| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the pass that transforms the X86 machine instructions into |
| // relocatable machine code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86TargetMachine.h" |
| #include "X86Relocations.h" |
| #include "X86.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Function.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> |
| NumEmitted("x86-emitter", "Number of machine instructions emitted"); |
| } |
| |
| namespace { |
| class Emitter : public MachineFunctionPass { |
| const X86InstrInfo *II; |
| MachineCodeEmitter &MCE; |
| std::map<const MachineBasicBlock*, unsigned> BasicBlockAddrs; |
| std::vector<std::pair<const MachineBasicBlock *, unsigned> > BBRefs; |
| public: |
| explicit Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {} |
| Emitter(MachineCodeEmitter &mce, const X86InstrInfo& ii) |
| : II(&ii), MCE(mce) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "X86 Machine Code Emitter"; |
| } |
| |
| void emitInstruction(const MachineInstr &MI); |
| |
| private: |
| void emitBasicBlock(const MachineBasicBlock &MBB); |
| |
| void emitPCRelativeBlockAddress(const MachineBasicBlock *BB); |
| void emitPCRelativeValue(unsigned Address); |
| void emitGlobalAddressForCall(GlobalValue *GV); |
| void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0); |
| void emitExternalSymbolAddress(const char *ES, bool isPCRelative); |
| |
| void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); |
| void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); |
| void emitConstant(unsigned Val, unsigned Size); |
| |
| void emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField); |
| |
| }; |
| } |
| |
| /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get |
| /// machine code emitted. This uses a MachineCodeEmitter object to handle |
| /// actually outputting the machine code and resolving things like the address |
| /// of functions. This method should returns true if machine code emission is |
| /// not supported. |
| /// |
| bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, |
| MachineCodeEmitter &MCE) { |
| PM.add(new Emitter(MCE)); |
| // Delete machine code for this function |
| PM.add(createMachineCodeDeleter()); |
| return false; |
| } |
| |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) { |
| II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo(); |
| |
| MCE.startFunction(MF); |
| MCE.emitConstantPool(MF.getConstantPool()); |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| emitBasicBlock(*I); |
| MCE.finishFunction(MF); |
| |
| // Resolve all forward branches now... |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| unsigned Location = BasicBlockAddrs[BBRefs[i].first]; |
| unsigned Ref = BBRefs[i].second; |
| MCE.emitWordAt(Location-Ref-4, (unsigned*)(intptr_t)Ref); |
| } |
| BBRefs.clear(); |
| BasicBlockAddrs.clear(); |
| return false; |
| } |
| |
| void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) { |
| if (uint64_t Addr = MCE.getCurrentPCValue()) |
| BasicBlockAddrs[&MBB] = Addr; |
| |
| for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) |
| emitInstruction(*I); |
| } |
| |
| /// emitPCRelativeValue - Emit a 32-bit PC relative address. |
| /// |
| void Emitter::emitPCRelativeValue(unsigned Address) { |
| MCE.emitWord(Address-MCE.getCurrentPCValue()-4); |
| } |
| |
| /// emitPCRelativeBlockAddress - This method emits the PC relative address of |
| /// the specified basic block, or if the basic block hasn't been emitted yet |
| /// (because this is a forward branch), it keeps track of the information |
| /// necessary to resolve this address later (and emits a dummy value). |
| /// |
| void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) { |
| // If this is a backwards branch, we already know the address of the target, |
| // so just emit the value. |
| std::map<const MachineBasicBlock*, unsigned>::iterator I = |
| BasicBlockAddrs.find(MBB); |
| if (I != BasicBlockAddrs.end()) { |
| emitPCRelativeValue(I->second); |
| } else { |
| // Otherwise, remember where this reference was and where it is to so we can |
| // deal with it later. |
| BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue())); |
| MCE.emitWord(0); |
| } |
| } |
| |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream |
| /// assuming this is part of a function call, which is PC relative. |
| /// |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { |
| MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), |
| X86::reloc_pcrel_word, GV)); |
| MCE.emitWord(0); |
| } |
| |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming |
| /// this is part of a "take the address of a global" instruction, which is not |
| /// PC relative. |
| /// |
| void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) { |
| MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), |
| X86::reloc_absolute_word, GV)); |
| MCE.emitWord(Disp); // The relocated value will be added to the displacement |
| } |
| |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to |
| /// be emitted to the current location in the function, and allow it to be PC |
| /// relative. |
| void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative) { |
| MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), |
| isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES)); |
| MCE.emitWord(0); |
| } |
| |
| /// N86 namespace - Native X86 Register numbers... used by X86 backend. |
| /// |
| namespace N86 { |
| enum { |
| EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 |
| }; |
| } |
| |
| |
| // getX86RegNum - This function maps LLVM register identifiers to their X86 |
| // specific numbering, which is used in various places encoding instructions. |
| // |
| static unsigned getX86RegNum(unsigned RegNo) { |
| switch(RegNo) { |
| case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; |
| case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; |
| case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; |
| case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; |
| case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; |
| case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; |
| case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; |
| case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; |
| |
| case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: |
| case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: |
| return RegNo-X86::ST0; |
| default: |
| assert(MRegisterInfo::isVirtualRegister(RegNo) && |
| "Unknown physical register!"); |
| assert(0 && "Register allocator hasn't allocated reg correctly yet!"); |
| return 0; |
| } |
| } |
| |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| unsigned RM) { |
| assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| return RM | (RegOpcode << 3) | (Mod << 6); |
| } |
| |
| void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ |
| MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); |
| } |
| |
| void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { |
| // SIB byte is in the same format as the ModRMByte... |
| MCE.emitByte(ModRMByte(SS, Index, Base)); |
| } |
| |
| void Emitter::emitConstant(unsigned Val, unsigned Size) { |
| // Output the constant in little endian byte order... |
| for (unsigned i = 0; i != Size; ++i) { |
| MCE.emitByte(Val & 255); |
| Val >>= 8; |
| } |
| } |
| |
| static bool isDisp8(int Value) { |
| return Value == (signed char)Value; |
| } |
| |
| void Emitter::emitMemModRMByte(const MachineInstr &MI, |
| unsigned Op, unsigned RegOpcodeField) { |
| const MachineOperand &Op3 = MI.getOperand(Op+3); |
| GlobalValue *GV = 0; |
| int DispVal = 0; |
| |
| if (Op3.isGlobalAddress()) { |
| GV = Op3.getGlobal(); |
| DispVal = Op3.getOffset(); |
| } else { |
| DispVal = Op3.getImmedValue(); |
| } |
| |
| const MachineOperand &Base = MI.getOperand(Op); |
| const MachineOperand &Scale = MI.getOperand(Op+1); |
| const MachineOperand &IndexReg = MI.getOperand(Op+2); |
| |
| unsigned BaseReg = 0; |
| |
| if (Base.isConstantPoolIndex()) { |
| // Emit a direct address reference [disp32] where the displacement of the |
| // constant pool entry is controlled by the MCE. |
| assert(!GV && "Constant Pool reference cannot be relative to global!"); |
| DispVal += MCE.getConstantPoolEntryAddress(Base.getConstantPoolIndex()); |
| } else { |
| BaseReg = Base.getReg(); |
| } |
| |
| // Is a SIB byte needed? |
| if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) { |
| if (BaseReg == 0) { // Just a displacement? |
| // Emit special case [disp32] encoding |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); |
| if (GV) |
| emitGlobalAddressForPtr(GV, DispVal); |
| else |
| emitConstant(DispVal, 4); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg); |
| if (GV) { |
| // Emit the most general non-SIB encoding: [REG+disp32] |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); |
| emitGlobalAddressForPtr(GV, DispVal); |
| } else if (DispVal == 0 && BaseRegNo != N86::EBP) { |
| // Emit simple indirect register encoding... [EAX] f.e. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); |
| } else if (isDisp8(DispVal)) { |
| // Emit the disp8 encoding... [REG+disp8] |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); |
| emitConstant(DispVal, 1); |
| } else { |
| // Emit the most general non-SIB encoding: [REG+disp32] |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); |
| emitConstant(DispVal, 4); |
| } |
| } |
| |
| } else { // We need a SIB byte, so start by outputting the ModR/M byte first |
| assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); |
| |
| bool ForceDisp32 = false; |
| bool ForceDisp8 = false; |
| if (BaseReg == 0) { |
| // If there is no base register, we emit the special case SIB byte with |
| // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| ForceDisp32 = true; |
| } else if (GV) { |
| // Emit the normal disp32 encoding... |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); |
| ForceDisp32 = true; |
| } else if (DispVal == 0 && BaseReg != X86::EBP) { |
| // Emit no displacement ModR/M byte |
| MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); |
| } else if (isDisp8(DispVal)) { |
| // Emit the disp8 encoding... |
| MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); |
| ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| } else { |
| // Emit the normal disp32 encoding... |
| MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); |
| } |
| |
| // Calculate what the SS field value should be... |
| static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| unsigned SS = SSTable[Scale.getImmedValue()]; |
| |
| if (BaseReg == 0) { |
| // Handle the SIB byte for the case where there is no base. The |
| // displacement has already been output. |
| assert(IndexReg.getReg() && "Index register must be specified!"); |
| emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); |
| } else { |
| unsigned BaseRegNo = getX86RegNum(BaseReg); |
| unsigned IndexRegNo; |
| if (IndexReg.getReg()) |
| IndexRegNo = getX86RegNum(IndexReg.getReg()); |
| else |
| IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| emitSIBByte(SS, IndexRegNo, BaseRegNo); |
| } |
| |
| // Do we need to output a displacement? |
| if (DispVal != 0 || ForceDisp32 || ForceDisp8) { |
| if (!ForceDisp32 && isDisp8(DispVal)) |
| emitConstant(DispVal, 1); |
| else if (GV) |
| emitGlobalAddressForPtr(GV, DispVal); |
| else |
| emitConstant(DispVal, 4); |
| } |
| } |
| } |
| |
| static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) { |
| switch (Desc.TSFlags & X86II::ImmMask) { |
| case X86II::Imm8: return 1; |
| case X86II::Imm16: return 2; |
| case X86II::Imm32: return 4; |
| default: assert(0 && "Immediate size not set!"); |
| return 0; |
| } |
| } |
| |
| void Emitter::emitInstruction(const MachineInstr &MI) { |
| NumEmitted++; // Keep track of the # of mi's emitted |
| |
| unsigned Opcode = MI.getOpcode(); |
| const TargetInstrDescriptor &Desc = II->get(Opcode); |
| |
| // Emit the repeat opcode prefix as needed. |
| if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); |
| |
| // Emit instruction prefixes if necessary |
| if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... |
| |
| switch (Desc.TSFlags & X86II::Op0Mask) { |
| case X86II::TB: |
| MCE.emitByte(0x0F); // Two-byte opcode prefix |
| break; |
| case X86II::REP: break; // already handled. |
| case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: |
| case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: |
| MCE.emitByte(0xD8+ |
| (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) |
| >> X86II::Op0Shift)); |
| break; // Two-byte opcode prefix |
| default: assert(0 && "Invalid prefix!"); |
| case 0: break; // No prefix! |
| } |
| |
| unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode); |
| switch (Desc.TSFlags & X86II::FormMask) { |
| default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); |
| case X86II::Pseudo: |
| if (Opcode != X86::IMPLICIT_USE && |
| Opcode != X86::IMPLICIT_DEF && |
| Opcode != X86::FP_REG_KILL) |
| std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI; |
| break; |
| |
| case X86II::RawFrm: |
| MCE.emitByte(BaseOpcode); |
| if (MI.getNumOperands() == 1) { |
| const MachineOperand &MO = MI.getOperand(0); |
| if (MO.isMachineBasicBlock()) { |
| emitPCRelativeBlockAddress(MO.getMachineBasicBlock()); |
| } else if (MO.isGlobalAddress()) { |
| assert(MO.isPCRelative() && "Call target is not PC Relative?"); |
| emitGlobalAddressForCall(MO.getGlobal()); |
| } else if (MO.isExternalSymbol()) { |
| emitExternalSymbolAddress(MO.getSymbolName(), true); |
| } else if (MO.isImmediate()) { |
| emitConstant(MO.getImmedValue(), sizeOfImm(Desc)); |
| } else { |
| assert(0 && "Unknown RawFrm operand!"); |
| } |
| } |
| break; |
| |
| case X86II::AddRegFrm: |
| MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); |
| if (MI.getNumOperands() == 2) { |
| const MachineOperand &MO1 = MI.getOperand(1); |
| if (Value *V = MO1.getVRegValueOrNull()) { |
| assert(sizeOfImm(Desc) == 4 && |
| "Don't know how to emit non-pointer values!"); |
| emitGlobalAddressForPtr(cast<GlobalValue>(V)); |
| } else if (MO1.isGlobalAddress()) { |
| assert(sizeOfImm(Desc) == 4 && |
| "Don't know how to emit non-pointer values!"); |
| assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); |
| emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset()); |
| } else if (MO1.isExternalSymbol()) { |
| assert(sizeOfImm(Desc) == 4 && |
| "Don't know how to emit non-pointer values!"); |
| emitExternalSymbolAddress(MO1.getSymbolName(), false); |
| } else { |
| emitConstant(MO1.getImmedValue(), sizeOfImm(Desc)); |
| } |
| } |
| break; |
| |
| case X86II::MRMDestReg: { |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(0).getReg(), |
| getX86RegNum(MI.getOperand(1).getReg())); |
| if (MI.getNumOperands() == 3) |
| emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc)); |
| break; |
| } |
| case X86II::MRMDestMem: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); |
| if (MI.getNumOperands() == 6) |
| emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc)); |
| break; |
| |
| case X86II::MRMSrcReg: |
| MCE.emitByte(BaseOpcode); |
| |
| emitRegModRMByte(MI.getOperand(1).getReg(), |
| getX86RegNum(MI.getOperand(0).getReg())); |
| if (MI.getNumOperands() == 3) |
| emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc)); |
| break; |
| |
| case X86II::MRMSrcMem: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg())); |
| if (MI.getNumOperands() == 2+4) |
| emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc)); |
| break; |
| |
| case X86II::MRM0r: case X86II::MRM1r: |
| case X86II::MRM2r: case X86II::MRM3r: |
| case X86II::MRM4r: case X86II::MRM5r: |
| case X86II::MRM6r: case X86II::MRM7r: |
| MCE.emitByte(BaseOpcode); |
| emitRegModRMByte(MI.getOperand(0).getReg(), |
| (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r); |
| |
| if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { |
| emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), |
| sizeOfImm(Desc)); |
| } |
| break; |
| |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: |
| MCE.emitByte(BaseOpcode); |
| emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m); |
| |
| if (MI.getNumOperands() == 5) { |
| if (MI.getOperand(4).isImmediate()) |
| emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc)); |
| else if (MI.getOperand(4).isGlobalAddress()) |
| emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(), |
| MI.getOperand(4).getOffset()); |
| else |
| assert(0 && "Unknown operand!"); |
| } |
| break; |
| } |
| } |