| //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Sheng Zhou and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a class to represent arbitrary precision integral |
| // constant values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cstring> |
| #include <cstdlib> |
| using namespace llvm; |
| |
| // A utility function for allocating memory, checking for allocation failures, |
| // and ensuring the contents is zeroed. |
| inline static uint64_t* getClearedMemory(uint32_t numWords) { |
| uint64_t * result = new uint64_t[numWords]; |
| assert(result && "APInt memory allocation fails!"); |
| memset(result, 0, numWords * sizeof(uint64_t)); |
| return result; |
| } |
| |
| // A utility function for allocating memory and checking for allocation failure. |
| inline static uint64_t* getMemory(uint32_t numWords) { |
| uint64_t * result = new uint64_t[numWords]; |
| assert(result && "APInt memory allocation fails!"); |
| return result; |
| } |
| |
| APInt::APInt(uint32_t numBits, uint64_t val) |
| : BitWidth(numBits), pVal(0) { |
| assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| if (isSingleWord()) |
| VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); |
| else { |
| pVal = getClearedMemory(getNumWords()); |
| pVal[0] = val; |
| } |
| } |
| |
| APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]) |
| : BitWidth(numBits), pVal(0) { |
| assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| assert(bigVal && "Null pointer detected!"); |
| if (isSingleWord()) |
| VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); |
| else { |
| pVal = getMemory(getNumWords()); |
| // Calculate the actual length of bigVal[]. |
| uint32_t maxN = std::max<uint32_t>(numWords, getNumWords()); |
| uint32_t minN = std::min<uint32_t>(numWords, getNumWords()); |
| memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE); |
| pVal[minN-1] = bigVal[minN-1] & |
| (~uint64_t(0ULL) >> |
| (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD)); |
| if (maxN == getNumWords()) |
| memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE); |
| } |
| } |
| |
| /// @brief Create a new APInt by translating the char array represented |
| /// integer value. |
| APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, |
| uint8_t radix) |
| : BitWidth(numbits), pVal(0) { |
| fromString(numbits, StrStart, slen, radix); |
| } |
| |
| /// @brief Create a new APInt by translating the string represented |
| /// integer value. |
| APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) |
| : BitWidth(numbits), pVal(0) { |
| assert(!Val.empty() && "String empty?"); |
| fromString(numbits, Val.c_str(), Val.size(), radix); |
| } |
| |
| /// @brief Copy constructor |
| APInt::APInt(const APInt& that) |
| : BitWidth(that.BitWidth), pVal(0) { |
| if (isSingleWord()) |
| VAL = that.VAL; |
| else { |
| pVal = getMemory(getNumWords()); |
| memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); |
| } |
| } |
| |
| APInt::~APInt() { |
| if (!isSingleWord() && pVal) |
| delete[] pVal; |
| } |
| |
| /// @brief Copy assignment operator. Create a new object from the given |
| /// APInt one by initialization. |
| APInt& APInt::operator=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL = RHS.VAL; |
| else |
| memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); |
| return *this; |
| } |
| |
| /// @brief Assignment operator. Assigns a common case integer value to |
| /// the APInt. |
| APInt& APInt::operator=(uint64_t RHS) { |
| if (isSingleWord()) |
| VAL = RHS; |
| else { |
| pVal[0] = RHS; |
| memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| } |
| return *this; |
| } |
| |
| /// add_1 - This function adds a single "digit" integer, y, to the multiple |
| /// "digit" integer array, x[]. x[] is modified to reflect the addition and |
| /// 1 is returned if there is a carry out, otherwise 0 is returned. |
| /// @returns the carry of the addition. |
| static uint64_t add_1(uint64_t dest[], |
| uint64_t x[], uint32_t len, |
| uint64_t y) { |
| for (uint32_t i = 0; i < len; ++i) { |
| dest[i] = y + x[i]; |
| if (dest[i] < y) |
| y = 1; |
| else { |
| y = 0; |
| break; |
| } |
| } |
| return y; |
| } |
| |
| /// @brief Prefix increment operator. Increments the APInt by one. |
| APInt& APInt::operator++() { |
| if (isSingleWord()) |
| ++VAL; |
| else |
| add_1(pVal, pVal, getNumWords(), 1); |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from |
| /// the multi-digit integer array, x[], propagating the borrowed 1 value until |
| /// no further borrowing is neeeded or it runs out of "digits" in x. The result |
| /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. |
| /// In other words, if y > x then this function returns 1, otherwise 0. |
| static uint64_t sub_1(uint64_t x[], uint32_t len, |
| uint64_t y) { |
| for (uint32_t i = 0; i < len; ++i) { |
| uint64_t X = x[i]; |
| x[i] -= y; |
| if (y > X) |
| y = 1; // We have to "borrow 1" from next "digit" |
| else { |
| y = 0; // No need to borrow |
| break; // Remaining digits are unchanged so exit early |
| } |
| } |
| return y; |
| } |
| |
| /// @brief Prefix decrement operator. Decrements the APInt by one. |
| APInt& APInt::operator--() { |
| if (isSingleWord()) |
| --VAL; |
| else |
| sub_1(pVal, getNumWords(), 1); |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// add - This function adds the integer array x[] by integer array |
| /// y[] and returns the carry. |
| static uint64_t add(uint64_t dest[], uint64_t x[], |
| uint64_t y[], uint32_t len) { |
| uint64_t carry = 0; |
| for (uint32_t i = 0; i< len; ++i) { |
| uint64_t save = x[i]; |
| dest[i] = x[i] + y[i] + carry; |
| carry = dest[i] < save ? 1 : 0; |
| } |
| return carry; |
| } |
| |
| /// @brief Addition assignment operator. Adds this APInt by the given APInt& |
| /// RHS and assigns the result to this APInt. |
| APInt& APInt::operator+=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL += RHS.VAL; |
| else { |
| add(pVal, pVal, RHS.pVal, getNumWords()); |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// sub - This function subtracts the integer array x[] by |
| /// integer array y[], and returns the borrow-out carry. |
| static uint64_t sub(uint64_t dest[], uint64_t x[], |
| uint64_t y[], uint32_t len) { |
| uint64_t borrow = 0; |
| for (uint32_t i = 0; i < len; ++i) { |
| uint64_t save = x[i]; |
| dest[i] = x[i] - borrow - y[i]; |
| borrow = save < dest[i] ? 1 : 0; |
| } |
| return borrow; |
| } |
| |
| /// @brief Subtraction assignment operator. Subtracts this APInt by the given |
| /// APInt &RHS and assigns the result to this APInt. |
| APInt& APInt::operator-=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL -= RHS.VAL; |
| else |
| sub(pVal, pVal, RHS.pVal, getNumWords()); |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// mul_1 - This function performs the multiplication operation on a |
| /// large integer (represented as an integer array) and a uint64_t integer. |
| /// @returns the carry of the multiplication. |
| static uint64_t mul_1(uint64_t dest[], |
| uint64_t x[], uint32_t len, |
| uint64_t y) { |
| // Split y into high 32-bit part and low 32-bit part. |
| uint64_t ly = y & 0xffffffffULL, hy = y >> 32; |
| uint64_t carry = 0, lx, hx; |
| for (uint32_t i = 0; i < len; ++i) { |
| lx = x[i] & 0xffffffffULL; |
| hx = x[i] >> 32; |
| // hasCarry - A flag to indicate if has carry. |
| // hasCarry == 0, no carry |
| // hasCarry == 1, has carry |
| // hasCarry == 2, no carry and the calculation result == 0. |
| uint8_t hasCarry = 0; |
| dest[i] = carry + lx * ly; |
| // Determine if the add above introduces carry. |
| hasCarry = (dest[i] < carry) ? 1 : 0; |
| carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); |
| // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + |
| // (2^32 - 1) + 2^32 = 2^64. |
| hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| |
| carry += (lx * hy) & 0xffffffffULL; |
| dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); |
| carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + |
| (carry >> 32) + ((lx * hy) >> 32) + hx * hy; |
| } |
| |
| return carry; |
| } |
| |
| /// mul - This function multiplies integer array x[] by integer array y[] and |
| /// stores the result into integer array dest[]. |
| /// Note the array dest[]'s size should no less than xlen + ylen. |
| static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, |
| uint64_t y[], uint32_t ylen) { |
| dest[xlen] = mul_1(dest, x, xlen, y[0]); |
| |
| for (uint32_t i = 1; i < ylen; ++i) { |
| uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; |
| uint64_t carry = 0, lx, hx; |
| for (uint32_t j = 0; j < xlen; ++j) { |
| lx = x[j] & 0xffffffffULL; |
| hx = x[j] >> 32; |
| // hasCarry - A flag to indicate if has carry. |
| // hasCarry == 0, no carry |
| // hasCarry == 1, has carry |
| // hasCarry == 2, no carry and the calculation result == 0. |
| uint8_t hasCarry = 0; |
| uint64_t resul = carry + lx * ly; |
| hasCarry = (resul < carry) ? 1 : 0; |
| carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); |
| hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| |
| carry += (lx * hy) & 0xffffffffULL; |
| resul = (carry << 32) | (resul & 0xffffffffULL); |
| dest[i+j] += resul; |
| carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ |
| (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + |
| ((lx * hy) >> 32) + hx * hy; |
| } |
| dest[i+xlen] = carry; |
| } |
| } |
| |
| /// @brief Multiplication assignment operator. Multiplies this APInt by the |
| /// given APInt& RHS and assigns the result to this APInt. |
| APInt& APInt::operator*=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL *= RHS.VAL; |
| else { |
| // one-based first non-zero bit position. |
| uint32_t first = getActiveBits(); |
| uint32_t xlen = !first ? 0 : whichWord(first - 1) + 1; |
| if (!xlen) |
| return *this; |
| else { |
| first = RHS.getActiveBits(); |
| uint32_t ylen = !first ? 0 : whichWord(first - 1) + 1; |
| if (!ylen) { |
| memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| return *this; |
| } |
| uint64_t *dest = getMemory(xlen+ylen); |
| mul(dest, pVal, xlen, RHS.pVal, ylen); |
| memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ? |
| getNumWords() : xlen + ylen) * APINT_WORD_SIZE); |
| delete[] dest; |
| } |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// @brief Bitwise AND assignment operator. Performs bitwise AND operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator&=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| VAL &= RHS.VAL; |
| return *this; |
| } |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| pVal[i] &= RHS.pVal[i]; |
| return *this; |
| } |
| |
| /// @brief Bitwise OR assignment operator. Performs bitwise OR operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator|=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| VAL |= RHS.VAL; |
| return *this; |
| } |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| pVal[i] |= RHS.pVal[i]; |
| return *this; |
| } |
| |
| /// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator^=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| VAL ^= RHS.VAL; |
| this->clearUnusedBits(); |
| return *this; |
| } |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| pVal[i] ^= RHS.pVal[i]; |
| this->clearUnusedBits(); |
| return *this; |
| } |
| |
| /// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator&(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return APInt(getBitWidth(), VAL & RHS.VAL); |
| |
| APInt Result(*this); |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| Result.pVal[i] &= RHS.pVal[i]; |
| return Result; |
| } |
| |
| /// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator|(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| return APInt(getBitWidth(), VAL | RHS.VAL); |
| |
| APInt Result(*this); |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| Result.pVal[i] |= RHS.pVal[i]; |
| return Result; |
| } |
| |
| /// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator^(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| APInt Result(BitWidth, VAL ^ RHS.VAL); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| APInt Result(*this); |
| uint32_t numWords = getNumWords(); |
| for (uint32_t i = 0; i < numWords; ++i) |
| Result.pVal[i] ^= RHS.pVal[i]; |
| return Result; |
| } |
| |
| /// @brief Logical negation operator. Performs logical negation operation on |
| /// this APInt. |
| bool APInt::operator !() const { |
| if (isSingleWord()) |
| return !VAL; |
| |
| for (uint32_t i = 0; i < getNumWords(); ++i) |
| if (pVal[i]) |
| return false; |
| return true; |
| } |
| |
| /// @brief Multiplication operator. Multiplies this APInt by the given APInt& |
| /// RHS. |
| APInt APInt::operator*(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| APInt Result(BitWidth, VAL * RHS.VAL); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| APInt Result(*this); |
| Result *= RHS; |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| |
| /// @brief Addition operator. Adds this APInt by the given APInt& RHS. |
| APInt APInt::operator+(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| APInt Result(BitWidth, VAL + RHS.VAL); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| APInt Result(BitWidth, 0); |
| add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| |
| /// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS |
| APInt APInt::operator-(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| APInt Result(BitWidth, VAL - RHS.VAL); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| APInt Result(BitWidth, 0); |
| sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); |
| Result.clearUnusedBits(); |
| return Result; |
| } |
| |
| /// @brief Array-indexing support. |
| bool APInt::operator[](uint32_t bitPosition) const { |
| return (maskBit(bitPosition) & (isSingleWord() ? |
| VAL : pVal[whichWord(bitPosition)])) != 0; |
| } |
| |
| /// @brief Equality operator. Compare this APInt with the given APInt& RHS |
| /// for the validity of the equality relationship. |
| bool APInt::operator==(const APInt& RHS) const { |
| if (isSingleWord()) |
| return VAL == RHS.VAL; |
| |
| uint32_t n1 = getActiveBits(); |
| uint32_t n2 = RHS.getActiveBits(); |
| if (n1 != n2) |
| return false; |
| |
| if (n1 <= APINT_BITS_PER_WORD) |
| return pVal[0] == RHS.pVal[0]; |
| |
| for (int i = whichWord(n1 - 1); i >= 0; --i) |
| if (pVal[i] != RHS.pVal[i]) |
| return false; |
| return true; |
| } |
| |
| /// @brief Equality operator. Compare this APInt with the given uint64_t value |
| /// for the validity of the equality relationship. |
| bool APInt::operator==(uint64_t Val) const { |
| if (isSingleWord()) |
| return VAL == Val; |
| |
| uint32_t n = getActiveBits(); |
| if (n <= APINT_BITS_PER_WORD) |
| return pVal[0] == Val; |
| else |
| return false; |
| } |
| |
| /// @brief Unsigned less than comparison |
| bool APInt::ult(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| if (isSingleWord()) |
| return VAL < RHS.VAL; |
| else { |
| uint32_t n1 = getActiveBits(); |
| uint32_t n2 = RHS.getActiveBits(); |
| if (n1 < n2) |
| return true; |
| else if (n2 < n1) |
| return false; |
| else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) |
| return pVal[0] < RHS.pVal[0]; |
| for (int i = whichWord(n1 - 1); i >= 0; --i) { |
| if (pVal[i] > RHS.pVal[i]) return false; |
| else if (pVal[i] < RHS.pVal[i]) return true; |
| } |
| } |
| return false; |
| } |
| |
| /// @brief Signed less than comparison |
| bool APInt::slt(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| if (isSingleWord()) { |
| int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); |
| int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); |
| return lhsSext < rhsSext; |
| } |
| |
| APInt lhs(*this); |
| APInt rhs(*this); |
| bool lhsNegative = false; |
| bool rhsNegative = false; |
| if (lhs[BitWidth-1]) { |
| lhsNegative = true; |
| lhs.flip(); |
| lhs++; |
| } |
| if (rhs[BitWidth-1]) { |
| rhsNegative = true; |
| rhs.flip(); |
| rhs++; |
| } |
| if (lhsNegative) |
| if (rhsNegative) |
| return !lhs.ult(rhs); |
| else |
| return true; |
| else if (rhsNegative) |
| return false; |
| else |
| return lhs.ult(rhs); |
| } |
| |
| /// Set the given bit to 1 whose poition is given as "bitPosition". |
| /// @brief Set a given bit to 1. |
| APInt& APInt::set(uint32_t bitPosition) { |
| if (isSingleWord()) VAL |= maskBit(bitPosition); |
| else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); |
| return *this; |
| } |
| |
| /// @brief Set every bit to 1. |
| APInt& APInt::set() { |
| if (isSingleWord()) |
| VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth); |
| else { |
| for (uint32_t i = 0; i < getNumWords() - 1; ++i) |
| pVal[i] = -1ULL; |
| pVal[getNumWords() - 1] = ~0ULL >> |
| (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD); |
| } |
| return *this; |
| } |
| |
| /// Set the given bit to 0 whose position is given as "bitPosition". |
| /// @brief Set a given bit to 0. |
| APInt& APInt::clear(uint32_t bitPosition) { |
| if (isSingleWord()) |
| VAL &= ~maskBit(bitPosition); |
| else |
| pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); |
| return *this; |
| } |
| |
| /// @brief Set every bit to 0. |
| APInt& APInt::clear() { |
| if (isSingleWord()) |
| VAL = 0; |
| else |
| memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| return *this; |
| } |
| |
| /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on |
| /// this APInt. |
| APInt APInt::operator~() const { |
| APInt API(*this); |
| API.flip(); |
| return API; |
| } |
| |
| /// @brief Toggle every bit to its opposite value. |
| APInt& APInt::flip() { |
| if (isSingleWord()) VAL = (~(VAL << |
| (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth); |
| else { |
| uint32_t i = 0; |
| for (; i < getNumWords() - 1; ++i) |
| pVal[i] = ~pVal[i]; |
| uint32_t offset = |
| APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1)); |
| pVal[i] = (~(pVal[i] << offset)) >> offset; |
| } |
| return *this; |
| } |
| |
| /// Toggle a given bit to its opposite value whose position is given |
| /// as "bitPosition". |
| /// @brief Toggles a given bit to its opposite value. |
| APInt& APInt::flip(uint32_t bitPosition) { |
| assert(bitPosition < BitWidth && "Out of the bit-width range!"); |
| if ((*this)[bitPosition]) clear(bitPosition); |
| else set(bitPosition); |
| return *this; |
| } |
| |
| /// getMaxValue - This function returns the largest value |
| /// for an APInt of the specified bit-width and if isSign == true, |
| /// it should be largest signed value, otherwise unsigned value. |
| APInt APInt::getMaxValue(uint32_t numBits, bool isSign) { |
| APInt Result(numBits, 0); |
| Result.set(); |
| if (isSign) |
| Result.clear(numBits - 1); |
| return Result; |
| } |
| |
| /// getMinValue - This function returns the smallest value for |
| /// an APInt of the given bit-width and if isSign == true, |
| /// it should be smallest signed value, otherwise zero. |
| APInt APInt::getMinValue(uint32_t numBits, bool isSign) { |
| APInt Result(numBits, 0); |
| if (isSign) |
| Result.set(numBits - 1); |
| return Result; |
| } |
| |
| /// getAllOnesValue - This function returns an all-ones value for |
| /// an APInt of the specified bit-width. |
| APInt APInt::getAllOnesValue(uint32_t numBits) { |
| return getMaxValue(numBits, false); |
| } |
| |
| /// getNullValue - This function creates an '0' value for an |
| /// APInt of the specified bit-width. |
| APInt APInt::getNullValue(uint32_t numBits) { |
| return getMinValue(numBits, false); |
| } |
| |
| /// HiBits - This function returns the high "numBits" bits of this APInt. |
| APInt APInt::getHiBits(uint32_t numBits) const { |
| return APIntOps::lshr(*this, BitWidth - numBits); |
| } |
| |
| /// LoBits - This function returns the low "numBits" bits of this APInt. |
| APInt APInt::getLoBits(uint32_t numBits) const { |
| return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), |
| BitWidth - numBits); |
| } |
| |
| bool APInt::isPowerOf2() const { |
| return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); |
| } |
| |
| /// countLeadingZeros - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countLeadingZeros_{32, 64}. It performs platform optimal form of counting |
| /// the number of zeros from the most significant bit to the first one bit. |
| /// @returns numWord() * 64 if the value is zero. |
| uint32_t APInt::countLeadingZeros() const { |
| uint32_t Count = 0; |
| if (isSingleWord()) |
| Count = CountLeadingZeros_64(VAL); |
| else { |
| for (uint32_t i = getNumWords(); i > 0u; --i) { |
| if (pVal[i-1] == 0) |
| Count += APINT_BITS_PER_WORD; |
| else { |
| Count += CountLeadingZeros_64(pVal[i-1]); |
| break; |
| } |
| } |
| } |
| return Count - (APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD)); |
| } |
| |
| /// countTrailingZeros - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countTrailingZeros_{32, 64}. It performs platform optimal form of counting |
| /// the number of zeros from the least significant bit to the first one bit. |
| /// @returns numWord() * 64 if the value is zero. |
| uint32_t APInt::countTrailingZeros() const { |
| if (isSingleWord()) |
| return CountTrailingZeros_64(VAL); |
| APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) ); |
| return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros(); |
| } |
| |
| /// countPopulation - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countPopulation_{32, 64}. It counts the number of set bits in a value. |
| /// @returns 0 if the value is zero. |
| uint32_t APInt::countPopulation() const { |
| if (isSingleWord()) |
| return CountPopulation_64(VAL); |
| uint32_t Count = 0; |
| for (uint32_t i = 0; i < getNumWords(); ++i) |
| Count += CountPopulation_64(pVal[i]); |
| return Count; |
| } |
| |
| |
| /// byteSwap - This function returns a byte-swapped representation of the |
| /// this APInt. |
| APInt APInt::byteSwap() const { |
| assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); |
| if (BitWidth == 16) |
| return APInt(BitWidth, ByteSwap_16(VAL)); |
| else if (BitWidth == 32) |
| return APInt(BitWidth, ByteSwap_32(VAL)); |
| else if (BitWidth == 48) { |
| uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF); |
| Tmp1 = ByteSwap_32(Tmp1); |
| uint64_t Tmp2 = (VAL >> 16) & 0xFFFF; |
| Tmp2 = ByteSwap_16(Tmp2); |
| return |
| APInt(BitWidth, |
| (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16)); |
| } else if (BitWidth == 64) |
| return APInt(BitWidth, ByteSwap_64(VAL)); |
| else { |
| APInt Result(BitWidth, 0); |
| char *pByte = (char*)Result.pVal; |
| for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) { |
| char Tmp = pByte[i]; |
| pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i]; |
| pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp; |
| } |
| return Result; |
| } |
| } |
| |
| /// GreatestCommonDivisor - This function returns the greatest common |
| /// divisor of the two APInt values using Enclid's algorithm. |
| APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, |
| const APInt& API2) { |
| APInt A = API1, B = API2; |
| while (!!B) { |
| APInt T = B; |
| B = APIntOps::urem(A, B); |
| A = T; |
| } |
| return A; |
| } |
| |
| /// DoubleRoundToAPInt - This function convert a double value to |
| /// a APInt value. |
| APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) { |
| union { |
| double D; |
| uint64_t I; |
| } T; |
| T.D = Double; |
| bool isNeg = T.I >> 63; |
| int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; |
| if (exp < 0) |
| return APInt(64ull, 0u); |
| uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52); |
| if (exp < 52) |
| return isNeg ? -APInt(64u, mantissa >> (52 - exp)) : |
| APInt(64u, mantissa >> (52 - exp)); |
| APInt Tmp(exp + 1, mantissa); |
| Tmp = Tmp.shl(exp - 52); |
| return isNeg ? -Tmp : Tmp; |
| } |
| |
| /// RoundToDouble - This function convert this APInt to a double. |
| /// The layout for double is as following (IEEE Standard 754): |
| /// -------------------------------------- |
| /// | Sign Exponent Fraction Bias | |
| /// |-------------------------------------- | |
| /// | 1[63] 11[62-52] 52[51-00] 1023 | |
| /// -------------------------------------- |
| double APInt::roundToDouble(bool isSigned) const { |
| |
| // Handle the simple case where the value is contained in one uint64_t. |
| if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { |
| if (isSigned) { |
| int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); |
| return double(sext); |
| } else |
| return double(VAL); |
| } |
| |
| // Determine if the value is negative. |
| bool isNeg = isSigned ? (*this)[BitWidth-1] : false; |
| |
| // Construct the absolute value if we're negative. |
| APInt Tmp(isNeg ? -(*this) : (*this)); |
| |
| // Figure out how many bits we're using. |
| uint32_t n = Tmp.getActiveBits(); |
| |
| // The exponent (without bias normalization) is just the number of bits |
| // we are using. Note that the sign bit is gone since we constructed the |
| // absolute value. |
| uint64_t exp = n; |
| |
| // Return infinity for exponent overflow |
| if (exp > 1023) { |
| if (!isSigned || !isNeg) |
| return double(1.0E300 * 1.0E300); // positive infinity |
| else |
| return double(-1.0E300 * 1.0E300); // negative infinity |
| } |
| exp += 1023; // Increment for 1023 bias |
| |
| // Number of bits in mantissa is 52. To obtain the mantissa value, we must |
| // extract the high 52 bits from the correct words in pVal. |
| uint64_t mantissa; |
| unsigned hiWord = whichWord(n-1); |
| if (hiWord == 0) { |
| mantissa = Tmp.pVal[0]; |
| if (n > 52) |
| mantissa >>= n - 52; // shift down, we want the top 52 bits. |
| } else { |
| assert(hiWord > 0 && "huh?"); |
| uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); |
| uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); |
| mantissa = hibits | lobits; |
| } |
| |
| // The leading bit of mantissa is implicit, so get rid of it. |
| uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; |
| union { |
| double D; |
| uint64_t I; |
| } T; |
| T.I = sign | (exp << 52) | mantissa; |
| return T.D; |
| } |
| |
| // Truncate to new width. |
| void APInt::trunc(uint32_t width) { |
| assert(width < BitWidth && "Invalid APInt Truncate request"); |
| } |
| |
| // Sign extend to a new width. |
| void APInt::sext(uint32_t width) { |
| assert(width > BitWidth && "Invalid APInt SignExtend request"); |
| } |
| |
| // Zero extend to a new width. |
| void APInt::zext(uint32_t width) { |
| assert(width > BitWidth && "Invalid APInt ZeroExtend request"); |
| } |
| |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| /// @brief Arithmetic right-shift function. |
| APInt APInt::ashr(uint32_t shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL = |
| (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >> |
| (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) & |
| (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth)); |
| else { |
| if (shiftAmt >= API.BitWidth) { |
| memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, |
| (API.getNumWords()-1) * APINT_WORD_SIZE); |
| API.pVal[API.getNumWords() - 1] = |
| ~uint64_t(0UL) >> |
| (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD); |
| } else { |
| uint32_t i = 0; |
| for (; i < API.BitWidth - shiftAmt; ++i) |
| if (API[i+shiftAmt]) |
| API.set(i); |
| else |
| API.clear(i); |
| for (; i < API.BitWidth; ++i) |
| if (API[API.BitWidth-1]) |
| API.set(i); |
| else API.clear(i); |
| } |
| } |
| return API; |
| } |
| |
| /// Logical right-shift this APInt by shiftAmt. |
| /// @brief Logical right-shift function. |
| APInt APInt::lshr(uint32_t shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL >>= shiftAmt; |
| else { |
| if (shiftAmt >= API.BitWidth) |
| memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE); |
| uint32_t i = 0; |
| for (i = 0; i < API.BitWidth - shiftAmt; ++i) |
| if (API[i+shiftAmt]) API.set(i); |
| else API.clear(i); |
| for (; i < API.BitWidth; ++i) |
| API.clear(i); |
| } |
| return API; |
| } |
| |
| /// Left-shift this APInt by shiftAmt. |
| /// @brief Left-shift function. |
| APInt APInt::shl(uint32_t shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL <<= shiftAmt; |
| else if (shiftAmt >= API.BitWidth) |
| memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE); |
| else { |
| if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) { |
| for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i) |
| API.pVal[i] = API.pVal[i-offset]; |
| memset(API.pVal, 0, offset * APINT_WORD_SIZE); |
| } |
| shiftAmt %= APINT_BITS_PER_WORD; |
| uint32_t i; |
| for (i = API.getNumWords() - 1; i > 0; --i) |
| API.pVal[i] = (API.pVal[i] << shiftAmt) | |
| (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt)); |
| API.pVal[i] <<= shiftAmt; |
| } |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| #if 0 |
| /// subMul - This function substracts x[len-1:0] * y from |
| /// dest[offset+len-1:offset], and returns the most significant |
| /// word of the product, minus the borrow-out from the subtraction. |
| static uint32_t subMul(uint32_t dest[], uint32_t offset, |
| uint32_t x[], uint32_t len, uint32_t y) { |
| uint64_t yl = (uint64_t) y & 0xffffffffL; |
| uint32_t carry = 0; |
| uint32_t j = 0; |
| do { |
| uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl; |
| uint32_t prod_low = (uint32_t) prod; |
| uint32_t prod_high = (uint32_t) (prod >> 32); |
| prod_low += carry; |
| carry = (prod_low < carry ? 1 : 0) + prod_high; |
| uint32_t x_j = dest[offset+j]; |
| prod_low = x_j - prod_low; |
| if (prod_low > x_j) ++carry; |
| dest[offset+j] = prod_low; |
| } while (++j < len); |
| return carry; |
| } |
| |
| /// unitDiv - This function divides N by D, |
| /// and returns (remainder << 32) | quotient. |
| /// Assumes (N >> 32) < D. |
| static uint64_t unitDiv(uint64_t N, uint32_t D) { |
| uint64_t q, r; // q: quotient, r: remainder. |
| uint64_t a1 = N >> 32; // a1: high 32-bit part of N. |
| uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N |
| if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { |
| q = N / D; |
| r = N % D; |
| } |
| else { |
| // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d |
| uint64_t c = N - ((uint64_t) D << 31); |
| // Divide (c1*2^32 + c0) by d |
| q = c / D; |
| r = c % D; |
| // Add 2^31 to quotient |
| q += 1 << 31; |
| } |
| |
| return (r << 32) | (q & 0xFFFFFFFFl); |
| } |
| |
| #endif |
| |
| /// div - This is basically Knuth's formulation of the classical algorithm. |
| /// Correspondance with Knuth's notation: |
| /// Knuth's u[0:m+n] == zds[nx:0]. |
| /// Knuth's v[1:n] == y[ny-1:0] |
| /// Knuth's n == ny. |
| /// Knuth's m == nx-ny. |
| /// Our nx == Knuth's m+n. |
| /// Could be re-implemented using gmp's mpn_divrem: |
| /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). |
| |
| /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) |
| /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The |
| /// variables here have the same names as in the algorithm. Comments explain |
| /// the algorithm and any deviation from it. |
| static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, |
| uint32_t m, uint32_t n) { |
| assert(u && "Must provide dividend"); |
| assert(v && "Must provide divisor"); |
| assert(q && "Must provide quotient"); |
| assert(n>1 && "n must be > 1"); |
| |
| // Knuth uses the value b as the base of the number system. In our case b |
| // is 2^31 so we just set it to -1u. |
| uint64_t b = uint64_t(1) << 32; |
| |
| // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of |
| // u and v by d. Note that we have taken Knuth's advice here to use a power |
| // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of |
| // 2 allows us to shift instead of multiply and it is easy to determine the |
| // shift amount from the leading zeros. We are basically normalizing the u |
| // and v so that its high bits are shifted to the top of v's range without |
| // overflow. Note that this can require an extra word in u so that u must |
| // be of length m+n+1. |
| uint32_t shift = CountLeadingZeros_32(v[n-1]); |
| uint32_t v_carry = 0; |
| uint32_t u_carry = 0; |
| if (shift) { |
| for (uint32_t i = 0; i < m+n; ++i) { |
| uint32_t u_tmp = u[i] >> (32 - shift); |
| u[i] = (u[i] << shift) | u_carry; |
| u_carry = u_tmp; |
| } |
| for (uint32_t i = 0; i < n; ++i) { |
| uint32_t v_tmp = v[i] >> (32 - shift); |
| v[i] = (v[i] << shift) | v_carry; |
| v_carry = v_tmp; |
| } |
| } |
| u[m+n] = u_carry; |
| |
| // D2. [Initialize j.] Set j to m. This is the loop counter over the places. |
| int j = m; |
| do { |
| // D3. [Calculate q'.]. |
| // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') |
| // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') |
| // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease |
| // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test |
| // on v[n-2] determines at high speed most of the cases in which the trial |
| // value qp is one too large, and it eliminates all cases where qp is two |
| // too large. |
| uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1]; |
| uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1]; |
| if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { |
| qp--; |
| rp += v[n-1]; |
| } |
| if (rp < b) |
| if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { |
| qp--; |
| rp += v[n-1]; |
| } |
| |
| // D4. [Multiply and subtract.] Replace u with u - q*v (for each word). |
| uint32_t borrow = 0; |
| for (uint32_t i = 0; i < n; i++) { |
| uint32_t save = u[j+i]; |
| u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow; |
| if (u[j+i] > save) { |
| borrow = 1; |
| u[j+i+1] += b; |
| } else { |
| borrow = 0; |
| } |
| } |
| if (borrow) |
| u[j+n] += 1; |
| |
| // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was |
| // negative, go to step D6; otherwise go on to step D7. |
| q[j] = qp; |
| if (borrow) { |
| // D6. [Add back]. The probability that this step is necessary is very |
| // small, on the order of only 2/b. Make sure that test data accounts for |
| // this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry |
| // will occur to the left of u[j+n], and it should be ignored since it |
| // cancels with the borrow that occurred in D4. |
| uint32_t carry = 0; |
| for (uint32_t i = 0; i < n; i++) { |
| uint32_t save = u[j+i]; |
| u[j+i] += v[i] + carry; |
| carry = u[j+i] < save; |
| } |
| } |
| |
| // D7. [Loop on j.] Decreate j by one. Now if j >= 0, go back to D3. |
| j--; |
| } while (j >= 0); |
| |
| // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired |
| // remainder may be obtained by dividing u[...] by d. If r is non-null we |
| // compute the remainder (urem uses this). |
| if (r) { |
| // The value d is expressed by the "shift" value above since we avoided |
| // multiplication by d by using a shift left. So, all we have to do is |
| // shift right here. In order to mak |
| uint32_t mask = ~0u >> (32 - shift); |
| uint32_t carry = 0; |
| for (int i = n-1; i >= 0; i--) { |
| uint32_t save = u[i] & mask; |
| r[i] = (u[i] >> shift) | carry; |
| carry = save; |
| } |
| } |
| } |
| |
| // This function makes calling KnuthDiv a little more convenient. It uses |
| // APInt parameters instead of uint32_t* parameters. It can also divide APInt |
| // values of different widths. |
| void APInt::divide(const APInt LHS, uint32_t lhsWords, |
| const APInt &RHS, uint32_t rhsWords, |
| APInt *Quotient, APInt *Remainder) |
| { |
| assert(lhsWords >= rhsWords && "Fractional result"); |
| |
| // First, compose the values into an array of 32-bit words instead of |
| // 64-bit words. This is a necessity of both the "short division" algorithm |
| // and the the Knuth "classical algorithm" which requires there to be native |
| // operations for +, -, and * on an m bit value with an m*2 bit result. We |
| // can't use 64-bit operands here because we don't have native results of |
| // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't |
| // work on large-endian machines. |
| uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); |
| uint32_t n = rhsWords * 2; |
| uint32_t m = (lhsWords * 2) - n; |
| // FIXME: allocate space on stack if m and n are sufficiently small. |
| uint32_t *U = new uint32_t[m + n + 1]; |
| memset(U, 0, (m+n+1)*sizeof(uint32_t)); |
| for (unsigned i = 0; i < lhsWords; ++i) { |
| uint64_t tmp = (lhsWords == 1 ? LHS.VAL : LHS.pVal[i]); |
| U[i * 2] = tmp & mask; |
| U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); |
| } |
| U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. |
| |
| uint32_t *V = new uint32_t[n]; |
| memset(V, 0, (n)*sizeof(uint32_t)); |
| for (unsigned i = 0; i < rhsWords; ++i) { |
| uint64_t tmp = (rhsWords == 1 ? RHS.VAL : RHS.pVal[i]); |
| V[i * 2] = tmp & mask; |
| V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); |
| } |
| |
| // Set up the quotient and remainder |
| uint32_t *Q = new uint32_t[m+n]; |
| memset(Q, 0, (m+n) * sizeof(uint32_t)); |
| uint32_t *R = 0; |
| if (Remainder) { |
| R = new uint32_t[n]; |
| memset(R, 0, n * sizeof(uint32_t)); |
| } |
| |
| // Now, adjust m and n for the Knuth division. n is the number of words in |
| // the divisor. m is the number of words by which the dividend exceeds the |
| // divisor (i.e. m+n is the length of the dividend). These sizes must not |
| // contain any zero words or the Knuth algorithm fails. |
| for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { |
| n--; |
| m++; |
| } |
| for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) |
| m--; |
| |
| // If we're left with only a single word for the divisor, Knuth doesn't work |
| // so we implement the short division algorithm here. This is much simpler |
| // and faster because we are certain that we can divide a 64-bit quantity |
| // by a 32-bit quantity at hardware speed and short division is simply a |
| // series of such operations. This is just like doing short division but we |
| // are using base 2^32 instead of base 10. |
| assert(n != 0 && "Divide by zero?"); |
| if (n == 1) { |
| uint32_t divisor = V[0]; |
| uint32_t remainder = 0; |
| for (int i = m+n-1; i >= 0; i--) { |
| uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; |
| if (partial_dividend == 0) { |
| Q[i] = 0; |
| remainder = 0; |
| } else if (partial_dividend < divisor) { |
| Q[i] = 0; |
| remainder = partial_dividend; |
| } else if (partial_dividend == divisor) { |
| Q[i] = 1; |
| remainder = 0; |
| } else { |
| Q[i] = partial_dividend / divisor; |
| remainder = partial_dividend - (Q[i] * divisor); |
| } |
| } |
| if (R) |
| R[0] = remainder; |
| } else { |
| // Now we're ready to invoke the Knuth classical divide algorithm. In this |
| // case n > 1. |
| KnuthDiv(U, V, Q, R, m, n); |
| } |
| |
| // If the caller wants the quotient |
| if (Quotient) { |
| // Set up the Quotient value's memory. |
| if (Quotient->BitWidth != LHS.BitWidth) { |
| if (Quotient->isSingleWord()) |
| Quotient->VAL = 0; |
| else |
| delete Quotient->pVal; |
| Quotient->BitWidth = LHS.BitWidth; |
| if (!Quotient->isSingleWord()) |
| Quotient->pVal = getClearedMemory(lhsWords); |
| } else |
| Quotient->clear(); |
| |
| // The quotient is in Q. Reconstitute the quotient into Quotient's low |
| // order words. |
| if (lhsWords == 1) { |
| uint64_t tmp = |
| uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); |
| if (Quotient->isSingleWord()) |
| Quotient->VAL = tmp; |
| else |
| Quotient->pVal[0] = tmp; |
| } else { |
| assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); |
| for (unsigned i = 0; i < lhsWords; ++i) |
| Quotient->pVal[i] = |
| uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
| } |
| } |
| |
| // If the caller wants the remainder |
| if (Remainder) { |
| // Set up the Remainder value's memory. |
| if (Remainder->BitWidth != RHS.BitWidth) { |
| if (Remainder->isSingleWord()) |
| Remainder->VAL = 0; |
| else |
| delete Remainder->pVal; |
| Remainder->BitWidth = RHS.BitWidth; |
| if (!Remainder->isSingleWord()) |
| Remainder->pVal = getClearedMemory(rhsWords); |
| } else |
| Remainder->clear(); |
| |
| // The remainder is in R. Reconstitute the remainder into Remainder's low |
| // order words. |
| if (rhsWords == 1) { |
| uint64_t tmp = |
| uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); |
| if (Remainder->isSingleWord()) |
| Remainder->VAL = tmp; |
| else |
| Remainder->pVal[0] = tmp; |
| } else { |
| assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); |
| for (unsigned i = 0; i < rhsWords; ++i) |
| Remainder->pVal[i] = |
| uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); |
| } |
| } |
| |
| // Clean up the memory we allocated. |
| delete [] U; |
| delete [] V; |
| delete [] Q; |
| delete [] R; |
| } |
| |
| /// Unsigned divide this APInt by APInt RHS. |
| /// @brief Unsigned division function for APInt. |
| APInt APInt::udiv(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| |
| // First, deal with the easy case |
| if (isSingleWord()) { |
| assert(RHS.VAL != 0 && "Divide by zero?"); |
| return APInt(BitWidth, VAL / RHS.VAL); |
| } |
| |
| // Get some facts about the LHS and RHS number of bits and words |
| uint32_t rhsBits = RHS.getActiveBits(); |
| uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| assert(rhsWords && "Divided by zero???"); |
| uint32_t lhsBits = this->getActiveBits(); |
| uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
| |
| // Make a temporary to hold the result |
| APInt Result(*this); |
| |
| // Deal with some degenerate cases |
| if (!lhsWords) |
| return Result; // 0 / X == 0 |
| else if (lhsWords < rhsWords || Result.ult(RHS)) { |
| // X / Y with X < Y == 0 |
| memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); |
| return Result; |
| } else if (Result == RHS) { |
| // X / X == 1 |
| memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); |
| Result.pVal[0] = 1; |
| return Result; |
| } else if (lhsWords == 1 && rhsWords == 1) { |
| // All high words are zero, just use native divide |
| Result.pVal[0] /= RHS.pVal[0]; |
| return Result; |
| } |
| |
| // We have to compute it the hard way. Invoke the Knuth divide algorithm. |
| APInt Quotient(1,0); // to hold result. |
| divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); |
| return Quotient; |
| } |
| |
| /// Unsigned remainder operation on APInt. |
| /// @brief Function for unsigned remainder operation. |
| APInt APInt::urem(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| assert(RHS.VAL != 0 && "Remainder by zero?"); |
| return APInt(BitWidth, VAL % RHS.VAL); |
| } |
| |
| // Make a temporary to hold the result |
| APInt Result(*this); |
| |
| // Get some facts about the RHS |
| uint32_t rhsBits = RHS.getActiveBits(); |
| uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| assert(rhsWords && "Performing remainder operation by zero ???"); |
| |
| // Get some facts about the LHS |
| uint32_t lhsBits = Result.getActiveBits(); |
| uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1); |
| |
| // Check the degenerate cases |
| if (lhsWords == 0) { |
| // 0 % Y == 0 |
| memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); |
| return Result; |
| } else if (lhsWords < rhsWords || Result.ult(RHS)) { |
| // X % Y == X iff X < Y |
| return Result; |
| } else if (Result == RHS) { |
| // X % X == 0; |
| memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); |
| return Result; |
| } else if (lhsWords == 1) { |
| // All high words are zero, just use native remainder |
| Result.pVal[0] %= RHS.pVal[0]; |
| return Result; |
| } |
| |
| // We have to compute it the hard way. Invoke the Knute divide algorithm. |
| APInt Remainder(1,0); |
| divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); |
| return Remainder; |
| } |
| |
| /// @brief Converts a char array into an integer. |
| void APInt::fromString(uint32_t numbits, const char *StrStart, uint32_t slen, |
| uint8_t radix) { |
| assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| "Radix should be 2, 8, 10, or 16!"); |
| assert(StrStart && "String is null?"); |
| uint32_t size = 0; |
| // If the radix is a power of 2, read the input |
| // from most significant to least significant. |
| if ((radix & (radix - 1)) == 0) { |
| uint32_t nextBitPos = 0; |
| uint32_t bits_per_digit = radix / 8 + 2; |
| uint64_t resDigit = 0; |
| BitWidth = slen * bits_per_digit; |
| if (getNumWords() > 1) |
| pVal = getMemory(getNumWords()); |
| for (int i = slen - 1; i >= 0; --i) { |
| uint64_t digit = StrStart[i] - '0'; |
| resDigit |= digit << nextBitPos; |
| nextBitPos += bits_per_digit; |
| if (nextBitPos >= APINT_BITS_PER_WORD) { |
| if (isSingleWord()) { |
| VAL = resDigit; |
| break; |
| } |
| pVal[size++] = resDigit; |
| nextBitPos -= APINT_BITS_PER_WORD; |
| resDigit = digit >> (bits_per_digit - nextBitPos); |
| } |
| } |
| if (!isSingleWord() && size <= getNumWords()) |
| pVal[size] = resDigit; |
| } else { // General case. The radix is not a power of 2. |
| // For 10-radix, the max value of 64-bit integer is 18446744073709551615, |
| // and its digits number is 20. |
| const uint32_t chars_per_word = 20; |
| if (slen < chars_per_word || |
| (slen == chars_per_word && // In case the value <= 2^64 - 1 |
| strcmp(StrStart, "18446744073709551615") <= 0)) { |
| BitWidth = APINT_BITS_PER_WORD; |
| VAL = strtoull(StrStart, 0, 10); |
| } else { // In case the value > 2^64 - 1 |
| BitWidth = (slen / chars_per_word + 1) * APINT_BITS_PER_WORD; |
| pVal = getClearedMemory(getNumWords()); |
| uint32_t str_pos = 0; |
| while (str_pos < slen) { |
| uint32_t chunk = slen - str_pos; |
| if (chunk > chars_per_word - 1) |
| chunk = chars_per_word - 1; |
| uint64_t resDigit = StrStart[str_pos++] - '0'; |
| uint64_t big_base = radix; |
| while (--chunk > 0) { |
| resDigit = resDigit * radix + StrStart[str_pos++] - '0'; |
| big_base *= radix; |
| } |
| |
| uint64_t carry; |
| if (!size) |
| carry = resDigit; |
| else { |
| carry = mul_1(pVal, pVal, size, big_base); |
| carry += add_1(pVal, pVal, size, resDigit); |
| } |
| |
| if (carry) pVal[size++] = carry; |
| } |
| } |
| } |
| } |
| |
| /// to_string - This function translates the APInt into a string. |
| std::string APInt::toString(uint8_t radix, bool wantSigned) const { |
| assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| "Radix should be 2, 8, 10, or 16!"); |
| static const char *digits[] = { |
| "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" |
| }; |
| std::string result; |
| uint32_t bits_used = getActiveBits(); |
| if (isSingleWord()) { |
| char buf[65]; |
| const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : |
| (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); |
| if (format) { |
| if (wantSigned) { |
| int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> |
| (APINT_BITS_PER_WORD-BitWidth); |
| sprintf(buf, format, sextVal); |
| } else |
| sprintf(buf, format, VAL); |
| } else { |
| memset(buf, 0, 65); |
| uint64_t v = VAL; |
| while (bits_used) { |
| uint32_t bit = v & 1; |
| bits_used--; |
| buf[bits_used] = digits[bit][0]; |
| v >>=1; |
| } |
| } |
| result = buf; |
| return result; |
| } |
| |
| if (radix != 10) { |
| uint64_t mask = radix - 1; |
| uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1); |
| uint32_t nibbles = APINT_BITS_PER_WORD / shift; |
| for (uint32_t i = 0; i < getNumWords(); ++i) { |
| uint64_t value = pVal[i]; |
| for (uint32_t j = 0; j < nibbles; ++j) { |
| result.insert(0, digits[ value & mask ]); |
| value >>= shift; |
| } |
| } |
| return result; |
| } |
| |
| APInt tmp(*this); |
| APInt divisor(4, radix); |
| APInt zero(tmp.getBitWidth(), 0); |
| size_t insert_at = 0; |
| if (wantSigned && tmp[BitWidth-1]) { |
| // They want to print the signed version and it is a negative value |
| // Flip the bits and add one to turn it into the equivalent positive |
| // value and put a '-' in the result. |
| tmp.flip(); |
| tmp++; |
| result = "-"; |
| insert_at = 1; |
| } |
| if (tmp == APInt(tmp.getBitWidth(), 0)) |
| result = "0"; |
| else while (tmp.ne(zero)) { |
| APInt APdigit(1,0); |
| divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), 0, &APdigit); |
| uint32_t digit = APdigit.getValue(); |
| assert(digit < radix && "urem failed"); |
| result.insert(insert_at,digits[digit]); |
| APInt tmp2(tmp.getBitWidth(), 0); |
| divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 0); |
| tmp = tmp2; |
| } |
| |
| return result; |
| } |
| |