| //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass eliminates machine instruction PHI nodes by inserting copy | 
 | // instructions, using an intelligent copy-folding technique based on | 
 | // dominator information.  This is technique is derived from: | 
 | //  | 
 | //    Budimlic, et al. Fast copy coalescing and live-range identification. | 
 | //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language | 
 | //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002). | 
 | //    PLDI '02. ACM, New York, NY, 25-32. | 
 | //    DOI= http://doi.acm.org/10.1145/512529.512534 | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "strongphielim" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/RegisterCoalescer.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Support/Debug.h" | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   struct StrongPHIElimination : public MachineFunctionPass { | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     StrongPHIElimination() : MachineFunctionPass(&ID) {} | 
 |  | 
 |     // Waiting stores, for each MBB, the set of copies that need to | 
 |     // be inserted into that MBB | 
 |     DenseMap<MachineBasicBlock*, | 
 |              std::multimap<unsigned, unsigned> > Waiting; | 
 |      | 
 |     // Stacks holds the renaming stack for each register | 
 |     std::map<unsigned, std::vector<unsigned> > Stacks; | 
 |      | 
 |     // Registers in UsedByAnother are PHI nodes that are themselves | 
 |     // used as operands to another PHI node | 
 |     std::set<unsigned> UsedByAnother; | 
 |      | 
 |     // RenameSets are the is a map from a PHI-defined register | 
 |     // to the input registers to be coalesced along with the  | 
 |     // predecessor block for those input registers. | 
 |     std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets; | 
 |      | 
 |     // PhiValueNumber holds the ID numbers of the VNs for each phi that we're | 
 |     // eliminating, indexed by the register defined by that phi. | 
 |     std::map<unsigned, unsigned> PhiValueNumber; | 
 |  | 
 |     // Store the DFS-in number of each block | 
 |     DenseMap<MachineBasicBlock*, unsigned> preorder; | 
 |      | 
 |     // Store the DFS-out number of each block | 
 |     DenseMap<MachineBasicBlock*, unsigned> maxpreorder; | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &Fn); | 
 |      | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequired<MachineDominatorTree>(); | 
 |       AU.addRequired<SlotIndexes>(); | 
 |       AU.addPreserved<SlotIndexes>(); | 
 |       AU.addRequired<LiveIntervals>(); | 
 |        | 
 |       // TODO: Actually make this true. | 
 |       AU.addPreserved<LiveIntervals>(); | 
 |       AU.addPreserved<RegisterCoalescer>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |      | 
 |     virtual void releaseMemory() { | 
 |       preorder.clear(); | 
 |       maxpreorder.clear(); | 
 |        | 
 |       Waiting.clear(); | 
 |       Stacks.clear(); | 
 |       UsedByAnother.clear(); | 
 |       RenameSets.clear(); | 
 |     } | 
 |  | 
 |   private: | 
 |      | 
 |     /// DomForestNode - Represents a node in the "dominator forest".  This is | 
 |     /// a forest in which the nodes represent registers and the edges | 
 |     /// represent a dominance relation in the block defining those registers. | 
 |     struct DomForestNode { | 
 |     private: | 
 |       // Store references to our children | 
 |       std::vector<DomForestNode*> children; | 
 |       // The register we represent | 
 |       unsigned reg; | 
 |        | 
 |       // Add another node as our child | 
 |       void addChild(DomForestNode* DFN) { children.push_back(DFN); } | 
 |        | 
 |     public: | 
 |       typedef std::vector<DomForestNode*>::iterator iterator; | 
 |        | 
 |       // Create a DomForestNode by providing the register it represents, and | 
 |       // the node to be its parent.  The virtual root node has register 0 | 
 |       // and a null parent. | 
 |       DomForestNode(unsigned r, DomForestNode* parent) : reg(r) { | 
 |         if (parent) | 
 |           parent->addChild(this); | 
 |       } | 
 |        | 
 |       ~DomForestNode() { | 
 |         for (iterator I = begin(), E = end(); I != E; ++I) | 
 |           delete *I; | 
 |       } | 
 |        | 
 |       /// getReg - Return the regiser that this node represents | 
 |       inline unsigned getReg() { return reg; } | 
 |        | 
 |       // Provide iterator access to our children | 
 |       inline DomForestNode::iterator begin() { return children.begin(); } | 
 |       inline DomForestNode::iterator end() { return children.end(); } | 
 |     }; | 
 |      | 
 |     void computeDFS(MachineFunction& MF); | 
 |     void processBlock(MachineBasicBlock* MBB); | 
 |      | 
 |     std::vector<DomForestNode*> computeDomForest( | 
 |                            std::map<unsigned, MachineBasicBlock*>& instrs, | 
 |                                                  MachineRegisterInfo& MRI); | 
 |     void processPHIUnion(MachineInstr* Inst, | 
 |                          std::map<unsigned, MachineBasicBlock*>& PHIUnion, | 
 |                          std::vector<StrongPHIElimination::DomForestNode*>& DF, | 
 |                          std::vector<std::pair<unsigned, unsigned> >& locals); | 
 |     void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed); | 
 |     void InsertCopies(MachineDomTreeNode* MBB, | 
 |                       SmallPtrSet<MachineBasicBlock*, 16>& v); | 
 |     bool mergeLiveIntervals(unsigned primary, unsigned secondary); | 
 |   }; | 
 | } | 
 |  | 
 | char StrongPHIElimination::ID = 0; | 
 | static RegisterPass<StrongPHIElimination> | 
 | X("strong-phi-node-elimination", | 
 |   "Eliminate PHI nodes for register allocation, intelligently"); | 
 |  | 
 | const PassInfo *const llvm::StrongPHIEliminationID = &X; | 
 |  | 
 | /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree | 
 | /// of the given MachineFunction.  These numbers are then used in other parts | 
 | /// of the PHI elimination process. | 
 | void StrongPHIElimination::computeDFS(MachineFunction& MF) { | 
 |   SmallPtrSet<MachineDomTreeNode*, 8> frontier; | 
 |   SmallPtrSet<MachineDomTreeNode*, 8> visited; | 
 |    | 
 |   unsigned time = 0; | 
 |    | 
 |   MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>(); | 
 |    | 
 |   MachineDomTreeNode* node = DT.getRootNode(); | 
 |    | 
 |   std::vector<MachineDomTreeNode*> worklist; | 
 |   worklist.push_back(node); | 
 |    | 
 |   while (!worklist.empty()) { | 
 |     MachineDomTreeNode* currNode = worklist.back(); | 
 |      | 
 |     if (!frontier.count(currNode)) { | 
 |       frontier.insert(currNode); | 
 |       ++time; | 
 |       preorder.insert(std::make_pair(currNode->getBlock(), time)); | 
 |     } | 
 |      | 
 |     bool inserted = false; | 
 |     for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end(); | 
 |          I != E; ++I) | 
 |       if (!frontier.count(*I) && !visited.count(*I)) { | 
 |         worklist.push_back(*I); | 
 |         inserted = true; | 
 |         break; | 
 |       } | 
 |      | 
 |     if (!inserted) { | 
 |       frontier.erase(currNode); | 
 |       visited.insert(currNode); | 
 |       maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); | 
 |        | 
 |       worklist.pop_back(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// PreorderSorter - a helper class that is used to sort registers | 
 | /// according to the preorder number of their defining blocks | 
 | class PreorderSorter { | 
 | private: | 
 |   DenseMap<MachineBasicBlock*, unsigned>& preorder; | 
 |   MachineRegisterInfo& MRI; | 
 |    | 
 | public: | 
 |   PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p, | 
 |                 MachineRegisterInfo& M) : preorder(p), MRI(M) { } | 
 |    | 
 |   bool operator()(unsigned A, unsigned B) { | 
 |     if (A == B) | 
 |       return false; | 
 |      | 
 |     MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent(); | 
 |     MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent(); | 
 |      | 
 |     if (preorder[ABlock] < preorder[BBlock]) | 
 |       return true; | 
 |     else if (preorder[ABlock] > preorder[BBlock]) | 
 |       return false; | 
 |      | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /// computeDomForest - compute the subforest of the DomTree corresponding | 
 | /// to the defining blocks of the registers in question | 
 | std::vector<StrongPHIElimination::DomForestNode*> | 
 | StrongPHIElimination::computeDomForest( | 
 |                   std::map<unsigned, MachineBasicBlock*>& regs,  | 
 |                                        MachineRegisterInfo& MRI) { | 
 |   // Begin by creating a virtual root node, since the actual results | 
 |   // may well be a forest.  Assume this node has maximum DFS-out number. | 
 |   DomForestNode* VirtualRoot = new DomForestNode(0, 0); | 
 |   maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); | 
 |    | 
 |   // Populate a worklist with the registers | 
 |   std::vector<unsigned> worklist; | 
 |   worklist.reserve(regs.size()); | 
 |   for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(), | 
 |        E = regs.end(); I != E; ++I) | 
 |     worklist.push_back(I->first); | 
 |    | 
 |   // Sort the registers by the DFS-in number of their defining block | 
 |   PreorderSorter PS(preorder, MRI); | 
 |   std::sort(worklist.begin(), worklist.end(), PS); | 
 |    | 
 |   // Create a "current parent" stack, and put the virtual root on top of it | 
 |   DomForestNode* CurrentParent = VirtualRoot; | 
 |   std::vector<DomForestNode*> stack; | 
 |   stack.push_back(VirtualRoot); | 
 |    | 
 |   // Iterate over all the registers in the previously computed order | 
 |   for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end(); | 
 |        I != E; ++I) { | 
 |     unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()]; | 
 |     MachineBasicBlock* parentBlock = CurrentParent->getReg() ? | 
 |                  MRI.getVRegDef(CurrentParent->getReg())->getParent() : | 
 |                  0; | 
 |      | 
 |     // If the DFS-in number of the register is greater than the DFS-out number | 
 |     // of the current parent, repeatedly pop the parent stack until it isn't. | 
 |     while (pre > maxpreorder[parentBlock]) { | 
 |       stack.pop_back(); | 
 |       CurrentParent = stack.back(); | 
 |        | 
 |       parentBlock = CurrentParent->getReg() ? | 
 |                    MRI.getVRegDef(CurrentParent->getReg())->getParent() : | 
 |                    0; | 
 |     } | 
 |      | 
 |     // Now that we've found the appropriate parent, create a DomForestNode for | 
 |     // this register and attach it to the forest | 
 |     DomForestNode* child = new DomForestNode(*I, CurrentParent); | 
 |      | 
 |     // Push this new node on the "current parent" stack | 
 |     stack.push_back(child); | 
 |     CurrentParent = child; | 
 |   } | 
 |    | 
 |   // Return a vector containing the children of the virtual root node | 
 |   std::vector<DomForestNode*> ret; | 
 |   ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); | 
 |   return ret; | 
 | } | 
 |  | 
 | /// isLiveIn - helper method that determines, from a regno, if a register | 
 | /// is live into a block | 
 | static bool isLiveIn(unsigned r, MachineBasicBlock* MBB, | 
 |                      LiveIntervals& LI) { | 
 |   LiveInterval& I = LI.getOrCreateInterval(r); | 
 |   SlotIndex idx = LI.getMBBStartIdx(MBB); | 
 |   return I.liveAt(idx); | 
 | } | 
 |  | 
 | /// isLiveOut - help method that determines, from a regno, if a register is | 
 | /// live out of a block. | 
 | static bool isLiveOut(unsigned r, MachineBasicBlock* MBB, | 
 |                       LiveIntervals& LI) { | 
 |   for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(), | 
 |        E = MBB->succ_end(); PI != E; ++PI) | 
 |     if (isLiveIn(r, *PI, LI)) | 
 |       return true; | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// interferes - checks for local interferences by scanning a block.  The only | 
 | /// trick parameter is 'mode' which tells it the relationship of the two | 
 | /// registers. 0 - defined in the same block, 1 - first properly dominates | 
 | /// second, 2 - second properly dominates first  | 
 | static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan, | 
 |                        LiveIntervals& LV, unsigned mode) { | 
 |   MachineInstr* def = 0; | 
 |   MachineInstr* kill = 0; | 
 |    | 
 |   // The code is still in SSA form at this point, so there is only one | 
 |   // definition per VReg.  Thus we can safely use MRI->getVRegDef(). | 
 |   const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo(); | 
 |    | 
 |   bool interference = false; | 
 |    | 
 |   // Wallk the block, checking for interferences | 
 |   for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end(); | 
 |        MBI != MBE; ++MBI) { | 
 |     MachineInstr* curr = MBI; | 
 |      | 
 |     // Same defining block... | 
 |     if (mode == 0) { | 
 |       if (curr == MRI->getVRegDef(a)) { | 
 |         // If we find our first definition, save it | 
 |         if (!def) { | 
 |           def = curr; | 
 |         // If there's already an unkilled definition, then  | 
 |         // this is an interference | 
 |         } else if (!kill) { | 
 |           interference = true; | 
 |           break; | 
 |         // If there's a definition followed by a KillInst, then | 
 |         // they can't interfere | 
 |         } else { | 
 |           interference = false; | 
 |           break; | 
 |         } | 
 |       // Symmetric with the above | 
 |       } else if (curr == MRI->getVRegDef(b)) { | 
 |         if (!def) { | 
 |           def = curr; | 
 |         } else if (!kill) { | 
 |           interference = true; | 
 |           break; | 
 |         } else { | 
 |           interference = false; | 
 |           break; | 
 |         } | 
 |       // Store KillInsts if they match up with the definition | 
 |       } else if (curr->killsRegister(a)) { | 
 |         if (def == MRI->getVRegDef(a)) { | 
 |           kill = curr; | 
 |         } else if (curr->killsRegister(b)) { | 
 |           if (def == MRI->getVRegDef(b)) { | 
 |             kill = curr; | 
 |           } | 
 |         } | 
 |       } | 
 |     // First properly dominates second... | 
 |     } else if (mode == 1) { | 
 |       if (curr == MRI->getVRegDef(b)) { | 
 |         // Definition of second without kill of first is an interference | 
 |         if (!kill) { | 
 |           interference = true; | 
 |           break; | 
 |         // Definition after a kill is a non-interference | 
 |         } else { | 
 |           interference = false; | 
 |           break; | 
 |         } | 
 |       // Save KillInsts of First | 
 |       } else if (curr->killsRegister(a)) { | 
 |         kill = curr; | 
 |       } | 
 |     // Symmetric with the above | 
 |     } else if (mode == 2) { | 
 |       if (curr == MRI->getVRegDef(a)) { | 
 |         if (!kill) { | 
 |           interference = true; | 
 |           break; | 
 |         } else { | 
 |           interference = false; | 
 |           break; | 
 |         } | 
 |       } else if (curr->killsRegister(b)) { | 
 |         kill = curr; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   return interference; | 
 | } | 
 |  | 
 | /// processBlock - Determine how to break up PHIs in the current block.  Each | 
 | /// PHI is broken up by some combination of renaming its operands and inserting | 
 | /// copies.  This method is responsible for determining which operands receive | 
 | /// which treatment. | 
 | void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) { | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |   MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo(); | 
 |    | 
 |   // Holds names that have been added to a set in any PHI within this block | 
 |   // before the current one. | 
 |   std::set<unsigned> ProcessedNames; | 
 |    | 
 |   // Iterate over all the PHI nodes in this block | 
 |   MachineBasicBlock::iterator P = MBB->begin(); | 
 |   while (P != MBB->end() && P->isPHI()) { | 
 |     unsigned DestReg = P->getOperand(0).getReg(); | 
 |      | 
 |     // Don't both doing PHI elimination for dead PHI's. | 
 |     if (P->registerDefIsDead(DestReg)) { | 
 |       ++P; | 
 |       continue; | 
 |     } | 
 |  | 
 |     LiveInterval& PI = LI.getOrCreateInterval(DestReg); | 
 |     SlotIndex pIdx = LI.getInstructionIndex(P).getDefIndex(); | 
 |     VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno; | 
 |     PhiValueNumber.insert(std::make_pair(DestReg, PVN->id)); | 
 |  | 
 |     // PHIUnion is the set of incoming registers to the PHI node that | 
 |     // are going to be renames rather than having copies inserted.  This set | 
 |     // is refinded over the course of this function.  UnionedBlocks is the set | 
 |     // of corresponding MBBs. | 
 |     std::map<unsigned, MachineBasicBlock*> PHIUnion; | 
 |     SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks; | 
 |    | 
 |     // Iterate over the operands of the PHI node | 
 |     for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { | 
 |       unsigned SrcReg = P->getOperand(i-1).getReg(); | 
 |        | 
 |       // Don't need to try to coalesce a register with itself. | 
 |       if (SrcReg == DestReg) { | 
 |         ProcessedNames.insert(SrcReg); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // We don't need to insert copies for implicit_defs. | 
 |       MachineInstr* DefMI = MRI.getVRegDef(SrcReg); | 
 |       if (DefMI->isImplicitDef()) | 
 |         ProcessedNames.insert(SrcReg); | 
 |      | 
 |       // Check for trivial interferences via liveness information, allowing us | 
 |       // to avoid extra work later.  Any registers that interfere cannot both | 
 |       // be in the renaming set, so choose one and add copies for it instead. | 
 |       // The conditions are: | 
 |       //   1) if the operand is live into the PHI node's block OR | 
 |       //   2) if the PHI node is live out of the operand's defining block OR | 
 |       //   3) if the operand is itself a PHI node and the original PHI is | 
 |       //      live into the operand's defining block OR | 
 |       //   4) if the operand is already being renamed for another PHI node | 
 |       //      in this block OR | 
 |       //   5) if any two operands are defined in the same block, insert copies | 
 |       //      for one of them | 
 |       if (isLiveIn(SrcReg, P->getParent(), LI) || | 
 |           isLiveOut(P->getOperand(0).getReg(), | 
 |                     MRI.getVRegDef(SrcReg)->getParent(), LI) || | 
 |           ( MRI.getVRegDef(SrcReg)->isPHI() && | 
 |             isLiveIn(P->getOperand(0).getReg(), | 
 |                      MRI.getVRegDef(SrcReg)->getParent(), LI) ) || | 
 |           ProcessedNames.count(SrcReg) || | 
 |           UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) { | 
 |          | 
 |         // Add a copy for the selected register | 
 |         MachineBasicBlock* From = P->getOperand(i).getMBB(); | 
 |         Waiting[From].insert(std::make_pair(SrcReg, DestReg)); | 
 |         UsedByAnother.insert(SrcReg); | 
 |       } else { | 
 |         // Otherwise, add it to the renaming set | 
 |         PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB())); | 
 |         UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent()); | 
 |       } | 
 |     } | 
 |      | 
 |     // Compute the dominator forest for the renaming set.  This is a forest | 
 |     // where the nodes are the registers and the edges represent dominance  | 
 |     // relations between the defining blocks of the registers | 
 |     std::vector<StrongPHIElimination::DomForestNode*> DF =  | 
 |                                                 computeDomForest(PHIUnion, MRI); | 
 |      | 
 |     // Walk DomForest to resolve interferences at an inter-block level.  This | 
 |     // will remove registers from the renaming set (and insert copies for them) | 
 |     // if interferences are found. | 
 |     std::vector<std::pair<unsigned, unsigned> > localInterferences; | 
 |     processPHIUnion(P, PHIUnion, DF, localInterferences); | 
 |      | 
 |     // If one of the inputs is defined in the same block as the current PHI | 
 |     // then we need to check for a local interference between that input and | 
 |     // the PHI. | 
 |     for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(), | 
 |          E = PHIUnion.end(); I != E; ++I) | 
 |       if (MRI.getVRegDef(I->first)->getParent() == P->getParent()) | 
 |         localInterferences.push_back(std::make_pair(I->first, | 
 |                                                     P->getOperand(0).getReg())); | 
 |      | 
 |     // The dominator forest walk may have returned some register pairs whose | 
 |     // interference cannot be determined from dominator analysis.  We now  | 
 |     // examine these pairs for local interferences. | 
 |     for (std::vector<std::pair<unsigned, unsigned> >::iterator I = | 
 |         localInterferences.begin(), E = localInterferences.end(); I != E; ++I) { | 
 |       std::pair<unsigned, unsigned> p = *I; | 
 |        | 
 |       MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
 |        | 
 |       // Determine the block we need to scan and the relationship between | 
 |       // the two registers | 
 |       MachineBasicBlock* scan = 0; | 
 |       unsigned mode = 0; | 
 |       if (MRI.getVRegDef(p.first)->getParent() == | 
 |           MRI.getVRegDef(p.second)->getParent()) { | 
 |         scan = MRI.getVRegDef(p.first)->getParent(); | 
 |         mode = 0; // Same block | 
 |       } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(), | 
 |                                MRI.getVRegDef(p.second)->getParent())) { | 
 |         scan = MRI.getVRegDef(p.second)->getParent(); | 
 |         mode = 1; // First dominates second | 
 |       } else { | 
 |         scan = MRI.getVRegDef(p.first)->getParent(); | 
 |         mode = 2; // Second dominates first | 
 |       } | 
 |        | 
 |       // If there's an interference, we need to insert  copies | 
 |       if (interferes(p.first, p.second, scan, LI, mode)) { | 
 |         // Insert copies for First | 
 |         for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { | 
 |           if (P->getOperand(i-1).getReg() == p.first) { | 
 |             unsigned SrcReg = p.first; | 
 |             MachineBasicBlock* From = P->getOperand(i).getMBB(); | 
 |              | 
 |             Waiting[From].insert(std::make_pair(SrcReg, | 
 |                                                 P->getOperand(0).getReg())); | 
 |             UsedByAnother.insert(SrcReg); | 
 |              | 
 |             PHIUnion.erase(SrcReg); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Add the renaming set for this PHI node to our overall renaming information | 
 |     for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(), | 
 |          QE = PHIUnion.end(); QI != QE; ++QI) { | 
 |       DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> " | 
 |                    << P->getOperand(0).getReg() << "\n"); | 
 |     } | 
 |      | 
 |     RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion)); | 
 |      | 
 |     // Remember which registers are already renamed, so that we don't try to  | 
 |     // rename them for another PHI node in this block | 
 |     for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(), | 
 |          E = PHIUnion.end(); I != E; ++I) | 
 |       ProcessedNames.insert(I->first); | 
 |      | 
 |     ++P; | 
 |   } | 
 | } | 
 |  | 
 | /// processPHIUnion - Take a set of candidate registers to be coalesced when | 
 | /// decomposing the PHI instruction.  Use the DominanceForest to remove the ones | 
 | /// that are known to interfere, and flag others that need to be checked for | 
 | /// local interferences. | 
 | void StrongPHIElimination::processPHIUnion(MachineInstr* Inst, | 
 |                         std::map<unsigned, MachineBasicBlock*>& PHIUnion, | 
 |                         std::vector<StrongPHIElimination::DomForestNode*>& DF, | 
 |                         std::vector<std::pair<unsigned, unsigned> >& locals) { | 
 |    | 
 |   std::vector<DomForestNode*> worklist(DF.begin(), DF.end()); | 
 |   SmallPtrSet<DomForestNode*, 4> visited; | 
 |    | 
 |   // Code is still in SSA form, so we can use MRI::getVRegDef() | 
 |   MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo(); | 
 |    | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |   unsigned DestReg = Inst->getOperand(0).getReg(); | 
 |    | 
 |   // DF walk on the DomForest | 
 |   while (!worklist.empty()) { | 
 |     DomForestNode* DFNode = worklist.back(); | 
 |      | 
 |     visited.insert(DFNode); | 
 |      | 
 |     bool inserted = false; | 
 |     for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end(); | 
 |          CI != CE; ++CI) { | 
 |       DomForestNode* child = *CI;    | 
 |        | 
 |       // If the current node is live-out of the defining block of one of its | 
 |       // children, insert a copy for it.  NOTE: The paper actually calls for | 
 |       // a more elaborate heuristic for determining whether to insert copies | 
 |       // for the child or the parent.  In the interest of simplicity, we're | 
 |       // just always choosing the parent. | 
 |       if (isLiveOut(DFNode->getReg(), | 
 |           MRI.getVRegDef(child->getReg())->getParent(), LI)) { | 
 |         // Insert copies for parent | 
 |         for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) { | 
 |           if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) { | 
 |             unsigned SrcReg = DFNode->getReg(); | 
 |             MachineBasicBlock* From = Inst->getOperand(i).getMBB(); | 
 |              | 
 |             Waiting[From].insert(std::make_pair(SrcReg, DestReg)); | 
 |             UsedByAnother.insert(SrcReg); | 
 |              | 
 |             PHIUnion.erase(SrcReg); | 
 |           } | 
 |         } | 
 |        | 
 |       // If a node is live-in to the defining block of one of its children, but | 
 |       // not live-out, then we need to scan that block for local interferences. | 
 |       } else if (isLiveIn(DFNode->getReg(), | 
 |                           MRI.getVRegDef(child->getReg())->getParent(), LI) || | 
 |                  MRI.getVRegDef(DFNode->getReg())->getParent() == | 
 |                                  MRI.getVRegDef(child->getReg())->getParent()) { | 
 |         // Add (p, c) to possible local interferences | 
 |         locals.push_back(std::make_pair(DFNode->getReg(), child->getReg())); | 
 |       } | 
 |        | 
 |       if (!visited.count(child)) { | 
 |         worklist.push_back(child); | 
 |         inserted = true; | 
 |       } | 
 |     } | 
 |      | 
 |     if (!inserted) worklist.pop_back(); | 
 |   } | 
 | } | 
 |  | 
 | /// ScheduleCopies - Insert copies into predecessor blocks, scheduling | 
 | /// them properly so as to avoid the 'lost copy' and the 'virtual swap' | 
 | /// problems. | 
 | /// | 
 | /// Based on "Practical Improvements to the Construction and Destruction | 
 | /// of Static Single Assignment Form" by Briggs, et al. | 
 | void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB, | 
 |                                           std::set<unsigned>& pushed) { | 
 |   // FIXME: This function needs to update LiveIntervals | 
 |   std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB]; | 
 |    | 
 |   std::multimap<unsigned, unsigned> worklist; | 
 |   std::map<unsigned, unsigned> map; | 
 |    | 
 |   // Setup worklist of initial copies | 
 |   for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(), | 
 |        E = copy_set.end(); I != E; ) { | 
 |     map.insert(std::make_pair(I->first, I->first)); | 
 |     map.insert(std::make_pair(I->second, I->second)); | 
 |           | 
 |     if (!UsedByAnother.count(I->second)) { | 
 |       worklist.insert(*I); | 
 |        | 
 |       // Avoid iterator invalidation | 
 |       std::multimap<unsigned, unsigned>::iterator OI = I; | 
 |       ++I; | 
 |       copy_set.erase(OI); | 
 |     } else { | 
 |       ++I; | 
 |     } | 
 |   } | 
 |    | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |   MachineFunction* MF = MBB->getParent(); | 
 |   MachineRegisterInfo& MRI = MF->getRegInfo(); | 
 |   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
 |    | 
 |   SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests; | 
 |    | 
 |   // Iterate over the worklist, inserting copies | 
 |   while (!worklist.empty() || !copy_set.empty()) { | 
 |     while (!worklist.empty()) { | 
 |       std::multimap<unsigned, unsigned>::iterator WI = worklist.begin(); | 
 |       std::pair<unsigned, unsigned> curr = *WI; | 
 |       worklist.erase(WI); | 
 |        | 
 |       const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first); | 
 |        | 
 |       if (isLiveOut(curr.second, MBB, LI)) { | 
 |         // Create a temporary | 
 |         unsigned t = MF->getRegInfo().createVirtualRegister(RC); | 
 |          | 
 |         // Insert copy from curr.second to a temporary at | 
 |         // the Phi defining curr.second | 
 |         MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second); | 
 |         TII->copyRegToReg(*PI->getParent(), PI, t, | 
 |                           curr.second, RC, RC); | 
 |          | 
 |         DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t | 
 |                      << "\n"); | 
 |          | 
 |         // Push temporary on Stacks | 
 |         Stacks[curr.second].push_back(t); | 
 |          | 
 |         // Insert curr.second in pushed | 
 |         pushed.insert(curr.second); | 
 |          | 
 |         // Create a live interval for this temporary | 
 |         InsertedPHIDests.push_back(std::make_pair(t, --PI)); | 
 |       } | 
 |        | 
 |       // Insert copy from map[curr.first] to curr.second | 
 |       TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second, | 
 |                         map[curr.first], RC, RC); | 
 |       map[curr.first] = curr.second; | 
 |       DEBUG(dbgs() << "Inserted copy from " << curr.first << " to " | 
 |                    << curr.second << "\n"); | 
 |        | 
 |       // Push this copy onto InsertedPHICopies so we can | 
 |       // update LiveIntervals with it. | 
 |       MachineBasicBlock::iterator MI = MBB->getFirstTerminator(); | 
 |       InsertedPHIDests.push_back(std::make_pair(curr.second, --MI)); | 
 |        | 
 |       // If curr.first is a destination in copy_set... | 
 |       for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(), | 
 |            E = copy_set.end(); I != E; ) | 
 |         if (curr.first == I->second) { | 
 |           std::pair<unsigned, unsigned> temp = *I; | 
 |           worklist.insert(temp); | 
 |            | 
 |           // Avoid iterator invalidation | 
 |           std::multimap<unsigned, unsigned>::iterator OI = I; | 
 |           ++I; | 
 |           copy_set.erase(OI); | 
 |            | 
 |           break; | 
 |         } else { | 
 |           ++I; | 
 |         } | 
 |     } | 
 |      | 
 |     if (!copy_set.empty()) { | 
 |       std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin(); | 
 |       std::pair<unsigned, unsigned> curr = *CI; | 
 |       worklist.insert(curr); | 
 |       copy_set.erase(CI); | 
 |        | 
 |       LiveInterval& I = LI.getInterval(curr.second); | 
 |       MachineBasicBlock::iterator term = MBB->getFirstTerminator(); | 
 |       SlotIndex endIdx = SlotIndex(); | 
 |       if (term != MBB->end()) | 
 |         endIdx = LI.getInstructionIndex(term); | 
 |       else | 
 |         endIdx = LI.getMBBEndIdx(MBB); | 
 |        | 
 |       if (I.liveAt(endIdx)) { | 
 |         const TargetRegisterClass *RC = | 
 |                                        MF->getRegInfo().getRegClass(curr.first); | 
 |          | 
 |         // Insert a copy from dest to a new temporary t at the end of b | 
 |         unsigned t = MF->getRegInfo().createVirtualRegister(RC); | 
 |         TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t, | 
 |                           curr.second, RC, RC); | 
 |         map[curr.second] = t; | 
 |          | 
 |         MachineBasicBlock::iterator TI = MBB->getFirstTerminator(); | 
 |         InsertedPHIDests.push_back(std::make_pair(t, --TI)); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Renumber the instructions so that we can perform the index computations | 
 |   // needed to create new live intervals. | 
 |   LI.renumber(); | 
 |    | 
 |   // For copies that we inserted at the ends of predecessors, we construct | 
 |   // live intervals.  This is pretty easy, since we know that the destination | 
 |   // register cannot have be in live at that point previously.  We just have | 
 |   // to make sure that, for registers that serve as inputs to more than one | 
 |   // PHI, we don't create multiple overlapping live intervals. | 
 |   std::set<unsigned> RegHandled; | 
 |   for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I = | 
 |        InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) { | 
 |     if (RegHandled.insert(I->first).second) { | 
 |       LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
 |       SlotIndex instrIdx = LI.getInstructionIndex(I->second); | 
 |       if (Int.liveAt(instrIdx.getDefIndex())) | 
 |         Int.removeRange(instrIdx.getDefIndex(), | 
 |                         LI.getMBBEndIdx(I->second->getParent()).getNextSlot(), | 
 |                         true); | 
 |        | 
 |       LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second); | 
 |       R.valno->setCopy(I->second); | 
 |       R.valno->def = LI.getInstructionIndex(I->second).getDefIndex(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// InsertCopies - insert copies into MBB and all of its successors | 
 | void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN, | 
 |                                  SmallPtrSet<MachineBasicBlock*, 16>& visited) { | 
 |   MachineBasicBlock* MBB = MDTN->getBlock(); | 
 |   visited.insert(MBB); | 
 |    | 
 |   std::set<unsigned> pushed; | 
 |    | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |   // Rewrite register uses from Stacks | 
 |   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); | 
 |       I != E; ++I) { | 
 |     if (I->isPHI()) | 
 |       continue; | 
 |      | 
 |     for (unsigned i = 0; i < I->getNumOperands(); ++i) | 
 |       if (I->getOperand(i).isReg() && | 
 |           Stacks[I->getOperand(i).getReg()].size()) { | 
 |         // Remove the live range for the old vreg. | 
 |         LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg()); | 
 |         LiveInterval::iterator OldLR = | 
 |           OldInt.FindLiveRangeContaining(LI.getInstructionIndex(I).getUseIndex()); | 
 |         if (OldLR != OldInt.end()) | 
 |           OldInt.removeRange(*OldLR, true); | 
 |          | 
 |         // Change the register | 
 |         I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back()); | 
 |          | 
 |         // Add a live range for the new vreg | 
 |         LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg()); | 
 |         VNInfo* FirstVN = *Int.vni_begin(); | 
 |         FirstVN->setHasPHIKill(false); | 
 |         if (I->getOperand(i).isKill()) | 
 |           FirstVN->addKill(LI.getInstructionIndex(I).getUseIndex()); | 
 |          | 
 |         LiveRange LR (LI.getMBBStartIdx(I->getParent()), | 
 |                       LI.getInstructionIndex(I).getUseIndex().getNextSlot(), | 
 |                       FirstVN); | 
 |          | 
 |         Int.addRange(LR); | 
 |       } | 
 |   }     | 
 |    | 
 |   // Schedule the copies for this block | 
 |   ScheduleCopies(MBB, pushed); | 
 |    | 
 |   // Recur down the dominator tree. | 
 |   for (MachineDomTreeNode::iterator I = MDTN->begin(), | 
 |        E = MDTN->end(); I != E; ++I) | 
 |     if (!visited.count((*I)->getBlock())) | 
 |       InsertCopies(*I, visited); | 
 |    | 
 |   // As we exit this block, pop the names we pushed while processing it | 
 |   for (std::set<unsigned>::iterator I = pushed.begin(),  | 
 |        E = pushed.end(); I != E; ++I) | 
 |     Stacks[*I].pop_back(); | 
 | } | 
 |  | 
 | bool StrongPHIElimination::mergeLiveIntervals(unsigned primary, | 
 |                                               unsigned secondary) { | 
 |    | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |   LiveInterval& LHS = LI.getOrCreateInterval(primary); | 
 |   LiveInterval& RHS = LI.getOrCreateInterval(secondary); | 
 |    | 
 |   LI.renumber(); | 
 |    | 
 |   DenseMap<VNInfo*, VNInfo*> VNMap; | 
 |   for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) { | 
 |     LiveRange R = *I; | 
 |   | 
 |     SlotIndex Start = R.start; | 
 |     SlotIndex End = R.end; | 
 |     if (LHS.getLiveRangeContaining(Start)) | 
 |       return false; | 
 |      | 
 |     if (LHS.getLiveRangeContaining(End)) | 
 |       return false; | 
 |      | 
 |     LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R); | 
 |     if (RI != LHS.end() && RI->start < End) | 
 |       return false; | 
 |   } | 
 |    | 
 |   for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) { | 
 |     LiveRange R = *I; | 
 |     VNInfo* OldVN = R.valno; | 
 |     VNInfo*& NewVN = VNMap[OldVN]; | 
 |     if (!NewVN) { | 
 |       NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator()); | 
 |     } | 
 |      | 
 |     LiveRange LR (R.start, R.end, NewVN); | 
 |     LHS.addRange(LR); | 
 |   } | 
 |    | 
 |   LI.removeInterval(RHS.reg); | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { | 
 |   LiveIntervals& LI = getAnalysis<LiveIntervals>(); | 
 |    | 
 |   // Compute DFS numbers of each block | 
 |   computeDFS(Fn); | 
 |    | 
 |   // Determine which phi node operands need copies | 
 |   for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
 |     if (!I->empty() && I->begin()->isPHI()) | 
 |       processBlock(I); | 
 |    | 
 |   // Break interferences where two different phis want to coalesce | 
 |   // in the same register. | 
 |   std::set<unsigned> seen; | 
 |   typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > | 
 |           RenameSetType; | 
 |   for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end(); | 
 |        I != E; ++I) { | 
 |     for (std::map<unsigned, MachineBasicBlock*>::iterator | 
 |          OI = I->second.begin(), OE = I->second.end(); OI != OE; ) { | 
 |       if (!seen.count(OI->first)) { | 
 |         seen.insert(OI->first); | 
 |         ++OI; | 
 |       } else { | 
 |         Waiting[OI->second].insert(std::make_pair(OI->first, I->first)); | 
 |         unsigned reg = OI->first; | 
 |         ++OI; | 
 |         I->second.erase(reg); | 
 |         DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first | 
 |                      << "\n"); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Insert copies | 
 |   // FIXME: This process should probably preserve LiveIntervals | 
 |   SmallPtrSet<MachineBasicBlock*, 16> visited; | 
 |   MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); | 
 |   InsertCopies(MDT.getRootNode(), visited); | 
 |    | 
 |   // Perform renaming | 
 |   for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end(); | 
 |        I != E; ++I) | 
 |     while (I->second.size()) { | 
 |       std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin(); | 
 |        | 
 |       DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n"); | 
 |        | 
 |       if (SI->first != I->first) { | 
 |         if (mergeLiveIntervals(I->first, SI->first)) { | 
 |           Fn.getRegInfo().replaceRegWith(SI->first, I->first); | 
 |        | 
 |           if (RenameSets.count(SI->first)) { | 
 |             I->second.insert(RenameSets[SI->first].begin(), | 
 |                              RenameSets[SI->first].end()); | 
 |             RenameSets.erase(SI->first); | 
 |           } | 
 |         } else { | 
 |           // Insert a last-minute copy if a conflict was detected. | 
 |           const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo(); | 
 |           const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first); | 
 |           TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(), | 
 |                             I->first, SI->first, RC, RC); | 
 |            | 
 |           LI.renumber(); | 
 |            | 
 |           LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
 |           SlotIndex instrIdx = | 
 |                      LI.getInstructionIndex(--SI->second->getFirstTerminator()); | 
 |           if (Int.liveAt(instrIdx.getDefIndex())) | 
 |             Int.removeRange(instrIdx.getDefIndex(), | 
 |                             LI.getMBBEndIdx(SI->second).getNextSlot(), true); | 
 |  | 
 |           LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, | 
 |                                             --SI->second->getFirstTerminator()); | 
 |           R.valno->setCopy(--SI->second->getFirstTerminator()); | 
 |           R.valno->def = instrIdx.getDefIndex(); | 
 |            | 
 |           DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> " | 
 |                        << I->first << "\n"); | 
 |         } | 
 |       } | 
 |        | 
 |       LiveInterval& Int = LI.getOrCreateInterval(I->first); | 
 |       const LiveRange* LR = | 
 |                        Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second)); | 
 |       LR->valno->setHasPHIKill(true); | 
 |        | 
 |       I->second.erase(SI->first); | 
 |     } | 
 |    | 
 |   // Remove PHIs | 
 |   std::vector<MachineInstr*> phis; | 
 |   for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { | 
 |     for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end(); | 
 |          BI != BE; ++BI) | 
 |       if (BI->isPHI()) | 
 |         phis.push_back(BI); | 
 |   } | 
 |    | 
 |   for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end(); | 
 |        I != E; ) { | 
 |     MachineInstr* PInstr = *(I++); | 
 |      | 
 |     // If this is a dead PHI node, then remove it from LiveIntervals. | 
 |     unsigned DestReg = PInstr->getOperand(0).getReg(); | 
 |     LiveInterval& PI = LI.getInterval(DestReg); | 
 |     if (PInstr->registerDefIsDead(DestReg)) { | 
 |       if (PI.containsOneValue()) { | 
 |         LI.removeInterval(DestReg); | 
 |       } else { | 
 |         SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex(); | 
 |         PI.removeRange(*PI.getLiveRangeContaining(idx), true); | 
 |       } | 
 |     } else { | 
 |       // Trim live intervals of input registers.  They are no longer live into | 
 |       // this block if they died after the PHI.  If they lived after it, don't | 
 |       // trim them because they might have other legitimate uses. | 
 |       for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) { | 
 |         unsigned reg = PInstr->getOperand(i).getReg(); | 
 |          | 
 |         MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB(); | 
 |         LiveInterval& InputI = LI.getInterval(reg); | 
 |         if (MBB != PInstr->getParent() && | 
 |             InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) && | 
 |             InputI.expiredAt(LI.getInstructionIndex(PInstr).getNextIndex())) | 
 |           InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()), | 
 |                              LI.getInstructionIndex(PInstr), | 
 |                              true); | 
 |       } | 
 |        | 
 |       // If the PHI is not dead, then the valno defined by the PHI | 
 |       // now has an unknown def. | 
 |       SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex(); | 
 |       const LiveRange* PLR = PI.getLiveRangeContaining(idx); | 
 |       PLR->valno->setIsPHIDef(true); | 
 |       LiveRange R (LI.getMBBStartIdx(PInstr->getParent()), | 
 |                    PLR->start, PLR->valno); | 
 |       PI.addRange(R); | 
 |     } | 
 |      | 
 |     LI.RemoveMachineInstrFromMaps(PInstr); | 
 |     PInstr->eraseFromParent(); | 
 |   } | 
 |    | 
 |   LI.renumber(); | 
 |    | 
 |   return true; | 
 | } |