| //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef X86ISELLOWERING_H |
| #define X86ISELLOWERING_H |
| |
| #include "X86Subtarget.h" |
| #include "X86RegisterInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| |
| namespace llvm { |
| namespace X86ISD { |
| // X86 Specific DAG Nodes |
| enum NodeType { |
| // Start the numbering where the builtin ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// BSF - Bit scan forward. |
| /// BSR - Bit scan reverse. |
| BSF, |
| BSR, |
| |
| /// SHLD, SHRD - Double shift instructions. These correspond to |
| /// X86::SHLDxx and X86::SHRDxx instructions. |
| SHLD, |
| SHRD, |
| |
| /// FAND - Bitwise logical AND of floating point values. This corresponds |
| /// to X86::ANDPS or X86::ANDPD. |
| FAND, |
| |
| /// FOR - Bitwise logical OR of floating point values. This corresponds |
| /// to X86::ORPS or X86::ORPD. |
| FOR, |
| |
| /// FXOR - Bitwise logical XOR of floating point values. This corresponds |
| /// to X86::XORPS or X86::XORPD. |
| FXOR, |
| |
| /// FSRL - Bitwise logical right shift of floating point values. These |
| /// corresponds to X86::PSRLDQ. |
| FSRL, |
| |
| /// CALL - These operations represent an abstract X86 call |
| /// instruction, which includes a bunch of information. In particular the |
| /// operands of these node are: |
| /// |
| /// #0 - The incoming token chain |
| /// #1 - The callee |
| /// #2 - The number of arg bytes the caller pushes on the stack. |
| /// #3 - The number of arg bytes the callee pops off the stack. |
| /// #4 - The value to pass in AL/AX/EAX (optional) |
| /// #5 - The value to pass in DL/DX/EDX (optional) |
| /// |
| /// The result values of these nodes are: |
| /// |
| /// #0 - The outgoing token chain |
| /// #1 - The first register result value (optional) |
| /// #2 - The second register result value (optional) |
| /// |
| CALL, |
| |
| /// RDTSC_DAG - This operation implements the lowering for |
| /// readcyclecounter |
| RDTSC_DAG, |
| |
| /// X86 compare and logical compare instructions. |
| CMP, COMI, UCOMI, |
| |
| /// X86 bit-test instructions. |
| BT, |
| |
| /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS |
| /// operand, usually produced by a CMP instruction. |
| SETCC, |
| |
| // Same as SETCC except it's materialized with a sbb and the value is all |
| // one's or all zero's. |
| SETCC_CARRY, // R = carry_bit ? ~0 : 0 |
| |
| /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. |
| /// Operands are two FP values to compare; result is a mask of |
| /// 0s or 1s. Generally DTRT for C/C++ with NaNs. |
| FSETCCss, FSETCCsd, |
| |
| /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values, |
| /// result in an integer GPR. Needs masking for scalar result. |
| FGETSIGNx86, |
| |
| /// X86 conditional moves. Operand 0 and operand 1 are the two values |
| /// to select from. Operand 2 is the condition code, and operand 3 is the |
| /// flag operand produced by a CMP or TEST instruction. It also writes a |
| /// flag result. |
| CMOV, |
| |
| /// X86 conditional branches. Operand 0 is the chain operand, operand 1 |
| /// is the block to branch if condition is true, operand 2 is the |
| /// condition code, and operand 3 is the flag operand produced by a CMP |
| /// or TEST instruction. |
| BRCOND, |
| |
| /// Return with a flag operand. Operand 0 is the chain operand, operand |
| /// 1 is the number of bytes of stack to pop. |
| RET_FLAG, |
| |
| /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. |
| REP_STOS, |
| |
| /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. |
| REP_MOVS, |
| |
| /// GlobalBaseReg - On Darwin, this node represents the result of the popl |
| /// at function entry, used for PIC code. |
| GlobalBaseReg, |
| |
| /// Wrapper - A wrapper node for TargetConstantPool, |
| /// TargetExternalSymbol, and TargetGlobalAddress. |
| Wrapper, |
| |
| /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP |
| /// relative displacements. |
| WrapperRIP, |
| |
| /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word |
| /// of an XMM vector, with the high word zero filled. |
| MOVQ2DQ, |
| |
| /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector |
| /// to an MMX vector. If you think this is too close to the previous |
| /// mnemonic, so do I; blame Intel. |
| MOVDQ2Q, |
| |
| /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to |
| /// i32, corresponds to X86::PEXTRB. |
| PEXTRB, |
| |
| /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to |
| /// i32, corresponds to X86::PEXTRW. |
| PEXTRW, |
| |
| /// INSERTPS - Insert any element of a 4 x float vector into any element |
| /// of a destination 4 x floatvector. |
| INSERTPS, |
| |
| /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, |
| /// corresponds to X86::PINSRB. |
| PINSRB, |
| |
| /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, |
| /// corresponds to X86::PINSRW. |
| PINSRW, MMX_PINSRW, |
| |
| /// PSHUFB - Shuffle 16 8-bit values within a vector. |
| PSHUFB, |
| |
| /// PANDN - and with not'd value. |
| PANDN, |
| |
| /// PSIGNB/W/D - Copy integer sign. |
| PSIGNB, PSIGNW, PSIGND, |
| |
| /// PBLENDVB - Variable blend |
| PBLENDVB, |
| |
| /// FMAX, FMIN - Floating point max and min. |
| /// |
| FMAX, FMIN, |
| |
| /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal |
| /// approximation. Note that these typically require refinement |
| /// in order to obtain suitable precision. |
| FRSQRT, FRCP, |
| |
| // TLSADDR - Thread Local Storage. |
| TLSADDR, |
| |
| // TLSCALL - Thread Local Storage. When calling to an OS provided |
| // thunk at the address from an earlier relocation. |
| TLSCALL, |
| |
| // EH_RETURN - Exception Handling helpers. |
| EH_RETURN, |
| |
| /// TC_RETURN - Tail call return. |
| /// operand #0 chain |
| /// operand #1 callee (register or absolute) |
| /// operand #2 stack adjustment |
| /// operand #3 optional in flag |
| TC_RETURN, |
| |
| // VZEXT_MOVL - Vector move low and zero extend. |
| VZEXT_MOVL, |
| |
| // VSHL, VSRL - Vector logical left / right shift. |
| VSHL, VSRL, |
| |
| // CMPPD, CMPPS - Vector double/float comparison. |
| // CMPPD, CMPPS - Vector double/float comparison. |
| CMPPD, CMPPS, |
| |
| // PCMP* - Vector integer comparisons. |
| PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ, |
| PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ, |
| |
| // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results. |
| ADD, SUB, ADC, SBB, SMUL, |
| INC, DEC, OR, XOR, AND, |
| |
| UMUL, // LOW, HI, FLAGS = umul LHS, RHS |
| |
| // MUL_IMM - X86 specific multiply by immediate. |
| MUL_IMM, |
| |
| // PTEST - Vector bitwise comparisons |
| PTEST, |
| |
| // TESTP - Vector packed fp sign bitwise comparisons |
| TESTP, |
| |
| // Several flavors of instructions with vector shuffle behaviors. |
| PALIGN, |
| PSHUFD, |
| PSHUFHW, |
| PSHUFLW, |
| PSHUFHW_LD, |
| PSHUFLW_LD, |
| SHUFPD, |
| SHUFPS, |
| MOVDDUP, |
| MOVSHDUP, |
| MOVSLDUP, |
| MOVSHDUP_LD, |
| MOVSLDUP_LD, |
| MOVLHPS, |
| MOVLHPD, |
| MOVHLPS, |
| MOVHLPD, |
| MOVLPS, |
| MOVLPD, |
| MOVSD, |
| MOVSS, |
| UNPCKLPS, |
| UNPCKLPD, |
| VUNPCKLPS, |
| VUNPCKLPD, |
| VUNPCKLPSY, |
| VUNPCKLPDY, |
| UNPCKHPS, |
| UNPCKHPD, |
| PUNPCKLBW, |
| PUNPCKLWD, |
| PUNPCKLDQ, |
| PUNPCKLQDQ, |
| PUNPCKHBW, |
| PUNPCKHWD, |
| PUNPCKHDQ, |
| PUNPCKHQDQ, |
| |
| // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack, |
| // according to %al. An operator is needed so that this can be expanded |
| // with control flow. |
| VASTART_SAVE_XMM_REGS, |
| |
| // WIN_ALLOCA - Windows's _chkstk call to do stack probing. |
| WIN_ALLOCA, |
| |
| // Memory barrier |
| MEMBARRIER, |
| MFENCE, |
| SFENCE, |
| LFENCE, |
| |
| // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, |
| // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - |
| // Atomic 64-bit binary operations. |
| ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, |
| ATOMSUB64_DAG, |
| ATOMOR64_DAG, |
| ATOMXOR64_DAG, |
| ATOMAND64_DAG, |
| ATOMNAND64_DAG, |
| ATOMSWAP64_DAG, |
| |
| // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap. |
| LCMPXCHG_DAG, |
| LCMPXCHG8_DAG, |
| |
| // VZEXT_LOAD - Load, scalar_to_vector, and zero extend. |
| VZEXT_LOAD, |
| |
| // FNSTCW16m - Store FP control world into i16 memory. |
| FNSTCW16m, |
| |
| /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the |
| /// integer destination in memory and a FP reg source. This corresponds |
| /// to the X86::FIST*m instructions and the rounding mode change stuff. It |
| /// has two inputs (token chain and address) and two outputs (int value |
| /// and token chain). |
| FP_TO_INT16_IN_MEM, |
| FP_TO_INT32_IN_MEM, |
| FP_TO_INT64_IN_MEM, |
| |
| /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the |
| /// integer source in memory and FP reg result. This corresponds to the |
| /// X86::FILD*m instructions. It has three inputs (token chain, address, |
| /// and source type) and two outputs (FP value and token chain). FILD_FLAG |
| /// also produces a flag). |
| FILD, |
| FILD_FLAG, |
| |
| /// FLD - This instruction implements an extending load to FP stack slots. |
| /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain |
| /// operand, ptr to load from, and a ValueType node indicating the type |
| /// to load to. |
| FLD, |
| |
| /// FST - This instruction implements a truncating store to FP stack |
| /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a |
| /// chain operand, value to store, address, and a ValueType to store it |
| /// as. |
| FST, |
| |
| /// VAARG_64 - This instruction grabs the address of the next argument |
| /// from a va_list. (reads and modifies the va_list in memory) |
| VAARG_64 |
| |
| // WARNING: Do not add anything in the end unless you want the node to |
| // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be |
| // thought as target memory ops! |
| }; |
| } |
| |
| /// Define some predicates that are used for node matching. |
| namespace X86 { |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFDMask(ShuffleVectorSDNode *N); |
| |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFHWMask(ShuffleVectorSDNode *N); |
| |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool isPSHUFLWMask(ShuffleVectorSDNode *N); |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| bool isSHUFPMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool isMOVHLPSMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, |
| /// <2, 3, 2, 3> |
| bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N); |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for MOVLP{S|D}. |
| bool isMOVLPMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for MOVHP{S|D}. |
| /// as well as MOVLHPS. |
| bool isMOVLHPSMask(ShuffleVectorSDNode *N); |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false); |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N); |
| |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, |
| /// <2, 2, 3, 3> |
| bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N); |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| bool isMOVLMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool isMOVSHDUPMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool isMOVSLDUPMask(ShuffleVectorSDNode *N); |
| |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVDDUP. |
| bool isMOVDDUPMask(ShuffleVectorSDNode *N); |
| |
| /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PALIGNR. |
| bool isPALIGNRMask(ShuffleVectorSDNode *N); |
| |
| /// isVEXTRACTF128Index - Return true if the specified |
| /// EXTRACT_SUBVECTOR operand specifies a vector extract that is |
| /// suitable for input to VEXTRACTF128. |
| bool isVEXTRACTF128Index(SDNode *N); |
| |
| /// isVINSERTF128Index - Return true if the specified |
| /// INSERT_SUBVECTOR operand specifies a subvector insert that is |
| /// suitable for input to VINSERTF128. |
| bool isVINSERTF128Index(SDNode *N); |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| /// instructions. |
| unsigned getShuffleSHUFImmediate(SDNode *N); |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction. |
| unsigned getShufflePSHUFHWImmediate(SDNode *N); |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction. |
| unsigned getShufflePSHUFLWImmediate(SDNode *N); |
| |
| /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle |
| /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. |
| unsigned getShufflePALIGNRImmediate(SDNode *N); |
| |
| /// getExtractVEXTRACTF128Immediate - Return the appropriate |
| /// immediate to extract the specified EXTRACT_SUBVECTOR index |
| /// with VEXTRACTF128 instructions. |
| unsigned getExtractVEXTRACTF128Immediate(SDNode *N); |
| |
| /// getInsertVINSERTF128Immediate - Return the appropriate |
| /// immediate to insert at the specified INSERT_SUBVECTOR index |
| /// with VINSERTF128 instructions. |
| unsigned getInsertVINSERTF128Immediate(SDNode *N); |
| |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| bool isZeroNode(SDValue Elt); |
| |
| /// isOffsetSuitableForCodeModel - Returns true of the given offset can be |
| /// fit into displacement field of the instruction. |
| bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, |
| bool hasSymbolicDisplacement = true); |
| |
| |
| /// isCalleePop - Determines whether the callee is required to pop its |
| /// own arguments. Callee pop is necessary to support tail calls. |
| bool isCalleePop(CallingConv::ID CallingConv, |
| bool is64Bit, bool IsVarArg, bool TailCallOpt); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // X86TargetLowering - X86 Implementation of the TargetLowering interface |
| class X86TargetLowering : public TargetLowering { |
| public: |
| explicit X86TargetLowering(X86TargetMachine &TM); |
| |
| virtual unsigned getJumpTableEncoding() const; |
| |
| virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; } |
| |
| virtual const MCExpr * |
| LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, unsigned uid, |
| MCContext &Ctx) const; |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| virtual SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const; |
| virtual const MCExpr * |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI, MCContext &Ctx) const; |
| |
| /// getStackPtrReg - Return the stack pointer register we are using: either |
| /// ESP or RSP. |
| unsigned getStackPtrReg() const { return X86StackPtr; } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. For X86, aggregates |
| /// that contains are placed at 16-byte boundaries while the rest are at |
| /// 4-byte boundaries. |
| virtual unsigned getByValTypeAlignment(const Type *Ty) const; |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If |
| /// 'NonScalarIntSafe' is true, that means it's safe to return a |
| /// non-scalar-integer type, e.g. empty string source, constant, or loaded |
| /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is |
| /// constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| virtual EVT |
| getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, |
| bool NonScalarIntSafe, bool MemcpyStrSrc, |
| MachineFunction &MF) const; |
| |
| /// allowsUnalignedMemoryAccesses - Returns true if the target allows |
| /// unaligned memory accesses. of the specified type. |
| virtual bool allowsUnalignedMemoryAccesses(EVT VT) const { |
| return true; |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| /// |
| virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const; |
| |
| |
| virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| /// isTypeDesirableForOp - Return true if the target has native support for |
| /// the specified value type and it is 'desirable' to use the type for the |
| /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 |
| /// instruction encodings are longer and some i16 instructions are slow. |
| virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const; |
| |
| /// isTypeDesirable - Return true if the target has native support for the |
| /// specified value type and it is 'desirable' to use the type. e.g. On x86 |
| /// i16 is legal, but undesirable since i16 instruction encodings are longer |
| /// and some i16 instructions are slow. |
| virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const; |
| |
| virtual MachineBasicBlock * |
| EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *MBB) const; |
| |
| |
| /// getTargetNodeName - This method returns the name of a target specific |
| /// DAG node. |
| virtual const char *getTargetNodeName(unsigned Opcode) const; |
| |
| /// getSetCCResultType - Return the ISD::SETCC ValueType |
| virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const; |
| |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| /// in Mask are known to be either zero or one and return them in the |
| /// KnownZero/KnownOne bitsets. |
| virtual void computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const; |
| |
| // ComputeNumSignBitsForTargetNode - Determine the number of bits in the |
| // operation that are sign bits. |
| virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, |
| unsigned Depth) const; |
| |
| virtual bool |
| isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; |
| |
| SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; |
| |
| virtual bool ExpandInlineAsm(CallInst *CI) const; |
| |
| ConstraintType getConstraintType(const std::string &Constraint) const; |
| |
| /// Examine constraint string and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| virtual ConstraintWeight getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const; |
| |
| virtual const char *LowerXConstraint(EVT ConstraintVT) const; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. If hasMemory is |
| /// true it means one of the asm constraint of the inline asm instruction |
| /// being processed is 'm'. |
| virtual void LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const; |
| |
| /// getRegForInlineAsmConstraint - Given a physical register constraint |
| /// (e.g. {edx}), return the register number and the register class for the |
| /// register. This should only be used for C_Register constraints. On |
| /// error, this returns a register number of 0. |
| std::pair<unsigned, const TargetRegisterClass*> |
| getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const; |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const; |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in |
| /// register EAX to i16 by referencing its sub-register AX. |
| virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const; |
| virtual bool isTruncateFree(EVT VT1, EVT VT2) const; |
| |
| /// isZExtFree - Return true if any actual instruction that defines a |
| /// value of type Ty1 implicit zero-extends the value to Ty2 in the result |
| /// register. This does not necessarily include registers defined in |
| /// unknown ways, such as incoming arguments, or copies from unknown |
| /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this |
| /// does not necessarily apply to truncate instructions. e.g. on x86-64, |
| /// all instructions that define 32-bit values implicit zero-extend the |
| /// result out to 64 bits. |
| virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const; |
| virtual bool isZExtFree(EVT VT1, EVT VT2) const; |
| |
| /// isNarrowingProfitable - Return true if it's profitable to narrow |
| /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow |
| /// from i32 to i8 but not from i32 to i16. |
| virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const; |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const; |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask |
| /// values are assumed to be legal. |
| virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask, |
| EVT VT) const; |
| |
| /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is |
| /// used by Targets can use this to indicate if there is a suitable |
| /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant |
| /// pool entry. |
| virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, |
| EVT VT) const; |
| |
| /// ShouldShrinkFPConstant - If true, then instruction selection should |
| /// seek to shrink the FP constant of the specified type to a smaller type |
| /// in order to save space and / or reduce runtime. |
| virtual bool ShouldShrinkFPConstant(EVT VT) const { |
| // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more |
| // expensive than a straight movsd. On the other hand, it's important to |
| // shrink long double fp constant since fldt is very slow. |
| return !X86ScalarSSEf64 || VT == MVT::f80; |
| } |
| |
| const X86Subtarget* getSubtarget() const { |
| return Subtarget; |
| } |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(EVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 |
| } |
| |
| /// createFastISel - This method returns a target specific FastISel object, |
| /// or null if the target does not support "fast" ISel. |
| virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const; |
| |
| /// getStackCookieLocation - Return true if the target stores stack |
| /// protector cookies at a fixed offset in some non-standard address |
| /// space, and populates the address space and offset as |
| /// appropriate. |
| virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const; |
| |
| SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, |
| SelectionDAG &DAG) const; |
| |
| protected: |
| std::pair<const TargetRegisterClass*, uint8_t> |
| findRepresentativeClass(EVT VT) const; |
| |
| private: |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| const X86RegisterInfo *RegInfo; |
| const TargetData *TD; |
| |
| /// X86StackPtr - X86 physical register used as stack ptr. |
| unsigned X86StackPtr; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf32; |
| bool X86ScalarSSEf64; |
| |
| /// LegalFPImmediates - A list of legal fp immediates. |
| std::vector<APFloat> LegalFPImmediates; |
| |
| /// addLegalFPImmediate - Indicate that this x86 target can instruction |
| /// select the specified FP immediate natively. |
| void addLegalFPImmediate(const APFloat& Imm) { |
| LegalFPImmediates.push_back(Imm); |
| } |
| |
| SDValue LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| SDValue LowerMemArgument(SDValue Chain, |
| CallingConv::ID CallConv, |
| const SmallVectorImpl<ISD::InputArg> &ArgInfo, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, MachineFrameInfo *MFI, |
| unsigned i) const; |
| SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const; |
| |
| // Call lowering helpers. |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const; |
| bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; |
| SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, |
| SDValue Chain, bool IsTailCall, bool Is64Bit, |
| int FPDiff, DebugLoc dl) const; |
| |
| unsigned GetAlignedArgumentStackSize(unsigned StackSize, |
| SelectionDAG &DAG) const; |
| |
| std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, |
| bool isSigned) const; |
| |
| SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, |
| SelectionDAG &DAG) const; |
| SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, |
| int64_t Offset, SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const; |
| SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerToBT(SDValue And, ISD::CondCode CC, |
| DebugLoc dl, SelectionDAG &DAG) const; |
| SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const; |
| |
| // Utility functions to help LowerVECTOR_SHUFFLE |
| SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const; |
| |
| virtual SDValue |
| LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| virtual SDValue |
| LowerCall(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, bool &isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| |
| virtual SDValue |
| LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const; |
| |
| virtual bool isUsedByReturnOnly(SDNode *N) const; |
| |
| virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; |
| |
| virtual EVT |
| getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, |
| ISD::NodeType ExtendKind) const; |
| |
| virtual bool |
| CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const; |
| |
| void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG, unsigned NewOp) const; |
| |
| /// Utility function to emit string processing sse4.2 instructions |
| /// that return in xmm0. |
| /// This takes the instruction to expand, the associated machine basic |
| /// block, the number of args, and whether or not the second arg is |
| /// in memory or not. |
| MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB, |
| unsigned argNum, bool inMem) const; |
| |
| /// Utility functions to emit monitor and mwait instructions. These |
| /// need to make sure that the arguments to the intrinsic are in the |
| /// correct registers. |
| MachineBasicBlock *EmitMonitor(MachineInstr *MI, |
| MachineBasicBlock *BB) const; |
| MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const; |
| |
| /// Utility function to emit atomic bitwise operations (and, or, xor). |
| /// It takes the bitwise instruction to expand, the associated machine basic |
| /// block, and the associated X86 opcodes for reg/reg and reg/imm. |
| MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter( |
| MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned regOpc, |
| unsigned immOpc, |
| unsigned loadOpc, |
| unsigned cxchgOpc, |
| unsigned notOpc, |
| unsigned EAXreg, |
| TargetRegisterClass *RC, |
| bool invSrc = false) const; |
| |
| MachineBasicBlock *EmitAtomicBit6432WithCustomInserter( |
| MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned regOpcL, |
| unsigned regOpcH, |
| unsigned immOpcL, |
| unsigned immOpcH, |
| bool invSrc = false) const; |
| |
| /// Utility function to emit atomic min and max. It takes the min/max |
| /// instruction to expand, the associated basic block, and the associated |
| /// cmov opcode for moving the min or max value. |
| MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr, |
| MachineBasicBlock *BB, |
| unsigned cmovOpc) const; |
| |
| // Utility function to emit the low-level va_arg code for X86-64. |
| MachineBasicBlock *EmitVAARG64WithCustomInserter( |
| MachineInstr *MI, |
| MachineBasicBlock *MBB) const; |
| |
| /// Utility function to emit the xmm reg save portion of va_start. |
| MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter( |
| MachineInstr *BInstr, |
| MachineBasicBlock *BB) const; |
| |
| MachineBasicBlock *EmitLoweredSelect(MachineInstr *I, |
| MachineBasicBlock *BB) const; |
| |
| MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI, |
| MachineBasicBlock *BB) const; |
| |
| MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, |
| MachineBasicBlock *BB) const; |
| |
| MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI, |
| MachineBasicBlock *BB) const; |
| |
| /// Emit nodes that will be selected as "test Op0,Op0", or something |
| /// equivalent, for use with the given x86 condition code. |
| SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const; |
| |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something |
| /// equivalent, for use with the given x86 condition code. |
| SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, |
| SelectionDAG &DAG) const; |
| }; |
| |
| namespace X86 { |
| FastISel *createFastISel(FunctionLoweringInfo &funcInfo); |
| } |
| } |
| |
| #endif // X86ISELLOWERING_H |