| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the X86-specific support for the FastISel class. Much |
| // of the target-specific code is generated by tablegen in the file |
| // X86GenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| class X86FastISel : public FastISel { |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| |
| /// StackPtr - Register used as the stack pointer. |
| /// |
| unsigned StackPtr; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf64; |
| bool X86ScalarSSEf32; |
| |
| public: |
| explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| } |
| |
| virtual bool TargetSelectInstruction(const Instruction *I); |
| |
| #include "X86GenFastISel.inc" |
| |
| private: |
| bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); |
| |
| bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); |
| |
| bool X86FastEmitStore(EVT VT, const Value *Val, |
| const X86AddressMode &AM); |
| bool X86FastEmitStore(EVT VT, unsigned Val, |
| const X86AddressMode &AM); |
| |
| bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, |
| unsigned &ResultReg); |
| |
| bool X86SelectAddress(const Value *V, X86AddressMode &AM); |
| bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); |
| |
| bool X86SelectLoad(const Instruction *I); |
| |
| bool X86SelectStore(const Instruction *I); |
| |
| bool X86SelectCmp(const Instruction *I); |
| |
| bool X86SelectZExt(const Instruction *I); |
| |
| bool X86SelectBranch(const Instruction *I); |
| |
| bool X86SelectShift(const Instruction *I); |
| |
| bool X86SelectSelect(const Instruction *I); |
| |
| bool X86SelectTrunc(const Instruction *I); |
| |
| bool X86SelectFPExt(const Instruction *I); |
| bool X86SelectFPTrunc(const Instruction *I); |
| |
| bool X86SelectExtractValue(const Instruction *I); |
| |
| bool X86VisitIntrinsicCall(const IntrinsicInst &I); |
| bool X86SelectCall(const Instruction *I); |
| |
| CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false); |
| |
| const X86InstrInfo *getInstrInfo() const { |
| return getTargetMachine()->getInstrInfo(); |
| } |
| const X86TargetMachine *getTargetMachine() const { |
| return static_cast<const X86TargetMachine *>(&TM); |
| } |
| |
| unsigned TargetMaterializeConstant(const Constant *C); |
| |
| unsigned TargetMaterializeAlloca(const AllocaInst *C); |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(EVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 |
| } |
| |
| bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false); |
| }; |
| |
| } // end anonymous namespace. |
| |
| bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) { |
| VT = TLI.getValueType(Ty, /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !VT.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| // For now, require SSE/SSE2 for performing floating-point operations, |
| // since x87 requires additional work. |
| if (VT == MVT::f64 && !X86ScalarSSEf64) |
| return false; |
| if (VT == MVT::f32 && !X86ScalarSSEf32) |
| return false; |
| // Similarly, no f80 support yet. |
| if (VT == MVT::f80) |
| return false; |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); |
| } |
| |
| #include "X86GenCallingConv.inc" |
| |
| /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling |
| /// convention. |
| CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC, |
| bool isTaillCall) { |
| if (Subtarget->is64Bit()) { |
| if (CC == CallingConv::GHC) |
| return CC_X86_64_GHC; |
| else if (Subtarget->isTargetWin64()) |
| return CC_X86_Win64_C; |
| else |
| return CC_X86_64_C; |
| } |
| |
| if (CC == CallingConv::X86_FastCall) |
| return CC_X86_32_FastCall; |
| else if (CC == CallingConv::X86_ThisCall) |
| return CC_X86_32_ThisCall; |
| else if (CC == CallingConv::Fast) |
| return CC_X86_32_FastCC; |
| else if (CC == CallingConv::GHC) |
| return CC_X86_32_GHC; |
| else |
| return CC_X86_32_C; |
| } |
| |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. |
| /// Return true and the result register by reference if it is possible. |
| bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, |
| unsigned &ResultReg) { |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| RC = X86::GR8RegisterClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| RC = X86::GR16RegisterClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| break; |
| case MVT::f32: |
| if (Subtarget->hasSSE1()) { |
| Opc = X86::MOVSSrm; |
| RC = X86::FR32RegisterClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = X86::RFP32RegisterClass; |
| } |
| break; |
| case MVT::f64: |
| if (Subtarget->hasSSE2()) { |
| Opc = X86::MOVSDrm; |
| RC = X86::FR64RegisterClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = X86::RFP64RegisterClass; |
| } |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return false; |
| } |
| |
| ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DL, TII.get(Opc), ResultReg), AM); |
| return true; |
| } |
| |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr |
| /// and a displacement offset, or a GlobalAddress, |
| /// i.e. V. Return true if it is possible. |
| bool |
| X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, |
| const X86AddressMode &AM) { |
| // Get opcode and regclass of the output for the given store instruction. |
| unsigned Opc = 0; |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f80: // No f80 support yet. |
| default: return false; |
| case MVT::i1: { |
| // Mask out all but lowest bit. |
| unsigned AndResult = createResultReg(X86::GR8RegisterClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); |
| Val = AndResult; |
| } |
| // FALLTHROUGH, handling i1 as i8. |
| case MVT::i8: Opc = X86::MOV8mr; break; |
| case MVT::i16: Opc = X86::MOV16mr; break; |
| case MVT::i32: Opc = X86::MOV32mr; break; |
| case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. |
| case MVT::f32: |
| Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m; |
| break; |
| case MVT::f64: |
| Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m; |
| break; |
| } |
| |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DL, TII.get(Opc)), AM).addReg(Val); |
| return true; |
| } |
| |
| bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, |
| const X86AddressMode &AM) { |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Val)) |
| Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); |
| |
| // If this is a store of a simple constant, fold the constant into the store. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| unsigned Opc = 0; |
| bool Signed = true; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8. |
| case MVT::i8: Opc = X86::MOV8mi; break; |
| case MVT::i16: Opc = X86::MOV16mi; break; |
| case MVT::i32: Opc = X86::MOV32mi; break; |
| case MVT::i64: |
| // Must be a 32-bit sign extended value. |
| if ((int)CI->getSExtValue() == CI->getSExtValue()) |
| Opc = X86::MOV64mi32; |
| break; |
| } |
| |
| if (Opc) { |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DL, TII.get(Opc)), AM) |
| .addImm(Signed ? (uint64_t) CI->getSExtValue() : |
| CI->getZExtValue()); |
| return true; |
| } |
| } |
| |
| unsigned ValReg = getRegForValue(Val); |
| if (ValReg == 0) |
| return false; |
| |
| return X86FastEmitStore(VT, ValReg, AM); |
| } |
| |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. |
| /// ISD::SIGN_EXTEND). |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, |
| unsigned Src, EVT SrcVT, |
| unsigned &ResultReg) { |
| unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, |
| Src, /*TODO: Kill=*/false); |
| |
| if (RR != 0) { |
| ResultReg = RR; |
| return true; |
| } else |
| return false; |
| } |
| |
| /// X86SelectAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { |
| const User *U = NULL; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| // Don't walk into other basic blocks; it's possible we haven't |
| // visited them yet, so the instructions may not yet be assigned |
| // virtual registers. |
| if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB) |
| return false; |
| |
| Opcode = I->getOpcode(); |
| U = I; |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| if (const PointerType *Ty = dyn_cast<PointerType>(V->getType())) |
| if (Ty->getAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts. |
| return X86SelectAddress(U->getOperand(0), AM); |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::Alloca: { |
| // Do static allocas. |
| const AllocaInst *A = cast<AllocaInst>(V); |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(A); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = SI->second; |
| return true; |
| } |
| break; |
| } |
| |
| case Instruction::Add: { |
| // Adds of constants are common and easy enough. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); |
| // They have to fit in the 32-bit signed displacement field though. |
| if (isInt<32>(Disp)) { |
| AM.Disp = (uint32_t)Disp; |
| return X86SelectAddress(U->getOperand(0), AM); |
| } |
| } |
| break; |
| } |
| |
| case Instruction::GetElementPtr: { |
| X86AddressMode SavedAM = AM; |
| |
| // Pattern-match simple GEPs. |
| uint64_t Disp = (int32_t)AM.Disp; |
| unsigned IndexReg = AM.IndexReg; |
| unsigned Scale = AM.Scale; |
| gep_type_iterator GTI = gep_type_begin(U); |
| // Iterate through the indices, folding what we can. Constants can be |
| // folded, and one dynamic index can be handled, if the scale is supported. |
| for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
| i != e; ++i, ++GTI) { |
| const Value *Op = *i; |
| if (const StructType *STy = dyn_cast<StructType>(*GTI)) { |
| const StructLayout *SL = TD.getStructLayout(STy); |
| unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); |
| Disp += SL->getElementOffset(Idx); |
| } else { |
| uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); |
| SmallVector<const Value *, 4> Worklist; |
| Worklist.push_back(Op); |
| do { |
| Op = Worklist.pop_back_val(); |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| Disp += CI->getSExtValue() * S; |
| } else if (isa<AddOperator>(Op) && |
| isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { |
| // An add with a constant operand. Fold the constant. |
| ConstantInt *CI = |
| cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| Disp += CI->getSExtValue() * S; |
| // Add the other operand back to the work list. |
| Worklist.push_back(cast<AddOperator>(Op)->getOperand(0)); |
| } else if (IndexReg == 0 && |
| (!AM.GV || !Subtarget->isPICStyleRIPRel()) && |
| (S == 1 || S == 2 || S == 4 || S == 8)) { |
| // Scaled-index addressing. |
| Scale = S; |
| IndexReg = getRegForGEPIndex(Op).first; |
| if (IndexReg == 0) |
| return false; |
| } else |
| // Unsupported. |
| goto unsupported_gep; |
| } while (!Worklist.empty()); |
| } |
| } |
| // Check for displacement overflow. |
| if (!isInt<32>(Disp)) |
| break; |
| // Ok, the GEP indices were covered by constant-offset and scaled-index |
| // addressing. Update the address state and move on to examining the base. |
| AM.IndexReg = IndexReg; |
| AM.Scale = Scale; |
| AM.Disp = (uint32_t)Disp; |
| if (X86SelectAddress(U->getOperand(0), AM)) |
| return true; |
| |
| // If we couldn't merge the sub value into this addr mode, revert back to |
| // our address and just match the value instead of completely failing. |
| AM = SavedAM; |
| break; |
| unsupported_gep: |
| // Ok, the GEP indices weren't all covered. |
| break; |
| } |
| } |
| |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands. |
| if (Subtarget->isPICStyleRIPRel() && |
| (AM.Base.Reg != 0 || AM.IndexReg != 0)) |
| return false; |
| |
| // Can't handle TLS yet. |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| if (GVar->isThreadLocal()) |
| return false; |
| |
| // Okay, we've committed to selecting this global. Set up the basic address. |
| AM.GV = GV; |
| |
| // Allow the subtarget to classify the global. |
| unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); |
| |
| // If this reference is relative to the pic base, set it now. |
| if (isGlobalRelativeToPICBase(GVFlags)) { |
| // FIXME: How do we know Base.Reg is free?? |
| AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| } |
| |
| // Unless the ABI requires an extra load, return a direct reference to |
| // the global. |
| if (!isGlobalStubReference(GVFlags)) { |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } |
| AM.GVOpFlags = GVFlags; |
| return true; |
| } |
| |
| // Ok, we need to do a load from a stub. If we've already loaded from this |
| // stub, reuse the loaded pointer, otherwise emit the load now. |
| DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); |
| unsigned LoadReg; |
| if (I != LocalValueMap.end() && I->second != 0) { |
| LoadReg = I->second; |
| } else { |
| // Issue load from stub. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| X86AddressMode StubAM; |
| StubAM.Base.Reg = AM.Base.Reg; |
| StubAM.GV = GV; |
| StubAM.GVOpFlags = GVFlags; |
| |
| if (TLI.getPointerTy() == MVT::i64) { |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| |
| if (Subtarget->isPICStyleRIPRel()) |
| StubAM.Base.Reg = X86::RIP; |
| } else { |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| } |
| |
| LoadReg = createResultReg(RC); |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DL, TII.get(Opc), LoadReg), StubAM); |
| |
| // Prevent loading GV stub multiple times in same MBB. |
| LocalValueMap[V] = LoadReg; |
| } |
| |
| // Now construct the final address. Note that the Disp, Scale, |
| // and Index values may already be set here. |
| AM.Base.Reg = LoadReg; |
| AM.GV = 0; |
| return true; |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = getRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { |
| const User *U = NULL; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts. |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| } |
| |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands. |
| if (Subtarget->isPICStyleRIPRel() && |
| (AM.Base.Reg != 0 || AM.IndexReg != 0)) |
| return false; |
| |
| // Can't handle TLS or DLLImport. |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage()) |
| return false; |
| |
| // Okay, we've committed to selecting this global. Set up the basic address. |
| AM.GV = GV; |
| |
| // No ABI requires an extra load for anything other than DLLImport, which |
| // we rejected above. Return a direct reference to the global. |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } else if (Subtarget->isPICStyleStubPIC()) { |
| AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET; |
| } else if (Subtarget->isPICStyleGOT()) { |
| AM.GVOpFlags = X86II::MO_GOTOFF; |
| } |
| |
| return true; |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = getRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /// X86SelectStore - Select and emit code to implement store instructions. |
| bool X86FastISel::X86SelectStore(const Instruction *I) { |
| EVT VT; |
| if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(I->getOperand(1), AM)) |
| return false; |
| |
| return X86FastEmitStore(VT, I->getOperand(0), AM); |
| } |
| |
| /// X86SelectLoad - Select and emit code to implement load instructions. |
| /// |
| bool X86FastISel::X86SelectLoad(const Instruction *I) { |
| EVT VT; |
| if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(I->getOperand(0), AM)) |
| return false; |
| |
| unsigned ResultReg = 0; |
| if (X86FastEmitLoad(VT, AM, ResultReg)) { |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| return false; |
| } |
| |
| static unsigned X86ChooseCmpOpcode(EVT VT) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return 0; |
| case MVT::i8: return X86::CMP8rr; |
| case MVT::i16: return X86::CMP16rr; |
| case MVT::i32: return X86::CMP32rr; |
| case MVT::i64: return X86::CMP64rr; |
| case MVT::f32: return X86::UCOMISSrr; |
| case MVT::f64: return X86::UCOMISDrr; |
| } |
| } |
| |
| /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS |
| /// of the comparison, return an opcode that works for the compare (e.g. |
| /// CMP32ri) otherwise return 0. |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { |
| switch (VT.getSimpleVT().SimpleTy) { |
| // Otherwise, we can't fold the immediate into this comparison. |
| default: return 0; |
| case MVT::i8: return X86::CMP8ri; |
| case MVT::i16: return X86::CMP16ri; |
| case MVT::i32: return X86::CMP32ri; |
| case MVT::i64: |
| // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext |
| // field. |
| if ((int)RHSC->getSExtValue() == RHSC->getSExtValue()) |
| return X86::CMP64ri32; |
| return 0; |
| } |
| } |
| |
| bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, |
| EVT VT) { |
| unsigned Op0Reg = getRegForValue(Op0); |
| if (Op0Reg == 0) return false; |
| |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Op1)) |
| Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); |
| |
| // We have two options: compare with register or immediate. If the RHS of |
| // the compare is an immediate that we can fold into this compare, use |
| // CMPri, otherwise use CMPrr. |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc)) |
| .addReg(Op0Reg) |
| .addImm(Op1C->getSExtValue()); |
| return true; |
| } |
| } |
| |
| unsigned CompareOpc = X86ChooseCmpOpcode(VT); |
| if (CompareOpc == 0) return false; |
| |
| unsigned Op1Reg = getRegForValue(Op1); |
| if (Op1Reg == 0) return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) |
| .addReg(Op0Reg) |
| .addReg(Op1Reg); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectCmp(const Instruction *I) { |
| const CmpInst *CI = cast<CmpInst>(I); |
| |
| EVT VT; |
| if (!isTypeLegal(I->getOperand(0)->getType(), VT)) |
| return false; |
| |
| unsigned ResultReg = createResultReg(&X86::GR8RegClass); |
| unsigned SetCCOpc; |
| bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. |
| switch (CI->getPredicate()) { |
| case CmpInst::FCMP_OEQ: { |
| if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) |
| return false; |
| |
| unsigned EReg = createResultReg(&X86::GR8RegClass); |
| unsigned NPReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::SETNPr), NPReg); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| case CmpInst::FCMP_UNE: { |
| if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) |
| return false; |
| |
| unsigned NEReg = createResultReg(&X86::GR8RegClass); |
| unsigned PReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::SETNEr), NEReg); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::SETPr), PReg); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::OR8rr), ResultReg) |
| .addReg(PReg).addReg(NEReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; |
| case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; |
| case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break; |
| case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break; |
| case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; |
| case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break; |
| case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break; |
| case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; |
| case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break; |
| case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; |
| case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; |
| case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; |
| |
| case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; |
| case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; |
| case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; |
| case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; |
| case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; |
| case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; |
| case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break; |
| case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break; |
| case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break; |
| case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break; |
| default: |
| return false; |
| } |
| |
| const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); |
| if (SwapArgs) |
| std::swap(Op0, Op1); |
| |
| // Emit a compare of Op0/Op1. |
| if (!X86FastEmitCompare(Op0, Op1, VT)) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectZExt(const Instruction *I) { |
| // Handle zero-extension from i1 to i8, which is common. |
| if (I->getType()->isIntegerTy(8) && |
| I->getOperand(0)->getType()->isIntegerTy(1)) { |
| unsigned ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) return false; |
| // Set the high bits to zero. |
| ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); |
| if (ResultReg == 0) return false; |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| bool X86FastISel::X86SelectBranch(const Instruction *I) { |
| // Unconditional branches are selected by tablegen-generated code. |
| // Handle a conditional branch. |
| const BranchInst *BI = cast<BranchInst>(I); |
| MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| |
| // Fold the common case of a conditional branch with a comparison. |
| if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| if (CI->hasOneUse()) { |
| EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); |
| |
| // Try to take advantage of fallthrough opportunities. |
| CmpInst::Predicate Predicate = CI->getPredicate(); |
| if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { |
| std::swap(TrueMBB, FalseMBB); |
| Predicate = CmpInst::getInversePredicate(Predicate); |
| } |
| |
| bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. |
| unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA" |
| |
| switch (Predicate) { |
| case CmpInst::FCMP_OEQ: |
| std::swap(TrueMBB, FalseMBB); |
| Predicate = CmpInst::FCMP_UNE; |
| // FALL THROUGH |
| case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break; |
| case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break; |
| case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; |
| case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break; |
| case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break; |
| case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break; |
| case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break; |
| case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break; |
| case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break; |
| case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break; |
| case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; |
| case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; |
| case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; |
| |
| case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; |
| case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; |
| case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; |
| case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; |
| case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; |
| case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; |
| case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break; |
| case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break; |
| case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break; |
| case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break; |
| default: |
| return false; |
| } |
| |
| const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); |
| if (SwapArgs) |
| std::swap(Op0, Op1); |
| |
| // Emit a compare of the LHS and RHS, setting the flags. |
| if (!X86FastEmitCompare(Op0, Op1, VT)) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) |
| .addMBB(TrueMBB); |
| |
| if (Predicate == CmpInst::FCMP_UNE) { |
| // X86 requires a second branch to handle UNE (and OEQ, |
| // which is mapped to UNE above). |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4)) |
| .addMBB(TrueMBB); |
| } |
| |
| FastEmitBranch(FalseMBB, DL); |
| FuncInfo.MBB->addSuccessor(TrueMBB); |
| return true; |
| } |
| } else if (ExtractValueInst *EI = |
| dyn_cast<ExtractValueInst>(BI->getCondition())) { |
| // Check to see if the branch instruction is from an "arithmetic with |
| // overflow" intrinsic. The main way these intrinsics are used is: |
| // |
| // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2) |
| // %sum = extractvalue { i32, i1 } %t, 0 |
| // %obit = extractvalue { i32, i1 } %t, 1 |
| // br i1 %obit, label %overflow, label %normal |
| // |
| // The %sum and %obit are converted in an ADD and a SETO/SETB before |
| // reaching the branch. Therefore, we search backwards through the MBB |
| // looking for the SETO/SETB instruction. If an instruction modifies the |
| // EFLAGS register before we reach the SETO/SETB instruction, then we can't |
| // convert the branch into a JO/JB instruction. |
| if (const IntrinsicInst *CI = |
| dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){ |
| if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow || |
| CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) { |
| const MachineInstr *SetMI = 0; |
| unsigned Reg = getRegForValue(EI); |
| |
| for (MachineBasicBlock::const_reverse_iterator |
| RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend(); |
| RI != RE; ++RI) { |
| const MachineInstr &MI = *RI; |
| |
| if (MI.definesRegister(Reg)) { |
| unsigned Src, Dst, SrcSR, DstSR; |
| |
| if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) { |
| Reg = Src; |
| continue; |
| } |
| |
| SetMI = &MI; |
| break; |
| } |
| |
| const TargetInstrDesc &TID = MI.getDesc(); |
| if (TID.hasUnmodeledSideEffects() || |
| TID.hasImplicitDefOfPhysReg(X86::EFLAGS)) |
| break; |
| } |
| |
| if (SetMI) { |
| unsigned OpCode = SetMI->getOpcode(); |
| |
| if (OpCode == X86::SETOr || OpCode == X86::SETBr) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4)) |
| .addMBB(TrueMBB); |
| FastEmitBranch(FalseMBB, DL); |
| FuncInfo.MBB->addSuccessor(TrueMBB); |
| return true; |
| } |
| } |
| } |
| } |
| } |
| |
| // Otherwise do a clumsy setcc and re-test it. |
| unsigned OpReg = getRegForValue(BI->getCondition()); |
| if (OpReg == 0) return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) |
| .addReg(OpReg).addReg(OpReg); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) |
| .addMBB(TrueMBB); |
| FastEmitBranch(FalseMBB, DL); |
| FuncInfo.MBB->addSuccessor(TrueMBB); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectShift(const Instruction *I) { |
| unsigned CReg = 0, OpReg = 0, OpImm = 0; |
| const TargetRegisterClass *RC = NULL; |
| if (I->getType()->isIntegerTy(8)) { |
| CReg = X86::CL; |
| RC = &X86::GR8RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break; |
| case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break; |
| case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break; |
| default: return false; |
| } |
| } else if (I->getType()->isIntegerTy(16)) { |
| CReg = X86::CX; |
| RC = &X86::GR16RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break; |
| case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break; |
| case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break; |
| default: return false; |
| } |
| } else if (I->getType()->isIntegerTy(32)) { |
| CReg = X86::ECX; |
| RC = &X86::GR32RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break; |
| case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break; |
| case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break; |
| default: return false; |
| } |
| } else if (I->getType()->isIntegerTy(64)) { |
| CReg = X86::RCX; |
| RC = &X86::GR64RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break; |
| case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break; |
| case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break; |
| default: return false; |
| } |
| } else { |
| return false; |
| } |
| |
| EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| |
| // Fold immediate in shl(x,3). |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm), |
| ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, |
| CReg, Op1Reg, RC, RC, DL); |
| |
| // The shift instruction uses X86::CL. If we defined a super-register |
| // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what |
| // we're doing here. |
| if (CReg != X86::CL) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL) |
| .addReg(CReg).addImm(X86::sub_8bit); |
| |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg) |
| .addReg(Op0Reg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSelect(const Instruction *I) { |
| EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true); |
| if (VT == MVT::Other || !isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| if (VT.getSimpleVT() == MVT::i16) { |
| Opc = X86::CMOVE16rr; |
| RC = &X86::GR16RegClass; |
| } else if (VT.getSimpleVT() == MVT::i32) { |
| Opc = X86::CMOVE32rr; |
| RC = &X86::GR32RegClass; |
| } else if (VT.getSimpleVT() == MVT::i64) { |
| Opc = X86::CMOVE64rr; |
| RC = &X86::GR64RegClass; |
| } else { |
| return false; |
| } |
| |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| unsigned Op2Reg = getRegForValue(I->getOperand(2)); |
| if (Op2Reg == 0) return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) |
| .addReg(Op0Reg).addReg(Op0Reg); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) |
| .addReg(Op1Reg).addReg(Op2Reg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectFPExt(const Instruction *I) { |
| // fpext from float to double. |
| if (Subtarget->hasSSE2() && |
| I->getType()->isDoubleTy()) { |
| const Value *V = I->getOperand(0); |
| if (V->getType()->isFloatTy()) { |
| unsigned OpReg = getRegForValue(V); |
| if (OpReg == 0) return false; |
| unsigned ResultReg = createResultReg(X86::FR64RegisterClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::CVTSS2SDrr), ResultReg) |
| .addReg(OpReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { |
| if (Subtarget->hasSSE2()) { |
| if (I->getType()->isFloatTy()) { |
| const Value *V = I->getOperand(0); |
| if (V->getType()->isDoubleTy()) { |
| unsigned OpReg = getRegForValue(V); |
| if (OpReg == 0) return false; |
| unsigned ResultReg = createResultReg(X86::FR32RegisterClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::CVTSD2SSrr), ResultReg) |
| .addReg(OpReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectTrunc(const Instruction *I) { |
| if (Subtarget->is64Bit()) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| |
| // This code only handles truncation to byte right now. |
| if (DstVT != MVT::i8 && DstVT != MVT::i1) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| if (SrcVT != MVT::i16 && SrcVT != MVT::i32) |
| // All other cases should be handled by the tblgen generated code. |
| return false; |
| |
| unsigned InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| // First issue a copy to GR16_ABCD or GR32_ABCD. |
| unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr; |
| const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) |
| ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass; |
| unsigned CopyReg = createResultReg(CopyRC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CopyOpc), CopyReg) |
| .addReg(InputReg); |
| |
| // Then issue an extract_subreg. |
| unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, |
| CopyReg, /*Kill=*/true, |
| X86::sub_8bit); |
| if (!ResultReg) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectExtractValue(const Instruction *I) { |
| const ExtractValueInst *EI = cast<ExtractValueInst>(I); |
| const Value *Agg = EI->getAggregateOperand(); |
| |
| if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) { |
| switch (CI->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| // Cheat a little. We know that the registers for "add" and "seto" are |
| // allocated sequentially. However, we only keep track of the register |
| // for "add" in the value map. Use extractvalue's index to get the |
| // correct register for "seto". |
| UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { |
| // FIXME: Handle more intrinsics. |
| switch (I.getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::stackprotector: { |
| // Emit code inline code to store the stack guard onto the stack. |
| EVT PtrTy = TLI.getPointerTy(); |
| |
| const Value *Op1 = I.getArgOperand(0); // The guard's value. |
| const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); |
| |
| // Grab the frame index. |
| X86AddressMode AM; |
| if (!X86SelectAddress(Slot, AM)) return false; |
| |
| if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; |
| |
| return true; |
| } |
| case Intrinsic::objectsize: { |
| ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); |
| const Type *Ty = I.getCalledFunction()->getReturnType(); |
| |
| assert(CI && "Non-constant type in Intrinsic::objectsize?"); |
| |
| EVT VT; |
| if (!isTypeLegal(Ty, VT)) |
| return false; |
| |
| unsigned OpC = 0; |
| if (VT == MVT::i32) |
| OpC = X86::MOV32ri; |
| else if (VT == MVT::i64) |
| OpC = X86::MOV64ri; |
| else |
| return false; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg). |
| addImm(CI->isZero() ? -1ULL : 0); |
| UpdateValueMap(&I, ResultReg); |
| return true; |
| } |
| case Intrinsic::dbg_declare: { |
| const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I); |
| X86AddressMode AM; |
| assert(DI->getAddress() && "Null address should be checked earlier!"); |
| if (!X86SelectAddress(DI->getAddress(), AM)) |
| return false; |
| const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); |
| // FIXME may need to add RegState::Debug to any registers produced, |
| // although ESP/EBP should be the only ones at the moment. |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). |
| addImm(0).addMetadata(DI->getVariable()); |
| return true; |
| } |
| case Intrinsic::trap: { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP)); |
| return true; |
| } |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: { |
| // Replace "add with overflow" intrinsics with an "add" instruction followed |
| // by a seto/setc instruction. Later on, when the "extractvalue" |
| // instructions are encountered, we use the fact that two registers were |
| // created sequentially to get the correct registers for the "sum" and the |
| // "overflow bit". |
| const Function *Callee = I.getCalledFunction(); |
| const Type *RetTy = |
| cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); |
| |
| EVT VT; |
| if (!isTypeLegal(RetTy, VT)) |
| return false; |
| |
| const Value *Op1 = I.getArgOperand(0); |
| const Value *Op2 = I.getArgOperand(1); |
| unsigned Reg1 = getRegForValue(Op1); |
| unsigned Reg2 = getRegForValue(Op2); |
| |
| if (Reg1 == 0 || Reg2 == 0) |
| // FIXME: Handle values *not* in registers. |
| return false; |
| |
| unsigned OpC = 0; |
| if (VT == MVT::i32) |
| OpC = X86::ADD32rr; |
| else if (VT == MVT::i64) |
| OpC = X86::ADD64rr; |
| else |
| return false; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) |
| .addReg(Reg1).addReg(Reg2); |
| unsigned DestReg1 = UpdateValueMap(&I, ResultReg); |
| |
| // If the add with overflow is an intra-block value then we just want to |
| // create temporaries for it like normal. If it is a cross-block value then |
| // UpdateValueMap will return the cross-block register used. Since we |
| // *really* want the value to be live in the register pair known by |
| // UpdateValueMap, we have to use DestReg1+1 as the destination register in |
| // the cross block case. In the non-cross-block case, we should just make |
| // another register for the value. |
| if (DestReg1 != ResultReg) |
| ResultReg = DestReg1+1; |
| else |
| ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8)); |
| |
| unsigned Opc = X86::SETBr; |
| if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) |
| Opc = X86::SETOr; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); |
| return true; |
| } |
| } |
| } |
| |
| bool X86FastISel::X86SelectCall(const Instruction *I) { |
| const CallInst *CI = cast<CallInst>(I); |
| const Value *Callee = CI->getCalledValue(); |
| |
| // Can't handle inline asm yet. |
| if (isa<InlineAsm>(Callee)) |
| return false; |
| |
| // Handle intrinsic calls. |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) |
| return X86VisitIntrinsicCall(*II); |
| |
| // Handle only C and fastcc calling conventions for now. |
| ImmutableCallSite CS(CI); |
| CallingConv::ID CC = CS.getCallingConv(); |
| if (CC != CallingConv::C && |
| CC != CallingConv::Fast && |
| CC != CallingConv::X86_FastCall) |
| return false; |
| |
| // fastcc with -tailcallopt is intended to provide a guaranteed |
| // tail call optimization. Fastisel doesn't know how to do that. |
| if (CC == CallingConv::Fast && GuaranteedTailCallOpt) |
| return false; |
| |
| // Let SDISel handle vararg functions. |
| const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| if (FTy->isVarArg()) |
| return false; |
| |
| // Fast-isel doesn't know about callee-pop yet. |
| if (Subtarget->IsCalleePop(FTy->isVarArg(), CC)) |
| return false; |
| |
| // Handle *simple* calls for now. |
| const Type *RetTy = CS.getType(); |
| EVT RetVT; |
| if (RetTy->isVoidTy()) |
| RetVT = MVT::isVoid; |
| else if (!isTypeLegal(RetTy, RetVT, true)) |
| return false; |
| |
| // Materialize callee address in a register. FIXME: GV address can be |
| // handled with a CALLpcrel32 instead. |
| X86AddressMode CalleeAM; |
| if (!X86SelectCallAddress(Callee, CalleeAM)) |
| return false; |
| unsigned CalleeOp = 0; |
| const GlobalValue *GV = 0; |
| if (CalleeAM.GV != 0) { |
| GV = CalleeAM.GV; |
| } else if (CalleeAM.Base.Reg != 0) { |
| CalleeOp = CalleeAM.Base.Reg; |
| } else |
| return false; |
| |
| // Allow calls which produce i1 results. |
| bool AndToI1 = false; |
| if (RetVT == MVT::i1) { |
| RetVT = MVT::i8; |
| AndToI1 = true; |
| } |
| |
| // Deal with call operands first. |
| SmallVector<const Value *, 8> ArgVals; |
| SmallVector<unsigned, 8> Args; |
| SmallVector<EVT, 8> ArgVTs; |
| SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| Args.reserve(CS.arg_size()); |
| ArgVals.reserve(CS.arg_size()); |
| ArgVTs.reserve(CS.arg_size()); |
| ArgFlags.reserve(CS.arg_size()); |
| for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| unsigned Arg = getRegForValue(*i); |
| if (Arg == 0) |
| return false; |
| ISD::ArgFlagsTy Flags; |
| unsigned AttrInd = i - CS.arg_begin() + 1; |
| if (CS.paramHasAttr(AttrInd, Attribute::SExt)) |
| Flags.setSExt(); |
| if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| // FIXME: Only handle *easy* calls for now. |
| if (CS.paramHasAttr(AttrInd, Attribute::InReg) || |
| CS.paramHasAttr(AttrInd, Attribute::StructRet) || |
| CS.paramHasAttr(AttrInd, Attribute::Nest) || |
| CS.paramHasAttr(AttrInd, Attribute::ByVal)) |
| return false; |
| |
| const Type *ArgTy = (*i)->getType(); |
| EVT ArgVT; |
| if (!isTypeLegal(ArgTy, ArgVT)) |
| return false; |
| unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| Args.push_back(Arg); |
| ArgVals.push_back(*i); |
| ArgVTs.push_back(ArgVT); |
| ArgFlags.push_back(Flags); |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext()); |
| |
| // Allocate shadow area for Win64 |
| if (Subtarget->isTargetWin64()) { |
| CCInfo.AllocateStack(32, 8); |
| } |
| |
| CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Issue CALLSEQ_START |
| unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) |
| .addImm(NumBytes); |
| |
| // Process argument: walk the register/memloc assignments, inserting |
| // copies / loads. |
| SmallVector<unsigned, 4> RegArgs; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| unsigned Arg = Args[VA.getValNo()]; |
| EVT ArgVT = ArgVTs[VA.getValNo()]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: { |
| bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted; |
| Emitted = true; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::ZExt: { |
| bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted; |
| Emitted = true; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::AExt: { |
| bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), |
| Arg, ArgVT, Arg); |
| |
| assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::BCvt: { |
| unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(), |
| ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false); |
| assert(BC != 0 && "Failed to emit a bitcast!"); |
| Arg = BC; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| } |
| |
| if (VA.isRegLoc()) { |
| TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT); |
| bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, |
| VA.getLocReg(), Arg, RC, RC, DL); |
| assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; |
| Emitted = true; |
| RegArgs.push_back(VA.getLocReg()); |
| } else { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| X86AddressMode AM; |
| AM.Base.Reg = StackPtr; |
| AM.Disp = LocMemOffset; |
| const Value *ArgVal = ArgVals[VA.getValNo()]; |
| |
| // If this is a really simple value, emit this with the Value* version of |
| // X86FastEmitStore. If it isn't simple, we don't want to do this, as it |
| // can cause us to reevaluate the argument. |
| if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) |
| X86FastEmitStore(ArgVT, ArgVal, AM); |
| else |
| X86FastEmitStore(ArgVT, Arg, AM); |
| } |
| } |
| |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (Subtarget->isPICStyleGOT()) { |
| TargetRegisterClass *RC = X86::GR32RegisterClass; |
| unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, |
| X86::EBX, Base, RC, RC, DL); |
| assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; |
| Emitted = true; |
| } |
| |
| // Issue the call. |
| MachineInstrBuilder MIB; |
| if (CalleeOp) { |
| // Register-indirect call. |
| unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) |
| .addReg(CalleeOp); |
| |
| } else { |
| // Direct call. |
| assert(GV && "Not a direct call"); |
| unsigned CallOpc = |
| Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; |
| |
| // See if we need any target-specific flags on the GV operand. |
| unsigned char OpFlags = 0; |
| |
| // On ELF targets, in both X86-64 and X86-32 mode, direct calls to |
| // external symbols most go through the PLT in PIC mode. If the symbol |
| // has hidden or protected visibility, or if it is static or local, then |
| // we don't need to use the PLT - we can directly call it. |
| if (Subtarget->isTargetELF() && |
| TM.getRelocationModel() == Reloc::PIC_ && |
| GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { |
| OpFlags = X86II::MO_PLT; |
| } else if (Subtarget->isPICStyleStubAny() && |
| (GV->isDeclaration() || GV->isWeakForLinker()) && |
| Subtarget->getDarwinVers() < 9) { |
| // PC-relative references to external symbols should go through $stub, |
| // unless we're building with the leopard linker or later, which |
| // automatically synthesizes these stubs. |
| OpFlags = X86II::MO_DARWIN_STUB; |
| } |
| |
| |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) |
| .addGlobalAddress(GV, 0, OpFlags); |
| } |
| |
| // Add an implicit use GOT pointer in EBX. |
| if (Subtarget->isPICStyleGOT()) |
| MIB.addReg(X86::EBX); |
| |
| // Add implicit physical register uses to the call. |
| for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) |
| MIB.addReg(RegArgs[i]); |
| |
| // Issue CALLSEQ_END |
| unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) |
| .addImm(NumBytes).addImm(0); |
| |
| // Now handle call return value (if any). |
| SmallVector<unsigned, 4> UsedRegs; |
| if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext()); |
| CCInfo.AnalyzeCallResult(RetVT, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| assert(RVLocs.size() == 1 && "Can't handle multi-value calls!"); |
| EVT CopyVT = RVLocs[0].getValVT(); |
| TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); |
| TargetRegisterClass *SrcRC = DstRC; |
| |
| // If this is a call to a function that returns an fp value on the x87 fp |
| // stack, but where we prefer to use the value in xmm registers, copy it |
| // out as F80 and use a truncate to move it from fp stack reg to xmm reg. |
| if ((RVLocs[0].getLocReg() == X86::ST0 || |
| RVLocs[0].getLocReg() == X86::ST1) && |
| isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) { |
| CopyVT = MVT::f80; |
| SrcRC = X86::RSTRegisterClass; |
| DstRC = X86::RFP80RegisterClass; |
| } |
| |
| unsigned ResultReg = createResultReg(DstRC); |
| bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, ResultReg, |
| RVLocs[0].getLocReg(), DstRC, SrcRC, DL); |
| assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; |
| Emitted = true; |
| UsedRegs.push_back(RVLocs[0].getLocReg()); |
| |
| if (CopyVT != RVLocs[0].getValVT()) { |
| // Round the F80 the right size, which also moves to the appropriate xmm |
| // register. This is accomplished by storing the F80 value in memory and |
| // then loading it back. Ewww... |
| EVT ResVT = RVLocs[0].getValVT(); |
| unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; |
| unsigned MemSize = ResVT.getSizeInBits()/8; |
| int FI = MFI.CreateStackObject(MemSize, MemSize, false); |
| addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(Opc)), FI) |
| .addReg(ResultReg); |
| DstRC = ResVT == MVT::f32 |
| ? X86::FR32RegisterClass : X86::FR64RegisterClass; |
| Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; |
| ResultReg = createResultReg(DstRC); |
| addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(Opc), ResultReg), FI); |
| } |
| |
| if (AndToI1) { |
| // Mask out all but lowest bit for some call which produces an i1. |
| unsigned AndResult = createResultReg(X86::GR8RegisterClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); |
| ResultReg = AndResult; |
| } |
| |
| UpdateValueMap(I, ResultReg); |
| } |
| |
| // Set all unused physreg defs as dead. |
| static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
| |
| return true; |
| } |
| |
| |
| bool |
| X86FastISel::TargetSelectInstruction(const Instruction *I) { |
| switch (I->getOpcode()) { |
| default: break; |
| case Instruction::Load: |
| return X86SelectLoad(I); |
| case Instruction::Store: |
| return X86SelectStore(I); |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return X86SelectCmp(I); |
| case Instruction::ZExt: |
| return X86SelectZExt(I); |
| case Instruction::Br: |
| return X86SelectBranch(I); |
| case Instruction::Call: |
| return X86SelectCall(I); |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::Shl: |
| return X86SelectShift(I); |
| case Instruction::Select: |
| return X86SelectSelect(I); |
| case Instruction::Trunc: |
| return X86SelectTrunc(I); |
| case Instruction::FPExt: |
| return X86SelectFPExt(I); |
| case Instruction::FPTrunc: |
| return X86SelectFPTrunc(I); |
| case Instruction::ExtractValue: |
| return X86SelectExtractValue(I); |
| case Instruction::IntToPtr: // Deliberate fall-through. |
| case Instruction::PtrToInt: { |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(I->getType()); |
| if (DstVT.bitsGT(SrcVT)) |
| return X86SelectZExt(I); |
| if (DstVT.bitsLT(SrcVT)) |
| return X86SelectTrunc(I); |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) return false; |
| UpdateValueMap(I, Reg); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { |
| EVT VT; |
| if (!isTypeLegal(C->getType(), VT)) |
| return false; |
| |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = NULL; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| RC = X86::GR8RegisterClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| RC = X86::GR16RegisterClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| RC = X86::GR32RegisterClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| RC = X86::GR64RegisterClass; |
| break; |
| case MVT::f32: |
| if (Subtarget->hasSSE1()) { |
| Opc = X86::MOVSSrm; |
| RC = X86::FR32RegisterClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = X86::RFP32RegisterClass; |
| } |
| break; |
| case MVT::f64: |
| if (Subtarget->hasSSE2()) { |
| Opc = X86::MOVSDrm; |
| RC = X86::FR64RegisterClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = X86::RFP64RegisterClass; |
| } |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return false; |
| } |
| |
| // Materialize addresses with LEA instructions. |
| if (isa<GlobalValue>(C)) { |
| X86AddressMode AM; |
| if (X86SelectAddress(C, AM)) { |
| if (TLI.getPointerTy() == MVT::i32) |
| Opc = X86::LEA32r; |
| else |
| Opc = X86::LEA64r; |
| unsigned ResultReg = createResultReg(RC); |
| addLeaAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(Opc), ResultReg), AM); |
| return ResultReg; |
| } |
| return 0; |
| } |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = TD.getPrefTypeAlignment(C->getType()); |
| if (Align == 0) { |
| // Alignment of vector types. FIXME! |
| Align = TD.getTypeAllocSize(C->getType()); |
| } |
| |
| // x86-32 PIC requires a PIC base register for constant pools. |
| unsigned PICBase = 0; |
| unsigned char OpFlag = 0; |
| if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic |
| OpFlag = X86II::MO_PIC_BASE_OFFSET; |
| PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| } else if (Subtarget->isPICStyleGOT()) { |
| OpFlag = X86II::MO_GOTOFF; |
| PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| } else if (Subtarget->isPICStyleRIPRel() && |
| TM.getCodeModel() == CodeModel::Small) { |
| PICBase = X86::RIP; |
| } |
| |
| // Create the load from the constant pool. |
| unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); |
| unsigned ResultReg = createResultReg(RC); |
| addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(Opc), ResultReg), |
| MCPOffset, PICBase, OpFlag); |
| |
| return ResultReg; |
| } |
| |
| unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { |
| // Fail on dynamic allocas. At this point, getRegForValue has already |
| // checked its CSE maps, so if we're here trying to handle a dynamic |
| // alloca, we're not going to succeed. X86SelectAddress has a |
| // check for dynamic allocas, because it's called directly from |
| // various places, but TargetMaterializeAlloca also needs a check |
| // in order to avoid recursion between getRegForValue, |
| // X86SelectAddrss, and TargetMaterializeAlloca. |
| if (!FuncInfo.StaticAllocaMap.count(C)) |
| return 0; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(C, AM)) |
| return 0; |
| unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; |
| TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); |
| unsigned ResultReg = createResultReg(RC); |
| addLeaAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, |
| TII.get(Opc), ResultReg), AM); |
| return ResultReg; |
| } |
| |
| namespace llvm { |
| llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) { |
| return new X86FastISel(funcInfo); |
| } |
| } |