitAlignment(ES.Align); |
| |
| // Emit the global to the data section 'ES' |
| EmitGlobalConstant(GVar->getInitializer(), ES); |
| } |
| } |
| |
| if (GV->hasPrivateLinkage()) { |
| // For a private symbols, keep track of the index inside the |
| // private list since it will never go to the symbol table and |
| // won't be patched up later. |
| PrivateSyms.push_back(GblSym); |
| GblSymLookup[GV] = PrivateSyms.size()-1; |
| } else { |
| // Non private symbol are left with zero indices until they are patched |
| // up during the symbol table emition (where the indicies are created). |
| SymbolList.push_back(GblSym); |
| GblSymLookup[GV] = 0; |
| } |
| } |
| |
| void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS, |
| ELFSection &GblS) { |
| |
| // Print the fields in successive locations. Pad to align if needed! |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CVS->getType()); |
| const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); |
| uint64_t sizeSoFar = 0; |
| for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { |
| const Constant* field = CVS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); |
| uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) |
| - cvsLayout->getElementOffset(i)) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value. |
| EmitGlobalConstant(field, GblS); |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| for (unsigned p=0; p < padSize; p++) |
| GblS.emitByte(0); |
| } |
| assert(sizeSoFar == cvsLayout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) { |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CV->getType()); |
| |
| if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| if (CVA->isString()) { |
| std::string GblStr = CVA->getAsString(); |
| GblStr.resize(GblStr.size()-1); |
| GblS.emitString(GblStr); |
| } else { // Not a string. Print the values in successive locations |
| for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) |
| EmitGlobalConstant(CVA->getOperand(i), GblS); |
| } |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| EmitGlobalConstantStruct(CVS, GblS); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| if (CFP->getType() == Type::DoubleTy) |
| GblS.emitWord64(Val); |
| else if (CFP->getType() == Type::FloatTy) |
| GblS.emitWord32(Val); |
| else if (CFP->getType() == Type::X86_FP80Ty) { |
| llvm_unreachable("X86_FP80Ty global emission not implemented"); |
| } else if (CFP->getType() == Type::PPC_FP128Ty) |
| llvm_unreachable("PPC_FP128Ty global emission not implemented"); |
| return; |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| if (Size == 4) |
| GblS.emitWord32(CI->getZExtValue()); |
| else if (Size == 8) |
| GblS.emitWord64(CI->getZExtValue()); |
| else |
| llvm_unreachable("LargeInt global emission not implemented"); |
| return; |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { |
| const VectorType *PTy = CP->getType(); |
| for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) |
| EmitGlobalConstant(CP->getOperand(I), GblS); |
| return; |
| } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { |
| // This is a constant address for a global variable or function and |
| // therefore must be referenced using a relocation entry. |
| |
| // Check if the referenced symbol is already emitted |
| if (GblSymLookup.find(GV) == GblSymLookup.end()) |
| EmitGlobal(GV); |
| |
| // Create the relocation entry for the global value |
| MachineRelocation MR = |
| MachineRelocation::getGV(GblS.getCurrentPCOffset(), |
| TEW->getAbsoluteLabelMachineRelTy(), |
| const_cast<GlobalValue*>(GV)); |
| |
| // Fill the data entry with zeros |
| for (unsigned i=0; i < Size; ++i) |
| GblS.emitByte(0); |
| |
| // Add the relocation entry for the current data section |
| GblS.addRelocation(MR); |
| return; |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| if (CE->getOpcode() == Instruction::BitCast) { |
| EmitGlobalConstant(CE->getOperand(0), GblS); |
| return; |
| } |
| // See AsmPrinter::EmitConstantValueOnly for other ConstantExpr types |
| llvm_unreachable("Unsupported ConstantExpr type"); |
| } |
| |
| llvm_unreachable("Unknown global constant type"); |
| } |
| |
| |
| bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { |
| // Nothing to do here, this is all done through the ElfCE object above. |
| return false; |
| } |
| |
| /// doFinalization - Now that the module has been completely processed, emit |
| /// the ELF file to 'O'. |
| bool ELFWriter::doFinalization(Module &M) { |
| // Emit .data section placeholder |
| getDataSection(); |
| |
| // Emit .bss section placeholder |
| getBSSSection(); |
| |
| // Build and emit data, bss and "common" sections. |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| EmitGlobal(I); |
| |
| // Emit all pending globals |
| for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end(); |
| I != E; ++I) |
| EmitGlobal(*I); |
| |
| // Emit all pending externals |
| for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end(); |
| I != E; ++I) |
| SymbolList.push_back(ELFSym::getExtSym(*I)); |
| |
| // Emit non-executable stack note |
| if (TAI->getNonexecutableStackDirective()) |
| getNonExecStackSection(); |
| |
| // Emit a symbol for each section created until now, skip null section |
| for (unsigned i = 1, e = SectionList.size(); i < e; ++i) { |
| ELFSection &ES = *SectionList[i]; |
| ELFSym *SectionSym = ELFSym::getSectionSym(); |
| SectionSym->SectionIdx = ES.SectionIdx; |
| SymbolList.push_back(SectionSym); |
| ES.Sym = SymbolList.back(); |
| } |
| |
| // Emit string table |
| EmitStringTable(M.getModuleIdentifier()); |
| |
| // Emit the symbol table now, if non-empty. |
| EmitSymbolTable(); |
| |
| // Emit the relocation sections. |
| EmitRelocations(); |
| |
| // Emit the sections string table. |
| EmitSectionTableStringTable(); |
| |
| // Dump the sections and section table to the .o file. |
| OutputSectionsAndSectionTable(); |
| |
| // We are done with the abstract symbols. |
| SymbolList.clear(); |
| SectionList.clear(); |
| NumSections = 0; |
| |
| // Release the name mangler object. |
| delete Mang; Mang = 0; |
| return false; |
| } |
| |
| // RelocateField - Patch relocatable field with 'Offset' in 'BO' |
| // using a 'Value' of known 'Size' |
| void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset, |
| int64_t Value, unsigned Size) { |
| if (Size == 32) |
| BO.fixWord32(Value, Offset); |
| else if (Size == 64) |
| BO.fixWord64(Value, Offset); |
| else |
| llvm_unreachable("don't know howto patch relocatable field"); |
| } |
| |
| /// EmitRelocations - Emit relocations |
| void ELFWriter::EmitRelocations() { |
| |
| // True if the target uses the relocation entry to hold the addend, |
| // otherwise the addend is written directly to the relocatable field. |
| bool HasRelA = TEW->hasRelocationAddend(); |
| |
| // Create Relocation sections for each section which needs it. |
| for (unsigned i=0, e=SectionList.size(); i != e; ++i) { |
| ELFSection &S = *SectionList[i]; |
| |
| // This section does not have relocations |
| if (!S.hasRelocations()) continue; |
| ELFSection &RelSec = getRelocSection(S); |
| |
| // 'Link' - Section hdr idx of the associated symbol table |
| // 'Info' - Section hdr idx of the section to which the relocation applies |
| ELFSection &SymTab = getSymbolTableSection(); |
| RelSec.Link = SymTab.SectionIdx; |
| RelSec.Info = S.SectionIdx; |
| RelSec.EntSize = TEW->getRelocationEntrySize(); |
| |
| // Get the relocations from Section |
| std::vector<MachineRelocation> Relos = S.getRelocations(); |
| for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(), |
| MRE = Relos.end(); MRI != MRE; ++MRI) { |
| MachineRelocation &MR = *MRI; |
| |
| // Relocatable field offset from the section start |
| unsigned RelOffset = MR.getMachineCodeOffset(); |
| |
| // Symbol index in the symbol table |
| unsigned SymIdx = 0; |
| |
| // Target specific relocation field type and size |
| unsigned RelType = TEW->getRelocationType(MR.getRelocationType()); |
| unsigned RelTySize = TEW->getRelocationTySize(RelType); |
| int64_t Addend = 0; |
| |
| // There are several machine relocations types, and each one of |
| // them needs a different approach to retrieve the symbol table index. |
| if (MR.isGlobalValue()) { |
| const GlobalValue *G = MR.getGlobalValue(); |
| SymIdx = GblSymLookup[G]; |
| if (G->hasPrivateLinkage()) { |
| // If the target uses a section offset in the relocation: |
| // SymIdx + Addend = section sym for global + section offset |
| unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx; |
| Addend = PrivateSyms[SymIdx]->Value; |
| SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); |
| } else { |
| Addend = TEW->getDefaultAddendForRelTy(RelType); |
| } |
| } else if (MR.isExternalSymbol()) { |
| const char *ExtSym = MR.getExternalSymbol(); |
| SymIdx = ExtSymLookup[ExtSym]; |
| Addend = TEW->getDefaultAddendForRelTy(RelType); |
| } else { |
| // Get the symbol index for the section symbol |
| unsigned SectionIdx = MR.getConstantVal(); |
| SymIdx = SectionList[SectionIdx]->getSymbolTableIndex(); |
| Addend = (uint64_t)MR.getResultPointer(); |
| |
| // For pc relative relocations where symbols are defined in the same |
| // section they are referenced, ignore the relocation entry and patch |
| // the relocatable field with the symbol offset directly. |
| if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) { |
| int64_t Value = TEW->computeRelocation(Addend, RelOffset, RelType); |
| RelocateField(S, RelOffset, Value, RelTySize); |
| continue; |
| } |
| |
| // Handle Jump Table Index relocation |
| if ((SectionIdx == getJumpTableSection().SectionIdx) && |
| TEW->hasCustomJumpTableIndexRelTy()) { |
| RelType = TEW->getJumpTableIndexRelTy(); |
| RelTySize = TEW->getRelocationTySize(RelType); |
| } |
| } |
| |
| // The target without addend on the relocation symbol must be |
| // patched in the relocation place itself to contain the addend |
| if (!HasRelA) |
| RelocateField(S, RelOffset, Addend, RelTySize); |
| |
| // Get the relocation entry and emit to the relocation section |
| ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend); |
| EmitRelocation(RelSec, Rel, HasRelA); |
| } |
| } |
| } |
| |
| /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel' |
| void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel, |
| bool HasRelA) { |
| RelSec.emitWord(Rel.getOffset()); |
| RelSec.emitWord(Rel.getInfo(is64Bit)); |
| if (HasRelA) |
| RelSec.emitWord(Rel.getAddend()); |
| } |
| |
| /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable' |
| void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) { |
| if (is64Bit) { |
| SymbolTable.emitWord32(Sym.NameIdx); |
| SymbolTable.emitByte(Sym.Info); |
| SymbolTable.emitByte(Sym.Other); |
| SymbolTable.emitWord16(Sym.SectionIdx); |
| SymbolTable.emitWord64(Sym.Value); |
| SymbolTable.emitWord64(Sym.Size); |
| } else { |
| SymbolTable.emitWord32(Sym.NameIdx); |
| SymbolTable.emitWord32(Sym.Value); |
| SymbolTable.emitWord32(Sym.Size); |
| SymbolTable.emitByte(Sym.Info); |
| SymbolTable.emitByte(Sym.Other); |
| SymbolTable.emitWord16(Sym.SectionIdx); |
| } |
| } |
| |
| /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab' |
| /// Section Header Table |
| void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab, |
| const ELFSection &SHdr) { |
| SHdrTab.emitWord32(SHdr.NameIdx); |
| SHdrTab.emitWord32(SHdr.Type); |
| if (is64Bit) { |
| SHdrTab.emitWord64(SHdr.Flags); |
| SHdrTab.emitWord(SHdr.Addr); |
| SHdrTab.emitWord(SHdr.Offset); |
| SHdrTab.emitWord64(SHdr.Size); |
| SHdrTab.emitWord32(SHdr.Link); |
| SHdrTab.emitWord32(SHdr.Info); |
| SHdrTab.emitWord64(SHdr.Align); |
| SHdrTab.emitWord64(SHdr.EntSize); |
| } else { |
| SHdrTab.emitWord32(SHdr.Flags); |
| SHdrTab.emitWord(SHdr.Addr); |
| SHdrTab.emitWord(SHdr.Offset); |
| SHdrTab.emitWord32(SHdr.Size); |
| SHdrTab.emitWord32(SHdr.Link); |
| SHdrTab.emitWord32(SHdr.Info); |
| SHdrTab.emitWord32(SHdr.Align); |
| SHdrTab.emitWord32(SHdr.EntSize); |
| } |
| } |
| |
| /// EmitStringTable - If the current symbol table is non-empty, emit the string |
| /// table for it |
| void ELFWriter::EmitStringTable(const std::string &ModuleName) { |
| if (!SymbolList.size()) return; // Empty symbol table. |
| ELFSection &StrTab = getStringTableSection(); |
| |
| // Set the zero'th symbol to a null byte, as required. |
| StrTab.emitByte(0); |
| |
| // Walk on the symbol list and write symbol names into the string table. |
| unsigned Index = 1; |
| for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { |
| ELFSym &Sym = *(*I); |
| |
| std::string Name; |
| if (Sym.isGlobalValue()) |
| // Use the name mangler to uniquify the LLVM symbol. |
| Name.append(Mang->getMangledName(Sym.getGlobalValue())); |
| else if (Sym.isExternalSym()) |
| Name.append(Sym.getExternalSymbol()); |
| else if (Sym.isFileType()) |
| Name.append(ModuleName); |
| |
| if (Name.empty()) { |
| Sym.NameIdx = 0; |
| } else { |
| Sym.NameIdx = Index; |
| StrTab.emitString(Name); |
| |
| // Keep track of the number of bytes emitted to this section. |
| Index += Name.size()+1; |
| } |
| } |
| assert(Index == StrTab.size()); |
| StrTab.Size = Index; |
| } |
| |
| // SortSymbols - On the symbol table local symbols must come before |
| // all other symbols with non-local bindings. The return value is |
| // the position of the first non local symbol. |
| unsigned ELFWriter::SortSymbols() { |
| unsigned FirstNonLocalSymbol; |
| std::vector<ELFSym*> LocalSyms, OtherSyms; |
| |
| for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) { |
| if ((*I)->isLocalBind()) |
| LocalSyms.push_back(*I); |
| else |
| OtherSyms.push_back(*I); |
| } |
| SymbolList.clear(); |
| FirstNonLocalSymbol = LocalSyms.size(); |
| |
| for (unsigned i = 0; i < FirstNonLocalSymbol; ++i) |
| SymbolList.push_back(LocalSyms[i]); |
| |
| for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I) |
| SymbolList.push_back(*I); |
| |
| LocalSyms.clear(); |
| OtherSyms.clear(); |
| |
| return FirstNonLocalSymbol; |
| } |
| |
| /// EmitSymbolTable - Emit the symbol table itself. |
| void ELFWriter::EmitSymbolTable() { |
| if (!SymbolList.size()) return; // Empty symbol table. |
| |
| // Now that we have emitted the string table and know the offset into the |
| // string table of each symbol, emit the symbol table itself. |
| ELFSection &SymTab = getSymbolTableSection(); |
| SymTab.Align = TEW->getPrefELFAlignment(); |
| |
| // Section Index of .strtab. |
| SymTab.Link = getStringTableSection().SectionIdx; |
| |
| // Size of each symtab entry. |
| SymTab.EntSize = TEW->getSymTabEntrySize(); |
| |
| // Reorder the symbol table with local symbols first! |
| unsigned FirstNonLocalSymbol = SortSymbols(); |
| |
| // Emit all the symbols to the symbol table. |
| for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) { |
| ELFSym &Sym = *SymbolList[i]; |
| |
| // Emit symbol to the symbol table |
| EmitSymbol(SymTab, Sym); |
| |
| // Record the symbol table index for each symbol |
| if (Sym.isGlobalValue()) |
| GblSymLookup[Sym.getGlobalValue()] = i; |
| else if (Sym.isExternalSym()) |
| ExtSymLookup[Sym.getExternalSymbol()] = i; |
| |
| // Keep track on the symbol index into the symbol table |
| Sym.SymTabIdx = i; |
| } |
| |
| // One greater than the symbol table index of the last local symbol |
| SymTab.Info = FirstNonLocalSymbol; |
| SymTab.Size = SymTab.size(); |
| } |
| |
| /// EmitSectionTableStringTable - This method adds and emits a section for the |
| /// ELF Section Table string table: the string table that holds all of the |
| /// section names. |
| void ELFWriter::EmitSectionTableStringTable() { |
| // First step: add the section for the string table to the list of sections: |
| ELFSection &SHStrTab = getSectionHeaderStringTableSection(); |
| |
| // Now that we know which section number is the .shstrtab section, update the |
| // e_shstrndx entry in the ELF header. |
| ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset); |
| |
| // Set the NameIdx of each section in the string table and emit the bytes for |
| // the string table. |
| unsigned Index = 0; |
| |
| for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { |
| ELFSection &S = *(*I); |
| // Set the index into the table. Note if we have lots of entries with |
| // common suffixes, we could memoize them here if we cared. |
| S.NameIdx = Index; |
| SHStrTab.emitString(S.getName()); |
| |
| // Keep track of the number of bytes emitted to this section. |
| Index += S.getName().size()+1; |
| } |
| |
| // Set the size of .shstrtab now that we know what it is. |
| assert(Index == SHStrTab.size()); |
| SHStrTab.Size = Index; |
| } |
| |
| /// OutputSectionsAndSectionTable - Now that we have constructed the file header |
| /// and all of the sections, emit these to the ostream destination and emit the |
| /// SectionTable. |
| void ELFWriter::OutputSectionsAndSectionTable() { |
| // Pass #1: Compute the file offset for each section. |
| size_t FileOff = ElfHdr.size(); // File header first. |
| |
| // Adjust alignment of all section if needed, skip the null section. |
| for (unsigned i=1, e=SectionList.size(); i < e; ++i) { |
| ELFSection &ES = *SectionList[i]; |
| if (!ES.size()) { |
| ES.Offset = FileOff; |
| continue; |
| } |
| |
| // Update Section size |
| if (!ES.Size) |
| ES.Size = ES.size(); |
| |
| // Align FileOff to whatever the alignment restrictions of the section are. |
| if (ES.Align) |
| FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1); |
| |
| ES.Offset = FileOff; |
| FileOff += ES.Size; |
| } |
| |
| // Align Section Header. |
| unsigned TableAlign = TEW->getPrefELFAlignment(); |
| FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); |
| |
| // Now that we know where all of the sections will be emitted, set the e_shnum |
| // entry in the ELF header. |
| ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset); |
| |
| // Now that we know the offset in the file of the section table, update the |
| // e_shoff address in the ELF header. |
| ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset); |
| |
| // Now that we know all of the data in the file header, emit it and all of the |
| // sections! |
| O.write((char *)&ElfHdr.getData()[0], ElfHdr.size()); |
| FileOff = ElfHdr.size(); |
| |
| // Section Header Table blob |
| BinaryObject SHdrTable(isLittleEndian, is64Bit); |
| |
| // Emit all of sections to the file and build the section header table. |
| for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) { |
| ELFSection &S = *(*I); |
| DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName() |
| << ", Size: " << S.Size << ", Offset: " << S.Offset |
| << ", SectionData Size: " << S.size() << "\n"; |
| |
| // Align FileOff to whatever the alignment restrictions of the section are. |
| if (S.size()) { |
| if (S.Align) { |
| for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1); |
| FileOff != NewFileOff; ++FileOff) |
| O << (char)0xAB; |
| } |
| O.write((char *)&S.getData()[0], S.Size); |
| FileOff += S.Size; |
| } |
| |
| EmitSectionHeader(SHdrTable, S); |
| } |
| |
| // Align output for the section table. |
| for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1); |
| FileOff != NewFileOff; ++FileOff) |
| O << (char)0xAB; |
| |
| // Emit the section table itself. |
| O.write((char *)&SHdrTable.getData()[0], SHdrTable.size()); |
| } |