| //===-- SparcV9CodeEmitter.cpp - --------===// |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetData.h" |
| #include "Support/hash_set" |
| #include "SparcInternals.h" |
| #include "SparcV9CodeEmitter.h" |
| |
| bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM, |
| MachineCodeEmitter &MCE) { |
| //PM.add(new SparcV9CodeEmitter(MCE)); |
| //MachineCodeEmitter *M = MachineCodeEmitter::createDebugMachineCodeEmitter(); |
| MachineCodeEmitter *M = MachineCodeEmitter::createFilePrinterEmitter(MCE); |
| PM.add(new SparcV9CodeEmitter(this, *M)); |
| PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed |
| return false; |
| } |
| |
| namespace { |
| class JITResolver { |
| MachineCodeEmitter &MCE; |
| |
| // LazyCodeGenMap - Keep track of call sites for functions that are to be |
| // lazily resolved. |
| std::map<unsigned, Function*> LazyCodeGenMap; |
| |
| // LazyResolverMap - Keep track of the lazy resolver created for a |
| // particular function so that we can reuse them if necessary. |
| std::map<Function*, unsigned> LazyResolverMap; |
| public: |
| JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} |
| unsigned getLazyResolver(Function *F); |
| unsigned addFunctionReference(unsigned Address, Function *F); |
| |
| private: |
| unsigned emitStubForFunction(Function *F); |
| static void CompilationCallback(); |
| unsigned resolveFunctionReference(unsigned RetAddr); |
| }; |
| |
| JITResolver *TheJITResolver; |
| } |
| |
| /// addFunctionReference - This method is called when we need to emit the |
| /// address of a function that has not yet been emitted, so we don't know the |
| /// address. Instead, we emit a call to the CompilationCallback method, and |
| /// keep track of where we are. |
| /// |
| unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { |
| LazyCodeGenMap[Address] = F; |
| return (intptr_t)&JITResolver::CompilationCallback; |
| } |
| |
| unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { |
| std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr); |
| assert(I != LazyCodeGenMap.end() && "Not in map!"); |
| Function *F = I->second; |
| LazyCodeGenMap.erase(I); |
| return MCE.forceCompilationOf(F); |
| } |
| |
| unsigned JITResolver::getLazyResolver(Function *F) { |
| std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F); |
| if (I != LazyResolverMap.end() && I->first == F) return I->second; |
| |
| //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; |
| |
| unsigned Stub = emitStubForFunction(F); |
| LazyResolverMap.insert(I, std::make_pair(F, Stub)); |
| return Stub; |
| } |
| |
| void JITResolver::CompilationCallback() { |
| uint64_t *StackPtr = (uint64_t*)__builtin_frame_address(0); |
| uint64_t RetAddr = (uint64_t)(intptr_t)__builtin_return_address(0); |
| |
| #if 0 |
| std::cerr << "In callback! Addr=0x" << std::hex << RetAddr |
| << " SP=0x" << (unsigned)StackPtr << std::dec |
| << ": Resolving call to function: " |
| << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"; |
| #endif |
| |
| std::cerr << "Sparc's JIT Resolver not implemented!\n"; |
| abort(); |
| |
| #if 0 |
| unsigned NewVal = TheJITResolver->resolveFunctionReference((void*)RetAddr); |
| |
| // Rewrite the call target... so that we don't fault every time we execute |
| // the call. |
| *(unsigned*)RetAddr = NewVal; |
| |
| // Change the return address to reexecute the call instruction... |
| StackPtr[1] -= 4; |
| #endif |
| } |
| |
| /// emitStubForFunction - This method is used by the JIT when it needs to emit |
| /// the address of a function for a function whose code has not yet been |
| /// generated. In order to do this, it generates a stub which jumps to the lazy |
| /// function compiler, which will eventually get fixed to call the function |
| /// directly. |
| /// |
| unsigned JITResolver::emitStubForFunction(Function *F) { |
| #if 0 |
| MCE.startFunctionStub(*F, 6); |
| MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... |
| |
| unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); |
| MCE.emitWord(Address-MCE.getCurrentPCValue()-4); |
| |
| MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! |
| return (intptr_t)MCE.finishFunctionStub(*F); |
| #endif |
| std::cerr << "Sparc's JITResolver::emitStubForFunction() not implemented!\n"; |
| abort(); |
| } |
| |
| |
| void SparcV9CodeEmitter::emitConstant(unsigned Val, unsigned Size) { |
| // Output the constant in big endian byte order... |
| unsigned byteVal; |
| for (int i = Size-1; i >= 0; --i) { |
| byteVal = Val >> 8*i; |
| MCE->emitByte(byteVal & 255); |
| } |
| } |
| |
| unsigned getRealRegNum(unsigned fakeReg, unsigned regClass) { |
| switch (regClass) { |
| case UltraSparcRegInfo::IntRegType: { |
| // Sparc manual, p31 |
| static const unsigned IntRegMap[] = { |
| // "o0", "o1", "o2", "o3", "o4", "o5", "o7", |
| 8, 9, 10, 11, 12, 13, 15, |
| // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| // "i0", "i1", "i2", "i3", "i4", "i5", |
| 24, 25, 26, 27, 28, 29, |
| // "i6", "i7", |
| 30, 31, |
| // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| // "o6" |
| 14 |
| }; |
| |
| return IntRegMap[fakeReg]; |
| break; |
| } |
| case UltraSparcRegInfo::FPSingleRegType: { |
| return fakeReg; |
| } |
| case UltraSparcRegInfo::FPDoubleRegType: { |
| return fakeReg; |
| } |
| case UltraSparcRegInfo::FloatCCRegType: { |
| return fakeReg; |
| |
| } |
| case UltraSparcRegInfo::IntCCRegType: { |
| return fakeReg; |
| } |
| default: |
| assert(0 && "Invalid unified register number in getRegType"); |
| return fakeReg; |
| } |
| } |
| |
| int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, |
| MachineOperand &MO) { |
| int64_t rv = 0; // Return value; defaults to 0 for unhandled cases |
| // or things that get fixed up later by the JIT. |
| |
| if (MO.isVirtualRegister()) { |
| std::cerr << "ERROR: virtual register found in machine code.\n"; |
| abort(); |
| } else if (MO.isPCRelativeDisp()) { |
| Value *V = MO.getVRegValue(); |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { |
| std::cerr << "Saving reference to BB (VReg)\n"; |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (Constant *C = dyn_cast<Constant>(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) |
| rv = (int64_t)(intptr_t)ConstantMap[C]; |
| else { |
| std::cerr << "ERROR: constant not in map:" << MO << "\n"; |
| abort(); |
| } |
| } else { |
| std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; |
| abort(); |
| } |
| } else if (MO.isPhysicalRegister()) { |
| // This is necessary because the Sparc doesn't actually lay out registers |
| // in the real fashion -- it skips those that it chooses not to allocate, |
| // i.e. those that are the SP, etc. |
| unsigned fakeReg = MO.getReg(), realReg, regClass, regType; |
| regType = TM->getRegInfo().getRegType(fakeReg); |
| // At least map fakeReg into its class |
| fakeReg = TM->getRegInfo().getClassRegNum(fakeReg, regClass); |
| // Find the real register number for use in an instruction |
| realReg = getRealRegNum(fakeReg, regClass); |
| std::cerr << "Reg[" << std::dec << fakeReg << "] = " << realReg << "\n"; |
| rv = realReg; |
| } else if (MO.isImmediate()) { |
| rv = MO.getImmedValue(); |
| } else if (MO.isGlobalAddress()) { |
| rv = (int64_t) |
| (intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()), |
| MI, MO.isPCRelative()); |
| } else if (MO.isMachineBasicBlock()) { |
| // Duplicate code of the above case for VirtualRegister, BasicBlock... |
| // It should really hit this case, but Sparc backend uses VRegs instead |
| std::cerr << "Saving reference to MBB\n"; |
| BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); |
| unsigned* CurrPC = (unsigned*)(intptr_t)MCE->getCurrentPCValue(); |
| BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); |
| } else if (MO.isExternalSymbol()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; |
| abort(); |
| } else if (MO.isFrameIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| int FrameIndex = MO.getFrameIndex(); |
| std::cerr << "ERROR: Frame index unhandled.\n"; |
| abort(); |
| } else if (MO.isConstantPoolIndex()) { |
| // Sparc backend doesn't generate this (yet...) |
| std::cerr << "ERROR: Constant Pool index unhandled.\n"; |
| abort(); |
| } else { |
| std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; |
| abort(); |
| } |
| |
| // Finally, deal with the various bitfield-extracting functions that |
| // are used in SPARC assembly. (Some of these make no sense in combination |
| // with some of the above; we'll trust that the instruction selector |
| // will not produce nonsense, and not check for valid combinations here.) |
| if (MO.opLoBits32()) { // %lo(val) |
| return rv & 0x03ff; |
| } else if (MO.opHiBits32()) { // %lm(val) |
| return (rv >> 10) & 0x03fffff; |
| } else if (MO.opLoBits64()) { // %hm(val) |
| return (rv >> 32) & 0x03ff; |
| } else if (MO.opHiBits64()) { // %hh(val) |
| return rv >> 42; |
| } else { // (unadorned) val |
| return rv; |
| } |
| } |
| |
| unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { |
| Val >>= bit; |
| return (Val & 1); |
| } |
| |
| void* SparcV9CodeEmitter::convertAddress(intptr_t Addr, bool isPCRelative) { |
| if (isPCRelative) { |
| return (void*)(Addr - (intptr_t)MCE->getCurrentPCValue()); |
| } else { |
| return (void*)Addr; |
| } |
| } |
| |
| |
| |
| bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { |
| std::cerr << "Starting function " << MF.getFunction()->getName() |
| << ", address: " << "0x" << std::hex |
| << (long)MCE->getCurrentPCValue() << "\n"; |
| |
| MCE->startFunction(MF); |
| |
| // FIXME: the Sparc backend does not use the ConstantPool!! |
| //MCE->emitConstantPool(MF.getConstantPool()); |
| |
| // Instead, the Sparc backend has its own constant pool implementation: |
| const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues(); |
| for (hash_set<const Constant*>::const_iterator I = pool.begin(), |
| E = pool.end(); I != E; ++I) |
| { |
| const Constant *C = *I; |
| // For now we just allocate some memory on the heap, this can be |
| // dramatically improved. |
| const Type *Ty = ((Value*)C)->getType(); |
| void *Addr = malloc(TM->getTargetData().getTypeSize(Ty)); |
| //FIXME |
| //TheVM.InitializeMemory(C, Addr); |
| std::cerr << "Adding ConstantMap[" << C << "]=" << std::dec << Addr << "\n"; |
| ConstantMap[C] = Addr; |
| } |
| |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| emitBasicBlock(*I); |
| MCE->finishFunction(MF); |
| |
| std::cerr << "Finishing function " << MF.getFunction()->getName() << "\n"; |
| ConstantMap.clear(); |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| long Location = BBLocations[BBRefs[i].first]; |
| unsigned *Ref = BBRefs[i].second.first; |
| MachineInstr *MI = BBRefs[i].second.second; |
| std::cerr << "Fixup @" << std::hex << Ref << " to " << Location |
| << " in instr: " << std::dec << *MI << "\n"; |
| } |
| |
| // Resolve branches to BasicBlocks for the entire function |
| for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { |
| long Location = BBLocations[BBRefs[i].first]; |
| unsigned *Ref = BBRefs[i].second.first; |
| MachineInstr *MI = BBRefs[i].second.second; |
| std::cerr << "attempting to resolve BB: " << i << "\n"; |
| for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { |
| MachineOperand &op = MI->getOperand(ii); |
| if (op.isPCRelativeDisp()) { |
| // the instruction's branch target is made such that it branches to |
| // PC + (br target * 4), so undo that arithmetic here: |
| // Location is the target of the branch |
| // Ref is the location of the instruction, and hence the PC |
| unsigned branchTarget = (Location - (long)Ref) >> 2; |
| // Save the flags. |
| bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; |
| if (op.opLoBits32()) { loBits32=true; } |
| if (op.opHiBits32()) { hiBits32=true; } |
| if (op.opLoBits64()) { loBits64=true; } |
| if (op.opHiBits64()) { hiBits64=true; } |
| MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, |
| branchTarget); |
| if (loBits32) { MI->setOperandLo32(ii); } |
| else if (hiBits32) { MI->setOperandHi32(ii); } |
| else if (loBits64) { MI->setOperandLo64(ii); } |
| else if (hiBits64) { MI->setOperandHi64(ii); } |
| std::cerr << "Rewrote BB ref: "; |
| unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); |
| *Ref = fixedInstr; |
| break; |
| } |
| } |
| } |
| BBRefs.clear(); |
| BBLocations.clear(); |
| |
| return false; |
| } |
| |
| void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { |
| currBB = MBB.getBasicBlock(); |
| BBLocations[currBB] = MCE->getCurrentPCValue(); |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) |
| emitInstruction(**I); |
| } |
| |
| void SparcV9CodeEmitter::emitInstruction(MachineInstr &MI) { |
| emitConstant(getBinaryCodeForInstr(MI), 4); |
| } |
| |
| void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, |
| bool isPCRelative) |
| { |
| if (isPCRelative) { // must be a call, this is a major hack! |
| // Try looking up the function to see if it is already compiled! |
| if (void *Addr = (void*)(intptr_t)MCE->getGlobalValueAddress(V)) { |
| intptr_t CurByte = MCE->getCurrentPCValue(); |
| // The real target of the call is Addr = PC + (target * 4) |
| // CurByte is the PC, Addr we just received |
| return (void*) (((long)Addr - (long)CurByte) >> 2); |
| } else { |
| if (Function *F = dyn_cast<Function>(V)) { |
| // Function has not yet been code generated! |
| TheJITResolver->addFunctionReference(MCE->getCurrentPCValue(), |
| cast<Function>(V)); |
| // Delayed resolution... |
| return |
| (void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V)); |
| |
| } else if (Constant *C = ConstantPointerRef::get(V)) { |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| return ConstantMap[C]; |
| } else { |
| std::cerr << "Constant: 0x" << std::hex << &*C << std::dec |
| << ", " << *V << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| |
| #if 0 |
| } else if (const GlobalVariable *G = dyn_cast<GlobalVariable>(V)) { |
| if (G->isConstant()) { |
| const Constant* C = G->getInitializer(); |
| if (ConstantMap.find(C) != ConstantMap.end()) { |
| return ConstantMap[C]; |
| } else { |
| std::cerr << "Constant: " << *G << " not found in ConstantMap!\n"; |
| abort(); |
| } |
| } else { |
| std::cerr << "Variable: " << *G << " address not found!\n"; |
| abort(); |
| } |
| #endif |
| } else { |
| std::cerr << "Unhandled global: " << *V << "\n"; |
| abort(); |
| } |
| } |
| } else { |
| return convertAddress((intptr_t)MCE->getGlobalValueAddress(V), |
| isPCRelative); |
| } |
| } |
| |
| |
| #include "SparcV9CodeEmitter.inc" |
| |