| //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the ScheduleDAG class, which is a base class used by | 
 | // scheduling implementation classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "pre-RA-sched" | 
 | #include "SDNodeDbgValue.h" | 
 | #include "ScheduleDAGSDNodes.h" | 
 | #include "InstrEmitter.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetSubtarget.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(LoadsClustered, "Number of loads clustered together"); | 
 |  | 
 | ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) | 
 |   : ScheduleDAG(mf) { | 
 | } | 
 |  | 
 | /// Run - perform scheduling. | 
 | /// | 
 | void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, | 
 |                              MachineBasicBlock::iterator insertPos) { | 
 |   DAG = dag; | 
 |   ScheduleDAG::Run(bb, insertPos); | 
 | } | 
 |  | 
 | SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { | 
 |   SUnit *SU = NewSUnit(Old->getNode()); | 
 |   SU->OrigNode = Old->OrigNode; | 
 |   SU->Latency = Old->Latency; | 
 |   SU->isTwoAddress = Old->isTwoAddress; | 
 |   SU->isCommutable = Old->isCommutable; | 
 |   SU->hasPhysRegDefs = Old->hasPhysRegDefs; | 
 |   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; | 
 |   Old->isCloned = true; | 
 |   return SU; | 
 | } | 
 |  | 
 | /// CheckForPhysRegDependency - Check if the dependency between def and use of | 
 | /// a specified operand is a physical register dependency. If so, returns the | 
 | /// register and the cost of copying the register. | 
 | static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, | 
 |                                       const TargetRegisterInfo *TRI,  | 
 |                                       const TargetInstrInfo *TII, | 
 |                                       unsigned &PhysReg, int &Cost) { | 
 |   if (Op != 2 || User->getOpcode() != ISD::CopyToReg) | 
 |     return; | 
 |  | 
 |   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); | 
 |   if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |     return; | 
 |  | 
 |   unsigned ResNo = User->getOperand(2).getResNo(); | 
 |   if (Def->isMachineOpcode()) { | 
 |     const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); | 
 |     if (ResNo >= II.getNumDefs() && | 
 |         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { | 
 |       PhysReg = Reg; | 
 |       const TargetRegisterClass *RC = | 
 |         TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); | 
 |       Cost = RC->getCopyCost(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void AddFlags(SDNode *N, SDValue Flag, bool AddFlag, | 
 |                      SelectionDAG *DAG) { | 
 |   SmallVector<EVT, 4> VTs; | 
 |   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) | 
 |     VTs.push_back(N->getValueType(i)); | 
 |   if (AddFlag) | 
 |     VTs.push_back(MVT::Flag); | 
 |   SmallVector<SDValue, 4> Ops; | 
 |   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
 |     Ops.push_back(N->getOperand(i)); | 
 |   if (Flag.getNode()) | 
 |     Ops.push_back(Flag); | 
 |   SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); | 
 |   DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); | 
 | } | 
 |  | 
 | /// ClusterNeighboringLoads - Force nearby loads together by "flagging" them. | 
 | /// This function finds loads of the same base and different offsets. If the | 
 | /// offsets are not far apart (target specific), it add MVT::Flag inputs and | 
 | /// outputs to ensure they are scheduled together and in order. This | 
 | /// optimization may benefit some targets by improving cache locality. | 
 | void ScheduleDAGSDNodes::ClusterNeighboringLoads() { | 
 |   SmallPtrSet<SDNode*, 16> Visited; | 
 |   SmallVector<int64_t, 4> Offsets; | 
 |   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode. | 
 |   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
 |        E = DAG->allnodes_end(); NI != E; ++NI) { | 
 |     SDNode *Node = &*NI; | 
 |     if (!Node || !Node->isMachineOpcode()) | 
 |       continue; | 
 |  | 
 |     unsigned Opc = Node->getMachineOpcode(); | 
 |     const TargetInstrDesc &TID = TII->get(Opc); | 
 |     if (!TID.mayLoad()) | 
 |       continue; | 
 |  | 
 |     SDNode *Chain = 0; | 
 |     unsigned NumOps = Node->getNumOperands(); | 
 |     if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) | 
 |       Chain = Node->getOperand(NumOps-1).getNode(); | 
 |     if (!Chain) | 
 |       continue; | 
 |  | 
 |     // Look for other loads of the same chain. Find loads that are loading from | 
 |     // the same base pointer and different offsets. | 
 |     Visited.clear(); | 
 |     Offsets.clear(); | 
 |     O2SMap.clear(); | 
 |     bool Cluster = false; | 
 |     SDNode *Base = Node; | 
 |     int64_t BaseOffset; | 
 |     for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); | 
 |          I != E; ++I) { | 
 |       SDNode *User = *I; | 
 |       if (User == Node || !Visited.insert(User)) | 
 |         continue; | 
 |       int64_t Offset1, Offset2; | 
 |       if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || | 
 |           Offset1 == Offset2) | 
 |         // FIXME: Should be ok if they addresses are identical. But earlier | 
 |         // optimizations really should have eliminated one of the loads. | 
 |         continue; | 
 |       if (O2SMap.insert(std::make_pair(Offset1, Base)).second) | 
 |         Offsets.push_back(Offset1); | 
 |       O2SMap.insert(std::make_pair(Offset2, User)); | 
 |       Offsets.push_back(Offset2); | 
 |       if (Offset2 < Offset1) { | 
 |         Base = User; | 
 |         BaseOffset = Offset2; | 
 |       } else { | 
 |         BaseOffset = Offset1; | 
 |       } | 
 |       Cluster = true; | 
 |     } | 
 |  | 
 |     if (!Cluster) | 
 |       continue; | 
 |  | 
 |     // Sort them in increasing order. | 
 |     std::sort(Offsets.begin(), Offsets.end()); | 
 |  | 
 |     // Check if the loads are close enough. | 
 |     SmallVector<SDNode*, 4> Loads; | 
 |     unsigned NumLoads = 0; | 
 |     int64_t BaseOff = Offsets[0]; | 
 |     SDNode *BaseLoad = O2SMap[BaseOff]; | 
 |     Loads.push_back(BaseLoad); | 
 |     for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { | 
 |       int64_t Offset = Offsets[i]; | 
 |       SDNode *Load = O2SMap[Offset]; | 
 |       if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset, | 
 |                                         NumLoads)) | 
 |         break; // Stop right here. Ignore loads that are further away. | 
 |       Loads.push_back(Load); | 
 |       ++NumLoads; | 
 |     } | 
 |  | 
 |     if (NumLoads == 0) | 
 |       continue; | 
 |  | 
 |     // Cluster loads by adding MVT::Flag outputs and inputs. This also | 
 |     // ensure they are scheduled in order of increasing addresses. | 
 |     SDNode *Lead = Loads[0]; | 
 |     AddFlags(Lead, SDValue(0,0), true, DAG); | 
 |     SDValue InFlag = SDValue(Lead, Lead->getNumValues()-1); | 
 |     for (unsigned i = 1, e = Loads.size(); i != e; ++i) { | 
 |       bool OutFlag = i < e-1; | 
 |       SDNode *Load = Loads[i]; | 
 |       AddFlags(Load, InFlag, OutFlag, DAG); | 
 |       if (OutFlag) | 
 |         InFlag = SDValue(Load, Load->getNumValues()-1); | 
 |       ++LoadsClustered; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAGSDNodes::BuildSchedUnits() { | 
 |   // During scheduling, the NodeId field of SDNode is used to map SDNodes | 
 |   // to their associated SUnits by holding SUnits table indices. A value | 
 |   // of -1 means the SDNode does not yet have an associated SUnit. | 
 |   unsigned NumNodes = 0; | 
 |   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), | 
 |        E = DAG->allnodes_end(); NI != E; ++NI) { | 
 |     NI->setNodeId(-1); | 
 |     ++NumNodes; | 
 |   } | 
 |  | 
 |   // Reserve entries in the vector for each of the SUnits we are creating.  This | 
 |   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get | 
 |   // invalidated. | 
 |   // FIXME: Multiply by 2 because we may clone nodes during scheduling. | 
 |   // This is a temporary workaround. | 
 |   SUnits.reserve(NumNodes * 2); | 
 |    | 
 |   // Check to see if the scheduler cares about latencies. | 
 |   bool UnitLatencies = ForceUnitLatencies(); | 
 |  | 
 |   // Add all nodes in depth first order. | 
 |   SmallVector<SDNode*, 64> Worklist; | 
 |   SmallPtrSet<SDNode*, 64> Visited; | 
 |   Worklist.push_back(DAG->getRoot().getNode()); | 
 |   Visited.insert(DAG->getRoot().getNode()); | 
 |    | 
 |   while (!Worklist.empty()) { | 
 |     SDNode *NI = Worklist.pop_back_val(); | 
 |      | 
 |     // Add all operands to the worklist unless they've already been added. | 
 |     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) | 
 |       if (Visited.insert(NI->getOperand(i).getNode())) | 
 |         Worklist.push_back(NI->getOperand(i).getNode()); | 
 |    | 
 |     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate. | 
 |       continue; | 
 |      | 
 |     // If this node has already been processed, stop now. | 
 |     if (NI->getNodeId() != -1) continue; | 
 |      | 
 |     SUnit *NodeSUnit = NewSUnit(NI); | 
 |      | 
 |     // See if anything is flagged to this node, if so, add them to flagged | 
 |     // nodes.  Nodes can have at most one flag input and one flag output.  Flags | 
 |     // are required to be the last operand and result of a node. | 
 |      | 
 |     // Scan up to find flagged preds. | 
 |     SDNode *N = NI; | 
 |     while (N->getNumOperands() && | 
 |            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { | 
 |       N = N->getOperand(N->getNumOperands()-1).getNode(); | 
 |       assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |       N->setNodeId(NodeSUnit->NodeNum); | 
 |     } | 
 |      | 
 |     // Scan down to find any flagged succs. | 
 |     N = NI; | 
 |     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { | 
 |       SDValue FlagVal(N, N->getNumValues()-1); | 
 |        | 
 |       // There are either zero or one users of the Flag result. | 
 |       bool HasFlagUse = false; | 
 |       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();  | 
 |            UI != E; ++UI) | 
 |         if (FlagVal.isOperandOf(*UI)) { | 
 |           HasFlagUse = true; | 
 |           assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |           N->setNodeId(NodeSUnit->NodeNum); | 
 |           N = *UI; | 
 |           break; | 
 |         } | 
 |       if (!HasFlagUse) break; | 
 |     } | 
 |      | 
 |     // If there are flag operands involved, N is now the bottom-most node | 
 |     // of the sequence of nodes that are flagged together. | 
 |     // Update the SUnit. | 
 |     NodeSUnit->setNode(N); | 
 |     assert(N->getNodeId() == -1 && "Node already inserted!"); | 
 |     N->setNodeId(NodeSUnit->NodeNum); | 
 |  | 
 |     // Assign the Latency field of NodeSUnit using target-provided information. | 
 |     if (UnitLatencies) | 
 |       NodeSUnit->Latency = 1; | 
 |     else | 
 |       ComputeLatency(NodeSUnit); | 
 |   } | 
 | } | 
 |  | 
 | void ScheduleDAGSDNodes::AddSchedEdges() { | 
 |   const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); | 
 |  | 
 |   // Check to see if the scheduler cares about latencies. | 
 |   bool UnitLatencies = ForceUnitLatencies(); | 
 |  | 
 |   // Pass 2: add the preds, succs, etc. | 
 |   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { | 
 |     SUnit *SU = &SUnits[su]; | 
 |     SDNode *MainNode = SU->getNode(); | 
 |      | 
 |     if (MainNode->isMachineOpcode()) { | 
 |       unsigned Opc = MainNode->getMachineOpcode(); | 
 |       const TargetInstrDesc &TID = TII->get(Opc); | 
 |       for (unsigned i = 0; i != TID.getNumOperands(); ++i) { | 
 |         if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { | 
 |           SU->isTwoAddress = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (TID.isCommutable()) | 
 |         SU->isCommutable = true; | 
 |     } | 
 |      | 
 |     // Find all predecessors and successors of the group. | 
 |     for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) { | 
 |       if (N->isMachineOpcode() && | 
 |           TII->get(N->getMachineOpcode()).getImplicitDefs()) { | 
 |         SU->hasPhysRegClobbers = true; | 
 |         unsigned NumUsed = InstrEmitter::CountResults(N); | 
 |         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) | 
 |           --NumUsed;    // Skip over unused values at the end. | 
 |         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) | 
 |           SU->hasPhysRegDefs = true; | 
 |       } | 
 |        | 
 |       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
 |         SDNode *OpN = N->getOperand(i).getNode(); | 
 |         if (isPassiveNode(OpN)) continue;   // Not scheduled. | 
 |         SUnit *OpSU = &SUnits[OpN->getNodeId()]; | 
 |         assert(OpSU && "Node has no SUnit!"); | 
 |         if (OpSU == SU) continue;           // In the same group. | 
 |  | 
 |         EVT OpVT = N->getOperand(i).getValueType(); | 
 |         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); | 
 |         bool isChain = OpVT == MVT::Other; | 
 |  | 
 |         unsigned PhysReg = 0; | 
 |         int Cost = 1; | 
 |         // Determine if this is a physical register dependency. | 
 |         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); | 
 |         assert((PhysReg == 0 || !isChain) && | 
 |                "Chain dependence via physreg data?"); | 
 |         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler | 
 |         // emits a copy from the physical register to a virtual register unless | 
 |         // it requires a cross class copy (cost < 0). That means we are only | 
 |         // treating "expensive to copy" register dependency as physical register | 
 |         // dependency. This may change in the future though. | 
 |         if (Cost >= 0) | 
 |           PhysReg = 0; | 
 |  | 
 |         const SDep& dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, | 
 |                                OpSU->Latency, PhysReg); | 
 |         if (!isChain && !UnitLatencies) { | 
 |           ComputeOperandLatency(OpSU, SU, (SDep &)dep); | 
 |           ST.adjustSchedDependency(OpSU, SU, (SDep &)dep); | 
 |         } | 
 |  | 
 |         SU->addPred(dep); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// BuildSchedGraph - Build the SUnit graph from the selection dag that we | 
 | /// are input.  This SUnit graph is similar to the SelectionDAG, but | 
 | /// excludes nodes that aren't interesting to scheduling, and represents | 
 | /// flagged together nodes with a single SUnit. | 
 | void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { | 
 |   // Cluster loads from "near" addresses into combined SUnits. | 
 |   ClusterNeighboringLoads(); | 
 |   // Populate the SUnits array. | 
 |   BuildSchedUnits(); | 
 |   // Compute all the scheduling dependencies between nodes. | 
 |   AddSchedEdges(); | 
 | } | 
 |  | 
 | void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { | 
 |   const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); | 
 |    | 
 |   // Compute the latency for the node.  We use the sum of the latencies for | 
 |   // all nodes flagged together into this SUnit. | 
 |   SU->Latency = 0; | 
 |   for (SDNode *N = SU->getNode(); N; N = N->getFlaggedNode()) | 
 |     if (N->isMachineOpcode()) { | 
 |       SU->Latency += InstrItins. | 
 |         getStageLatency(TII->get(N->getMachineOpcode()).getSchedClass()); | 
 |     } | 
 | } | 
 |  | 
 | void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { | 
 |   if (!SU->getNode()) { | 
 |     dbgs() << "PHYS REG COPY\n"; | 
 |     return; | 
 |   } | 
 |  | 
 |   SU->getNode()->dump(DAG); | 
 |   dbgs() << "\n"; | 
 |   SmallVector<SDNode *, 4> FlaggedNodes; | 
 |   for (SDNode *N = SU->getNode()->getFlaggedNode(); N; N = N->getFlaggedNode()) | 
 |     FlaggedNodes.push_back(N); | 
 |   while (!FlaggedNodes.empty()) { | 
 |     dbgs() << "    "; | 
 |     FlaggedNodes.back()->dump(DAG); | 
 |     dbgs() << "\n"; | 
 |     FlaggedNodes.pop_back(); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   struct OrderSorter { | 
 |     bool operator()(const std::pair<unsigned, MachineInstr*> &A, | 
 |                     const std::pair<unsigned, MachineInstr*> &B) { | 
 |       return A.first < B.first; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | // ProcessSourceNode - Process nodes with source order numbers. These are added | 
 | // to a vector which EmitSchedule use to determine how to insert dbg_value | 
 | // instructions in the right order. | 
 | static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, | 
 |                            InstrEmitter &Emitter, | 
 |                            DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM, | 
 |                            DenseMap<SDValue, unsigned> &VRBaseMap, | 
 |                     SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, | 
 |                            SmallSet<unsigned, 8> &Seen) { | 
 |   unsigned Order = DAG->GetOrdering(N); | 
 |   if (!Order || !Seen.insert(Order)) | 
 |     return; | 
 |  | 
 |   MachineBasicBlock *BB = Emitter.getBlock(); | 
 |   if (BB->empty() || BB->back().isPHI()) { | 
 |     // Did not insert any instruction. | 
 |     Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); | 
 |     return; | 
 |   } | 
 |  | 
 |   Orders.push_back(std::make_pair(Order, &BB->back())); | 
 |   if (!N->getHasDebugValue()) | 
 |     return; | 
 |   // Opportunistically insert immediate dbg_value uses, i.e. those with source | 
 |   // order number right after the N. | 
 |   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); | 
 |   SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N); | 
 |   for (unsigned i = 0, e = DVs.size(); i != e; ++i) { | 
 |     if (DVs[i]->isInvalidated()) | 
 |       continue; | 
 |     unsigned DVOrder = DVs[i]->getOrder(); | 
 |     if (DVOrder == ++Order) { | 
 |       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], BB, VRBaseMap, EM); | 
 |       Orders.push_back(std::make_pair(DVOrder, DbgMI)); | 
 |       BB->insert(InsertPos, DbgMI); | 
 |       DVs[i]->setIsInvalidated(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// EmitSchedule - Emit the machine code in scheduled order. | 
 | MachineBasicBlock *ScheduleDAGSDNodes:: | 
 | EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) { | 
 |   InstrEmitter Emitter(BB, InsertPos); | 
 |   DenseMap<SDValue, unsigned> VRBaseMap; | 
 |   DenseMap<SUnit*, unsigned> CopyVRBaseMap; | 
 |   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; | 
 |   SmallSet<unsigned, 8> Seen; | 
 |   bool HasDbg = DAG->hasDebugValues(); | 
 |  | 
 |   for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
 |     SUnit *SU = Sequence[i]; | 
 |     if (!SU) { | 
 |       // Null SUnit* is a noop. | 
 |       EmitNoop(); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // For pre-regalloc scheduling, create instructions corresponding to the | 
 |     // SDNode and any flagged SDNodes and append them to the block. | 
 |     if (!SU->getNode()) { | 
 |       // Emit a copy. | 
 |       EmitPhysRegCopy(SU, CopyVRBaseMap); | 
 |       continue; | 
 |     } | 
 |  | 
 |     SmallVector<SDNode *, 4> FlaggedNodes; | 
 |     for (SDNode *N = SU->getNode()->getFlaggedNode(); N; | 
 |          N = N->getFlaggedNode()) | 
 |       FlaggedNodes.push_back(N); | 
 |     while (!FlaggedNodes.empty()) { | 
 |       SDNode *N = FlaggedNodes.back(); | 
 |       Emitter.EmitNode(FlaggedNodes.back(), SU->OrigNode != SU, SU->isCloned, | 
 |                        VRBaseMap, EM); | 
 |       // Remember the the source order of the inserted instruction. | 
 |       if (HasDbg) | 
 |         ProcessSourceNode(N, DAG, Emitter, EM, VRBaseMap, Orders, Seen); | 
 |       FlaggedNodes.pop_back(); | 
 |     } | 
 |     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, | 
 |                      VRBaseMap, EM); | 
 |     // Remember the the source order of the inserted instruction. | 
 |     if (HasDbg) | 
 |       ProcessSourceNode(SU->getNode(), DAG, Emitter, EM, VRBaseMap, Orders, | 
 |                         Seen); | 
 |   } | 
 |  | 
 |   // Insert all the dbg_value which have not already been inserted in source | 
 |   // order sequence. | 
 |   if (HasDbg) { | 
 |     MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin(); | 
 |     while (BBBegin != BB->end() && BBBegin->isPHI()) | 
 |       ++BBBegin; | 
 |  | 
 |     // Sort the source order instructions and use the order to insert debug | 
 |     // values. | 
 |     std::sort(Orders.begin(), Orders.end(), OrderSorter()); | 
 |  | 
 |     SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); | 
 |     SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); | 
 |     // Now emit the rest according to source order. | 
 |     unsigned LastOrder = 0; | 
 |     MachineInstr *LastMI = 0; | 
 |     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { | 
 |       unsigned Order = Orders[i].first; | 
 |       MachineInstr *MI = Orders[i].second; | 
 |       // Insert all SDDbgValue's whose order(s) are before "Order". | 
 |       if (!MI) | 
 |         continue; | 
 |       MachineBasicBlock *MIBB = MI->getParent(); | 
 | #ifndef NDEBUG | 
 |       unsigned LastDIOrder = 0; | 
 | #endif | 
 |       for (; DI != DE && | 
 |              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { | 
 | #ifndef NDEBUG | 
 |         assert((*DI)->getOrder() >= LastDIOrder && | 
 |                "SDDbgValue nodes must be in source order!"); | 
 |         LastDIOrder = (*DI)->getOrder(); | 
 | #endif | 
 |         if ((*DI)->isInvalidated()) | 
 |           continue; | 
 |         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, MIBB, VRBaseMap, EM); | 
 |         if (!LastOrder) | 
 |           // Insert to start of the BB (after PHIs). | 
 |           BB->insert(BBBegin, DbgMI); | 
 |         else { | 
 |           MachineBasicBlock::iterator Pos = MI; | 
 |           MIBB->insert(llvm::next(Pos), DbgMI); | 
 |         } | 
 |       } | 
 |       LastOrder = Order; | 
 |       LastMI = MI; | 
 |     } | 
 |     // Add trailing DbgValue's before the terminator. FIXME: May want to add | 
 |     // some of them before one or more conditional branches? | 
 |     while (DI != DE) { | 
 |       MachineBasicBlock *InsertBB = Emitter.getBlock(); | 
 |       MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); | 
 |       if (!(*DI)->isInvalidated()) { | 
 |         MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, InsertBB, VRBaseMap, EM); | 
 |         InsertBB->insert(Pos, DbgMI); | 
 |       } | 
 |       ++DI; | 
 |     } | 
 |   } | 
 |  | 
 |   BB = Emitter.getBlock(); | 
 |   InsertPos = Emitter.getInsertPos(); | 
 |   return BB; | 
 | } |