| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a pattern matching instruction selector for PowerPC, |
| // converting from a legalized dag to a PPC dag. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPC.h" |
| #include "PPCTargetMachine.h" |
| #include "PPCISelLowering.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); |
| Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); |
| |
| //===--------------------------------------------------------------------===// |
| /// PPCDAGToDAGISel - PPC specific code to select PPC machine |
| /// instructions for SelectionDAG operations. |
| /// |
| class PPCDAGToDAGISel : public SelectionDAGISel { |
| PPCTargetLowering PPCLowering; |
| unsigned GlobalBaseReg; |
| public: |
| PPCDAGToDAGISel(TargetMachine &TM) |
| : SelectionDAGISel(PPCLowering), PPCLowering(TM) {} |
| |
| virtual bool runOnFunction(Function &Fn) { |
| // Make sure we re-emit a set of the global base reg if necessary |
| GlobalBaseReg = 0; |
| return SelectionDAGISel::runOnFunction(Fn); |
| } |
| |
| /// getI32Imm - Return a target constant with the specified value, of type |
| /// i32. |
| inline SDOperand getI32Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC |
| /// base register. Return the virtual register that holds this value. |
| SDOperand getGlobalBaseReg(); |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| SDOperand Select(SDOperand Op); |
| |
| SDNode *SelectBitfieldInsert(SDNode *N); |
| |
| /// SelectCC - Select a comparison of the specified values with the |
| /// specified condition code, returning the CR# of the expression. |
| SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); |
| |
| /// SelectAddr - Given the specified address, return the two operands for a |
| /// load/store instruction, and return true if it should be an indexed [r+r] |
| /// operation. |
| bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); |
| |
| /// SelectAddrIndexed - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation, rather than possibly |
| /// returning [r+imm] as SelectAddr may. |
| void SelectAddrIndexed(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); |
| |
| SDOperand BuildSDIVSequence(SDNode *N); |
| SDOperand BuildUDIVSequence(SDNode *N); |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); |
| |
| virtual const char *getPassName() const { |
| return "PowerPC DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "PPCGenDAGISel.inc" |
| |
| private: |
| SDOperand SelectDYNAMIC_STACKALLOC(SDOperand Op); |
| SDOperand SelectADD_PARTS(SDOperand Op); |
| SDOperand SelectSUB_PARTS(SDOperand Op); |
| SDOperand SelectSETCC(SDOperand Op); |
| SDOperand SelectCALL(SDOperand Op); |
| }; |
| } |
| |
| /// InstructionSelectBasicBlock - This callback is invoked by |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. |
| void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { |
| DEBUG(BB->dump()); |
| |
| // The selection process is inherently a bottom-up recursive process (users |
| // select their uses before themselves). Given infinite stack space, we |
| // could just start selecting on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, select the entry node, then all its uses, |
| // iteratively instead of recursively. |
| std::vector<SDOperand> Worklist; |
| Worklist.push_back(DAG.getEntryNode()); |
| |
| // Note that we can do this in the PPC target (scanning forward across token |
| // chain edges) because no nodes ever get folded across these edges. On a |
| // target like X86 which supports load/modify/store operations, this would |
| // have to be more careful. |
| while (!Worklist.empty()) { |
| SDOperand Node = Worklist.back(); |
| Worklist.pop_back(); |
| |
| // Chose from the least deep of the top two nodes. |
| if (!Worklist.empty() && |
| Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) |
| std::swap(Worklist.back(), Node); |
| |
| if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && |
| Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) || |
| CodeGenMap.count(Node)) continue; |
| |
| for (SDNode::use_iterator UI = Node.Val->use_begin(), |
| E = Node.Val->use_end(); UI != E; ++UI) { |
| // Scan the values. If this use has a value that is a token chain, add it |
| // to the worklist. |
| SDNode *User = *UI; |
| for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) |
| if (User->getValueType(i) == MVT::Other) { |
| Worklist.push_back(SDOperand(User, i)); |
| break; |
| } |
| } |
| |
| // Finally, legalize this node. |
| Select(Node); |
| } |
| |
| // Select target instructions for the DAG. |
| DAG.setRoot(Select(DAG.getRoot())); |
| CodeGenMap.clear(); |
| DAG.RemoveDeadNodes(); |
| |
| // Emit machine code to BB. |
| ScheduleAndEmitDAG(DAG); |
| } |
| |
| /// getGlobalBaseReg - Output the instructions required to put the |
| /// base address to use for accessing globals into a register. |
| /// |
| SDOperand PPCDAGToDAGISel::getGlobalBaseReg() { |
| if (!GlobalBaseReg) { |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = BB->getParent()->front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| SSARegMap *RegMap = BB->getParent()->getSSARegMap(); |
| // FIXME: when we get to LP64, we will need to create the appropriate |
| // type of register here. |
| GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass); |
| BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); |
| BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg); |
| } |
| return CurDAG->getRegister(GlobalBaseReg, MVT::i32); |
| } |
| |
| |
| // isIntImmediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isIntImmediate(SDNode *N, unsigned& Imm) { |
| if (N->getOpcode() == ISD::Constant) { |
| Imm = cast<ConstantSDNode>(N)->getValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isOprShiftImm - Returns true if the specified operand is a shift opcode with |
| // a immediate shift count less than 32. |
| static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) { |
| Opc = N->getOpcode(); |
| return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) && |
| isIntImmediate(N->getOperand(1).Val, SH) && SH < 32; |
| } |
| |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with |
| // any number of 0s on either side. The 1s are allowed to wrap from LSB to |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is |
| // not, since all 1s are not contiguous. |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { |
| if (isShiftedMask_32(Val)) { |
| // look for the first non-zero bit |
| MB = CountLeadingZeros_32(Val); |
| // look for the first zero bit after the run of ones |
| ME = CountLeadingZeros_32((Val - 1) ^ Val); |
| return true; |
| } else { |
| Val = ~Val; // invert mask |
| if (isShiftedMask_32(Val)) { |
| // effectively look for the first zero bit |
| ME = CountLeadingZeros_32(Val) - 1; |
| // effectively look for the first one bit after the run of zeros |
| MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; |
| return true; |
| } |
| } |
| // no run present |
| return false; |
| } |
| |
| // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate |
| // and mask opcode and mask operation. |
| static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask, |
| unsigned &SH, unsigned &MB, unsigned &ME) { |
| // Don't even go down this path for i64, since different logic will be |
| // necessary for rldicl/rldicr/rldimi. |
| if (N->getValueType(0) != MVT::i32) |
| return false; |
| |
| unsigned Shift = 32; |
| unsigned Indeterminant = ~0; // bit mask marking indeterminant results |
| unsigned Opcode = N->getOpcode(); |
| if (N->getNumOperands() != 2 || |
| !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31)) |
| return false; |
| |
| if (Opcode == ISD::SHL) { |
| // apply shift left to mask if it comes first |
| if (IsShiftMask) Mask = Mask << Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu << Shift); |
| } else if (Opcode == ISD::SRL) { |
| // apply shift right to mask if it comes first |
| if (IsShiftMask) Mask = Mask >> Shift; |
| // determine which bits are made indeterminant by shift |
| Indeterminant = ~(0xFFFFFFFFu >> Shift); |
| // adjust for the left rotate |
| Shift = 32 - Shift; |
| } else { |
| return false; |
| } |
| |
| // if the mask doesn't intersect any Indeterminant bits |
| if (Mask && !(Mask & Indeterminant)) { |
| SH = Shift; |
| // make sure the mask is still a mask (wrap arounds may not be) |
| return isRunOfOnes(Mask, MB, ME); |
| } |
| return false; |
| } |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm); |
| } |
| |
| // isOprNot - Returns true if the specified operand is an xor with immediate -1. |
| static bool isOprNot(SDNode *N) { |
| unsigned Imm; |
| return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1; |
| } |
| |
| // Immediate constant composers. |
| // Lo16 - grabs the lo 16 bits from a 32 bit constant. |
| // Hi16 - grabs the hi 16 bits from a 32 bit constant. |
| // HA16 - computes the hi bits required if the lo bits are add/subtracted in |
| // arithmethically. |
| static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; } |
| static unsigned Hi16(unsigned x) { return Lo16(x >> 16); } |
| static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); } |
| |
| // isIntImmediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isIntImmediate(SDOperand N, unsigned& Imm) { |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { |
| Imm = (unsigned)CN->getSignExtended(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// SelectBitfieldInsert - turn an or of two masked values into |
| /// the rotate left word immediate then mask insert (rlwimi) instruction. |
| /// Returns true on success, false if the caller still needs to select OR. |
| /// |
| /// Patterns matched: |
| /// 1. or shl, and 5. or and, and |
| /// 2. or and, shl 6. or shl, shr |
| /// 3. or shr, and 7. or shr, shl |
| /// 4. or and, shr |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { |
| bool IsRotate = false; |
| unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0; |
| unsigned Value; |
| |
| SDOperand Op0 = N->getOperand(0); |
| SDOperand Op1 = N->getOperand(1); |
| |
| unsigned Op0Opc = Op0.getOpcode(); |
| unsigned Op1Opc = Op1.getOpcode(); |
| |
| // Verify that we have the correct opcodes |
| if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) |
| return false; |
| if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) |
| return false; |
| |
| // Generate Mask value for Target |
| if (isIntImmediate(Op0.getOperand(1), Value)) { |
| switch(Op0Opc) { |
| case ISD::SHL: TgtMask <<= Value; break; |
| case ISD::SRL: TgtMask >>= Value; break; |
| case ISD::AND: TgtMask &= Value; break; |
| } |
| } else { |
| return 0; |
| } |
| |
| // Generate Mask value for Insert |
| if (!isIntImmediate(Op1.getOperand(1), Value)) |
| return 0; |
| |
| switch(Op1Opc) { |
| case ISD::SHL: |
| SH = Value; |
| InsMask <<= SH; |
| if (Op0Opc == ISD::SRL) IsRotate = true; |
| break; |
| case ISD::SRL: |
| SH = Value; |
| InsMask >>= SH; |
| SH = 32-SH; |
| if (Op0Opc == ISD::SHL) IsRotate = true; |
| break; |
| case ISD::AND: |
| InsMask &= Value; |
| break; |
| } |
| |
| // If both of the inputs are ANDs and one of them has a logical shift by |
| // constant as its input, make that AND the inserted value so that we can |
| // combine the shift into the rotate part of the rlwimi instruction |
| bool IsAndWithShiftOp = false; |
| if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { |
| if (Op1.getOperand(0).getOpcode() == ISD::SHL || |
| Op1.getOperand(0).getOpcode() == ISD::SRL) { |
| if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { |
| SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; |
| IsAndWithShiftOp = true; |
| } |
| } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || |
| Op0.getOperand(0).getOpcode() == ISD::SRL) { |
| if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { |
| std::swap(Op0, Op1); |
| std::swap(TgtMask, InsMask); |
| SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; |
| IsAndWithShiftOp = true; |
| } |
| } |
| } |
| |
| // Verify that the Target mask and Insert mask together form a full word mask |
| // and that the Insert mask is a run of set bits (which implies both are runs |
| // of set bits). Given that, Select the arguments and generate the rlwimi |
| // instruction. |
| unsigned MB, ME; |
| if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { |
| bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; |
| bool Op0IsAND = Op0Opc == ISD::AND; |
| // Check for rotlwi / rotrwi here, a special case of bitfield insert |
| // where both bitfield halves are sourced from the same value. |
| if (IsRotate && fullMask && |
| N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) { |
| Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, |
| Select(N->getOperand(0).getOperand(0)), |
| getI32Imm(SH), getI32Imm(0), getI32Imm(31)); |
| return Op0.Val; |
| } |
| SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0)) |
| : Select(Op0); |
| SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0)) |
| : Select(Op1.getOperand(0)); |
| Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2, |
| getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); |
| return Op0.Val; |
| } |
| return 0; |
| } |
| |
| /// SelectAddr - Given the specified address, return the two operands for a |
| /// load/store instruction, and return true if it should be an indexed [r+r] |
| /// operation. |
| bool PPCDAGToDAGISel::SelectAddr(SDOperand Addr, SDOperand &Op1, |
| SDOperand &Op2) { |
| unsigned imm = 0; |
| if (Addr.getOpcode() == ISD::ADD) { |
| if (isIntImmediate(Addr.getOperand(1), imm) && isInt16(imm)) { |
| Op1 = getI32Imm(Lo16(imm)); |
| if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) { |
| ++FrameOff; |
| Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| } else { |
| Op2 = Select(Addr.getOperand(0)); |
| } |
| return false; |
| } else if (Addr.getOperand(1).getOpcode() == PPCISD::Lo) { |
| // Match LOAD (ADD (X, Lo(G))). |
| assert(!cast<ConstantSDNode>(Addr.getOperand(1).getOperand(1))->getValue() |
| && "Cannot handle constant offsets yet!"); |
| Op1 = Addr.getOperand(1).getOperand(0); // The global address. |
| assert(Op1.getOpcode() == ISD::TargetGlobalAddress); |
| Op2 = Select(Addr.getOperand(0)); |
| return false; // [&g+r] |
| } else { |
| Op1 = Select(Addr.getOperand(0)); |
| Op2 = Select(Addr.getOperand(1)); |
| return true; // [r+r] |
| } |
| } |
| |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Op1 = getI32Imm(0); |
| Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| return false; |
| } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Addr)) { |
| Op1 = Addr; |
| if (PICEnabled) |
| Op2 = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),Op1); |
| else |
| Op2 = CurDAG->getTargetNode(PPC::LIS, MVT::i32, Op1); |
| return false; |
| } |
| Op1 = getI32Imm(0); |
| Op2 = Select(Addr); |
| return false; |
| } |
| |
| /// SelectAddrIndexed - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation, rather than possibly |
| /// returning [r+imm] as SelectAddr may. |
| void PPCDAGToDAGISel::SelectAddrIndexed(SDOperand Addr, SDOperand &Op1, |
| SDOperand &Op2) { |
| if (Addr.getOpcode() == ISD::ADD) { |
| Op1 = Select(Addr.getOperand(0)); |
| Op2 = Select(Addr.getOperand(1)); |
| return; |
| } |
| |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Op1 = CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(0)); |
| Op2 = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32); |
| return; |
| } |
| Op1 = CurDAG->getTargetNode(PPC::LI, MVT::i32, getI32Imm(0)); |
| Op2 = Select(Addr); |
| } |
| |
| /// SelectCC - Select a comparison of the specified values with the specified |
| /// condition code, returning the CR# of the expression. |
| SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS, |
| ISD::CondCode CC) { |
| // Always select the LHS. |
| LHS = Select(LHS); |
| |
| // Use U to determine whether the SETCC immediate range is signed or not. |
| if (MVT::isInteger(LHS.getValueType())) { |
| bool U = ISD::isUnsignedIntSetCC(CC); |
| unsigned Imm; |
| if (isIntImmediate(RHS, Imm) && |
| ((U && isUInt16(Imm)) || (!U && isInt16(Imm)))) |
| return CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI, MVT::i32, |
| LHS, getI32Imm(Lo16(Imm))); |
| return CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32, |
| LHS, Select(RHS)); |
| } else if (LHS.getValueType() == MVT::f32) { |
| return CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, Select(RHS)); |
| } else { |
| return CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, Select(RHS)); |
| } |
| } |
| |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding |
| /// to Condition. |
| static unsigned getBCCForSetCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETOEQ: // FIXME: This is incorrect see PR642. |
| case ISD::SETEQ: return PPC::BEQ; |
| case ISD::SETONE: // FIXME: This is incorrect see PR642. |
| case ISD::SETNE: return PPC::BNE; |
| case ISD::SETOLT: // FIXME: This is incorrect see PR642. |
| case ISD::SETULT: |
| case ISD::SETLT: return PPC::BLT; |
| case ISD::SETOLE: // FIXME: This is incorrect see PR642. |
| case ISD::SETULE: |
| case ISD::SETLE: return PPC::BLE; |
| case ISD::SETOGT: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGT: |
| case ISD::SETGT: return PPC::BGT; |
| case ISD::SETOGE: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGE: |
| case ISD::SETGE: return PPC::BGE; |
| |
| case ISD::SETO: return PPC::BUN; |
| case ISD::SETUO: return PPC::BNU; |
| } |
| return 0; |
| } |
| |
| /// getCRIdxForSetCC - Return the index of the condition register field |
| /// associated with the SetCC condition, and whether or not the field is |
| /// treated as inverted. That is, lt = 0; ge = 0 inverted. |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition!"); abort(); |
| case ISD::SETOLT: // FIXME: This is incorrect see PR642. |
| case ISD::SETULT: |
| case ISD::SETLT: Inv = false; return 0; |
| case ISD::SETOGE: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGE: |
| case ISD::SETGE: Inv = true; return 0; |
| case ISD::SETOGT: // FIXME: This is incorrect see PR642. |
| case ISD::SETUGT: |
| case ISD::SETGT: Inv = false; return 1; |
| case ISD::SETOLE: // FIXME: This is incorrect see PR642. |
| case ISD::SETULE: |
| case ISD::SETLE: Inv = true; return 1; |
| case ISD::SETOEQ: // FIXME: This is incorrect see PR642. |
| case ISD::SETEQ: Inv = false; return 2; |
| case ISD::SETONE: // FIXME: This is incorrect see PR642. |
| case ISD::SETNE: Inv = true; return 2; |
| case ISD::SETO: Inv = true; return 3; |
| case ISD::SETUO: Inv = false; return 3; |
| } |
| return 0; |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) { |
| SDNode *N = Op.Val; |
| |
| // FIXME: We are currently ignoring the requested alignment for handling |
| // greater than the stack alignment. This will need to be revisited at some |
| // point. Align = N.getOperand(2); |
| if (!isa<ConstantSDNode>(N->getOperand(2)) || |
| cast<ConstantSDNode>(N->getOperand(2))->getValue() != 0) { |
| std::cerr << "Cannot allocate stack object with greater alignment than" |
| << " the stack alignment yet!"; |
| abort(); |
| } |
| SDOperand Chain = Select(N->getOperand(0)); |
| SDOperand Amt = Select(N->getOperand(1)); |
| |
| SDOperand R1Reg = CurDAG->getRegister(PPC::R1, MVT::i32); |
| |
| SDOperand R1Val = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); |
| Chain = R1Val.getValue(1); |
| |
| // Subtract the amount (guaranteed to be a multiple of the stack alignment) |
| // from the stack pointer, giving us the result pointer. |
| SDOperand Result = CurDAG->getTargetNode(PPC::SUBF, MVT::i32, Amt, R1Val); |
| |
| // Copy this result back into R1. |
| Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R1Reg, Result); |
| |
| // Copy this result back out of R1 to make sure we're not using the stack |
| // space without decrementing the stack pointer. |
| Result = CurDAG->getCopyFromReg(Chain, PPC::R1, MVT::i32); |
| |
| // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. |
| CodeGenMap[Op.getValue(0)] = Result; |
| CodeGenMap[Op.getValue(1)] = Result.getValue(1); |
| return SDOperand(Result.Val, Op.ResNo); |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectADD_PARTS(SDOperand Op) { |
| SDNode *N = Op.Val; |
| SDOperand LHSL = Select(N->getOperand(0)); |
| SDOperand LHSH = Select(N->getOperand(1)); |
| |
| unsigned Imm; |
| bool ME = false, ZE = false; |
| if (isIntImmediate(N->getOperand(3), Imm)) { |
| ME = (signed)Imm == -1; |
| ZE = Imm == 0; |
| } |
| |
| std::vector<SDOperand> Result; |
| SDOperand CarryFromLo; |
| if (isIntImmediate(N->getOperand(2), Imm) && |
| ((signed)Imm >= -32768 || (signed)Imm < 32768)) { |
| // Codegen the low 32 bits of the add. Interestingly, there is no |
| // shifted form of add immediate carrying. |
| CarryFromLo = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| LHSL, getI32Imm(Imm)); |
| } else { |
| CarryFromLo = CurDAG->getTargetNode(PPC::ADDC, MVT::i32, MVT::Flag, |
| LHSL, Select(N->getOperand(2))); |
| } |
| CarryFromLo = CarryFromLo.getValue(1); |
| |
| // Codegen the high 32 bits, adding zero, minus one, or the full value |
| // along with the carry flag produced by addc/addic. |
| SDOperand ResultHi; |
| if (ZE) |
| ResultHi = CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, LHSH, CarryFromLo); |
| else if (ME) |
| ResultHi = CurDAG->getTargetNode(PPC::ADDME, MVT::i32, LHSH, CarryFromLo); |
| else |
| ResultHi = CurDAG->getTargetNode(PPC::ADDE, MVT::i32, LHSH, |
| Select(N->getOperand(3)), CarryFromLo); |
| Result.push_back(CarryFromLo.getValue(0)); |
| Result.push_back(ResultHi); |
| |
| CodeGenMap[Op.getValue(0)] = Result[0]; |
| CodeGenMap[Op.getValue(1)] = Result[1]; |
| return Result[Op.ResNo]; |
| } |
| SDOperand PPCDAGToDAGISel::SelectSUB_PARTS(SDOperand Op) { |
| SDNode *N = Op.Val; |
| SDOperand LHSL = Select(N->getOperand(0)); |
| SDOperand LHSH = Select(N->getOperand(1)); |
| SDOperand RHSL = Select(N->getOperand(2)); |
| SDOperand RHSH = Select(N->getOperand(3)); |
| |
| std::vector<SDOperand> Result; |
| Result.push_back(CurDAG->getTargetNode(PPC::SUBFC, MVT::i32, MVT::Flag, |
| RHSL, LHSL)); |
| Result.push_back(CurDAG->getTargetNode(PPC::SUBFE, MVT::i32, RHSH, LHSH, |
| Result[0].getValue(1))); |
| CodeGenMap[Op.getValue(0)] = Result[0]; |
| CodeGenMap[Op.getValue(1)] = Result[1]; |
| return Result[Op.ResNo]; |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) { |
| SDNode *N = Op.Val; |
| unsigned Imm; |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| if (isIntImmediate(N->getOperand(1), Imm)) { |
| // We can codegen setcc op, imm very efficiently compared to a brcond. |
| // Check for those cases here. |
| // setcc op, 0 |
| if (Imm == 0) { |
| SDOperand Op = Select(N->getOperand(0)); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| Op = CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op); |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27), |
| getI32Imm(5), getI32Imm(31)); |
| return SDOperand(N, 0); |
| case ISD::SETNE: { |
| SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(~0U)); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); |
| return SDOperand(N, 0); |
| } |
| case ISD::SETLT: |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| return SDOperand(N, 0); |
| case ISD::SETGT: { |
| SDOperand T = CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op); |
| T = CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op);; |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| return SDOperand(N, 0); |
| } |
| } |
| } else if (Imm == ~0U) { // setcc op, -1 |
| SDOperand Op = Select(N->getOperand(0)); |
| switch (CC) { |
| default: break; |
| case ISD::SETEQ: |
| Op = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(1)); |
| CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| CurDAG->getTargetNode(PPC::LI, MVT::i32, |
| getI32Imm(0)), |
| Op.getValue(1)); |
| return SDOperand(N, 0); |
| case ISD::SETNE: { |
| Op = CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op); |
| SDOperand AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| Op, getI32Imm(~0U)); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); |
| return SDOperand(N, 0); |
| } |
| case ISD::SETLT: { |
| SDOperand AD = CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op, |
| getI32Imm(1)); |
| SDOperand AN = CurDAG->getTargetNode(PPC::AND, MVT::i32, AD, Op); |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| return SDOperand(N, 0); |
| } |
| case ISD::SETGT: |
| Op = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op, getI32Imm(1), |
| getI32Imm(31), getI32Imm(31)); |
| CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); |
| return SDOperand(N, 0); |
| } |
| } |
| } |
| |
| bool Inv; |
| unsigned Idx = getCRIdxForSetCC(CC, Inv); |
| SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); |
| SDOperand IntCR; |
| |
| // Force the ccreg into CR7. |
| SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); |
| |
| std::vector<MVT::ValueType> VTs; |
| VTs.push_back(MVT::Other); |
| VTs.push_back(MVT::Flag); // NONSTANDARD CopyToReg node: defines a flag |
| std::vector<SDOperand> Ops; |
| Ops.push_back(CurDAG->getEntryNode()); |
| Ops.push_back(CR7Reg); |
| Ops.push_back(CCReg); |
| CCReg = CurDAG->getNode(ISD::CopyToReg, VTs, Ops).getValue(1); |
| |
| if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor()) |
| IntCR = CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg, CCReg); |
| else |
| IntCR = CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg); |
| |
| if (!Inv) { |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR, |
| getI32Imm((32-(3-Idx)) & 31), |
| getI32Imm(31), getI32Imm(31)); |
| } else { |
| SDOperand Tmp = |
| CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR, |
| getI32Imm((32-(3-Idx)) & 31), |
| getI32Imm(31),getI32Imm(31)); |
| CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); |
| } |
| |
| return SDOperand(N, 0); |
| } |
| |
| /// isCallCompatibleAddress - Return true if the specified 32-bit value is |
| /// representable in the immediate field of a Bx instruction. |
| static bool isCallCompatibleAddress(ConstantSDNode *C) { |
| int Addr = C->getValue(); |
| if (Addr & 3) return false; // Low 2 bits are implicitly zero. |
| return (Addr << 6 >> 6) == Addr; // Top 6 bits have to be sext of immediate. |
| } |
| |
| SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) { |
| SDNode *N = Op.Val; |
| SDOperand Chain = Select(N->getOperand(0)); |
| |
| unsigned CallOpcode; |
| std::vector<SDOperand> CallOperands; |
| |
| if (GlobalAddressSDNode *GASD = |
| dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) { |
| CallOpcode = PPC::BL; |
| CallOperands.push_back(N->getOperand(1)); |
| } else if (ExternalSymbolSDNode *ESSDN = |
| dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) { |
| CallOpcode = PPC::BL; |
| CallOperands.push_back(N->getOperand(1)); |
| } else if (isa<ConstantSDNode>(N->getOperand(1)) && |
| isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) { |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); |
| CallOpcode = PPC::BLA; |
| CallOperands.push_back(getI32Imm((int)C->getValue() >> 2)); |
| } else { |
| // Copy the callee address into the CTR register. |
| SDOperand Callee = Select(N->getOperand(1)); |
| Chain = CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee, Chain); |
| |
| // Copy the callee address into R12 on darwin. |
| SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32); |
| Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee); |
| |
| CallOperands.push_back(R12); |
| CallOpcode = PPC::BCTRL; |
| } |
| |
| unsigned GPR_idx = 0, FPR_idx = 0; |
| static const unsigned GPR[] = { |
| PPC::R3, PPC::R4, PPC::R5, PPC::R6, |
| PPC::R7, PPC::R8, PPC::R9, PPC::R10, |
| }; |
| static const unsigned FPR[] = { |
| PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, |
| PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 |
| }; |
| |
| SDOperand InFlag; // Null incoming flag value. |
| |
| for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) { |
| unsigned DestReg = 0; |
| MVT::ValueType RegTy = N->getOperand(i).getValueType(); |
| if (RegTy == MVT::i32) { |
| assert(GPR_idx < 8 && "Too many int args"); |
| DestReg = GPR[GPR_idx++]; |
| } else { |
| assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) && |
| "Unpromoted integer arg?"); |
| assert(FPR_idx < 13 && "Too many fp args"); |
| DestReg = FPR[FPR_idx++]; |
| } |
| |
| if (N->getOperand(i).getOpcode() != ISD::UNDEF) { |
| SDOperand Val = Select(N->getOperand(i)); |
| Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag); |
| InFlag = Chain.getValue(1); |
| CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy)); |
| } |
| } |
| |
| // Finally, once everything is in registers to pass to the call, emit the |
| // call itself. |
| if (InFlag.Val) |
| CallOperands.push_back(InFlag); // Strong dep on register copies. |
| else |
| CallOperands.push_back(Chain); // Weak dep on whatever occurs before |
| Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, |
| CallOperands); |
| |
| std::vector<SDOperand> CallResults; |
| |
| // If the call has results, copy the values out of the ret val registers. |
| switch (N->getValueType(0)) { |
| default: assert(0 && "Unexpected ret value!"); |
| case MVT::Other: break; |
| case MVT::i32: |
| if (N->getValueType(1) == MVT::i32) { |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| } else { |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32, |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0), |
| Chain.getValue(1)).getValue(1); |
| CallResults.push_back(Chain.getValue(0)); |
| break; |
| } |
| |
| CallResults.push_back(Chain); |
| for (unsigned i = 0, e = CallResults.size(); i != e; ++i) |
| CodeGenMap[Op.getValue(i)] = CallResults[i]; |
| return CallResults[Op.ResNo]; |
| } |
| |
| // Select - Convert the specified operand from a target-independent to a |
| // target-specific node if it hasn't already been changed. |
| SDOperand PPCDAGToDAGISel::Select(SDOperand Op) { |
| SDNode *N = Op.Val; |
| if (N->getOpcode() >= ISD::BUILTIN_OP_END && |
| N->getOpcode() < PPCISD::FIRST_NUMBER) |
| return Op; // Already selected. |
| |
| // If this has already been converted, use it. |
| std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op); |
| if (CGMI != CodeGenMap.end()) return CGMI->second; |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::DYNAMIC_STACKALLOC: return SelectDYNAMIC_STACKALLOC(Op); |
| case ISD::ADD_PARTS: return SelectADD_PARTS(Op); |
| case ISD::SUB_PARTS: return SelectSUB_PARTS(Op); |
| case ISD::SETCC: return SelectSETCC(Op); |
| case ISD::CALL: return SelectCALL(Op); |
| case ISD::TAILCALL: return SelectCALL(Op); |
| case PPCISD::GlobalBaseReg: return getGlobalBaseReg(); |
| |
| case ISD::FrameIndex: { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| if (N->hasOneUse()) { |
| CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32, |
| CurDAG->getTargetFrameIndex(FI, MVT::i32), |
| getI32Imm(0)); |
| return SDOperand(N, 0); |
| } |
| return CurDAG->getTargetNode(PPC::ADDI, MVT::i32, |
| CurDAG->getTargetFrameIndex(FI, MVT::i32), |
| getI32Imm(0)); |
| } |
| case ISD::ConstantPool: { |
| Constant *C = cast<ConstantPoolSDNode>(N)->get(); |
| SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i32); |
| if (PICEnabled) |
| Tmp = CurDAG->getTargetNode(PPC::ADDIS, MVT::i32, getGlobalBaseReg(),CPI); |
| else |
| Tmp = CurDAG->getTargetNode(PPC::LIS, MVT::i32, CPI); |
| if (N->hasOneUse()) { |
| CurDAG->SelectNodeTo(N, PPC::LA, MVT::i32, Tmp, CPI); |
| return SDOperand(N, 0); |
| } |
| return CurDAG->getTargetNode(PPC::LA, MVT::i32, Tmp, CPI); |
| } |
| case ISD::FADD: { |
| MVT::ValueType Ty = N->getValueType(0); |
| if (!NoExcessFPPrecision) { // Match FMA ops |
| if (N->getOperand(0).getOpcode() == ISD::FMUL && |
| N->getOperand(0).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, |
| Select(N->getOperand(0).getOperand(0)), |
| Select(N->getOperand(0).getOperand(1)), |
| Select(N->getOperand(1))); |
| return SDOperand(N, 0); |
| } else if (N->getOperand(1).getOpcode() == ISD::FMUL && |
| N->getOperand(1).hasOneUse()) { |
| ++FusedFP; // Statistic |
| CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS, Ty, |
| Select(N->getOperand(1).getOperand(0)), |
| Select(N->getOperand(1).getOperand(1)), |
| Select(N->getOperand(0))); |
| return SDOperand(N, 0); |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::FSUB: { |
| MVT::ValueType Ty = N->getValueType(0); |
| |
| if (!NoExcessFPPrecision) { // Match FMA ops |
| if (N->getOperand(0).getOpcode() == ISD::FMUL && |
| N->getOperand(0).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS, Ty, |
| Select(N->getOperand(0).getOperand(0)), |
| Select(N->getOperand(0).getOperand(1)), |
| Select(N->getOperand(1))); |
| return SDOperand(N, 0); |
| } else if (N->getOperand(1).getOpcode() == ISD::FMUL && |
| N->getOperand(1).Val->hasOneUse()) { |
| ++FusedFP; // Statistic |
| CurDAG->SelectNodeTo(N, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS, Ty, |
| Select(N->getOperand(1).getOperand(0)), |
| Select(N->getOperand(1).getOperand(1)), |
| Select(N->getOperand(0))); |
| return SDOperand(N, 0); |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SDIV: { |
| // FIXME: since this depends on the setting of the carry flag from the srawi |
| // we should really be making notes about that for the scheduler. |
| // FIXME: It sure would be nice if we could cheaply recognize the |
| // srl/add/sra pattern the dag combiner will generate for this as |
| // sra/addze rather than having to handle sdiv ourselves. oh well. |
| unsigned Imm; |
| if (isIntImmediate(N->getOperand(1), Imm)) { |
| if ((signed)Imm > 0 && isPowerOf2_32(Imm)) { |
| SDOperand Op = |
| CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, |
| Select(N->getOperand(0)), |
| getI32Imm(Log2_32(Imm))); |
| CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, |
| Op.getValue(0), Op.getValue(1)); |
| return SDOperand(N, 0); |
| } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) { |
| SDOperand Op = |
| CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag, |
| Select(N->getOperand(0)), |
| getI32Imm(Log2_32(-Imm))); |
| SDOperand PT = |
| CurDAG->getTargetNode(PPC::ADDZE, MVT::i32, Op.getValue(0), |
| Op.getValue(1)); |
| CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT); |
| return SDOperand(N, 0); |
| } |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::AND: { |
| unsigned Imm; |
| // If this is an and of a value rotated between 0 and 31 bits and then and'd |
| // with a mask, emit rlwinm |
| if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) || |
| isShiftedMask_32(~Imm))) { |
| SDOperand Val; |
| unsigned SH, MB, ME; |
| if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) { |
| Val = Select(N->getOperand(0).getOperand(0)); |
| } else if (Imm == 0) { |
| // AND X, 0 -> 0, not "rlwinm 32". |
| return Select(N->getOperand(1)); |
| } else { |
| Val = Select(N->getOperand(0)); |
| isRunOfOnes(Imm, MB, ME); |
| SH = 0; |
| } |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val, getI32Imm(SH), |
| getI32Imm(MB), getI32Imm(ME)); |
| return SDOperand(N, 0); |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::OR: |
| if (SDNode *I = SelectBitfieldInsert(N)) |
| return CodeGenMap[Op] = SDOperand(I, 0); |
| |
| // Other cases are autogenerated. |
| break; |
| case ISD::SHL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, |
| Select(N->getOperand(0).getOperand(0)), |
| getI32Imm(SH), getI32Imm(MB), getI32Imm(ME)); |
| return SDOperand(N, 0); |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::SRL: { |
| unsigned Imm, SH, MB, ME; |
| if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) && |
| isRotateAndMask(N, Imm, true, SH, MB, ME)) { |
| CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, |
| Select(N->getOperand(0).getOperand(0)), |
| getI32Imm(SH & 0x1F), getI32Imm(MB), getI32Imm(ME)); |
| return SDOperand(N, 0); |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::FNEG: { |
| SDOperand Val = Select(N->getOperand(0)); |
| MVT::ValueType Ty = N->getValueType(0); |
| if (N->getOperand(0).Val->hasOneUse()) { |
| unsigned Opc; |
| switch (Val.isTargetOpcode() ? Val.getTargetOpcode() : 0) { |
| default: Opc = 0; break; |
| case PPC::FABSS: Opc = PPC::FNABSS; break; |
| case PPC::FABSD: Opc = PPC::FNABSD; break; |
| case PPC::FMADD: Opc = PPC::FNMADD; break; |
| case PPC::FMADDS: Opc = PPC::FNMADDS; break; |
| case PPC::FMSUB: Opc = PPC::FNMSUB; break; |
| case PPC::FMSUBS: Opc = PPC::FNMSUBS; break; |
| } |
| // If we inverted the opcode, then emit the new instruction with the |
| // inverted opcode and the original instruction's operands. Otherwise, |
| // fall through and generate a fneg instruction. |
| if (Opc) { |
| if (Opc == PPC::FNABSS || Opc == PPC::FNABSD) |
| CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0)); |
| else |
| CurDAG->SelectNodeTo(N, Opc, Ty, Val.getOperand(0), |
| Val.getOperand(1), Val.getOperand(2)); |
| return SDOperand(N, 0); |
| } |
| } |
| if (Ty == MVT::f32) |
| CurDAG->SelectNodeTo(N, PPC::FNEGS, MVT::f32, Val); |
| else |
| CurDAG->SelectNodeTo(N, PPC::FNEGD, MVT::f64, Val); |
| return SDOperand(N, 0); |
| } |
| case ISD::LOAD: |
| case ISD::EXTLOAD: |
| case ISD::ZEXTLOAD: |
| case ISD::SEXTLOAD: { |
| SDOperand Op1, Op2; |
| // If this is a vector load, then force this to be indexed addressing, since |
| // altivec does not have immediate offsets for loads. |
| bool isIdx = true; |
| if (N->getOpcode() == ISD::LOAD && MVT::isVector(N->getValueType(0))) { |
| SelectAddrIndexed(N->getOperand(1), Op1, Op2); |
| } else { |
| isIdx = SelectAddr(N->getOperand(1), Op1, Op2); |
| } |
| MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ? |
| N->getValueType(0) : cast<VTSDNode>(N->getOperand(3))->getVT(); |
| |
| unsigned Opc; |
| switch (TypeBeingLoaded) { |
| default: N->dump(); assert(0 && "Cannot load this type!"); |
| case MVT::i1: |
| case MVT::i8: Opc = isIdx ? PPC::LBZX : PPC::LBZ; break; |
| case MVT::i16: |
| if (N->getOpcode() == ISD::SEXTLOAD) { // SEXT load? |
| Opc = isIdx ? PPC::LHAX : PPC::LHA; |
| } else { |
| Opc = isIdx ? PPC::LHZX : PPC::LHZ; |
| } |
| break; |
| case MVT::i32: Opc = isIdx ? PPC::LWZX : PPC::LWZ; break; |
| case MVT::f32: Opc = isIdx ? PPC::LFSX : PPC::LFS; break; |
| case MVT::f64: Opc = isIdx ? PPC::LFDX : PPC::LFD; break; |
| case MVT::v4f32: Opc = PPC::LVX; break; |
| } |
| |
| // If this is an f32 -> f64 load, emit the f32 load, then use an 'extending |
| // copy'. |
| if (TypeBeingLoaded != MVT::f32 || N->getOpcode() == ISD::LOAD) { |
| CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, |
| Op1, Op2, Select(N->getOperand(0))); |
| return SDOperand(N, Op.ResNo); |
| } else { |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op1); |
| Ops.push_back(Op2); |
| Ops.push_back(Select(N->getOperand(0))); |
| SDOperand Res = CurDAG->getTargetNode(Opc, MVT::f32, MVT::Other, Ops); |
| SDOperand Ext = CurDAG->getTargetNode(PPC::FMRSD, MVT::f64, Res); |
| CodeGenMap[Op.getValue(0)] = Ext; |
| CodeGenMap[Op.getValue(1)] = Res.getValue(1); |
| if (Op.ResNo) |
| return Res.getValue(1); |
| else |
| return Ext; |
| } |
| } |
| case ISD::TRUNCSTORE: |
| case ISD::STORE: { |
| SDOperand AddrOp1, AddrOp2; |
| // If this is a vector store, then force this to be indexed addressing, |
| // since altivec does not have immediate offsets for stores. |
| bool isIdx = true; |
| if (N->getOpcode() == ISD::STORE && |
| MVT::isVector(N->getOperand(1).getValueType())) { |
| SelectAddrIndexed(N->getOperand(2), AddrOp1, AddrOp2); |
| } else { |
| isIdx = SelectAddr(N->getOperand(2), AddrOp1, AddrOp2); |
| } |
| |
| unsigned Opc; |
| if (N->getOpcode() == ISD::STORE) { |
| switch (N->getOperand(1).getValueType()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i32: Opc = isIdx ? PPC::STWX : PPC::STW; break; |
| case MVT::f64: Opc = isIdx ? PPC::STFDX : PPC::STFD; break; |
| case MVT::f32: Opc = isIdx ? PPC::STFSX : PPC::STFS; break; |
| case MVT::v4f32: Opc = PPC::STVX; |
| } |
| } else { //ISD::TRUNCSTORE |
| switch(cast<VTSDNode>(N->getOperand(4))->getVT()) { |
| default: assert(0 && "unknown Type in store"); |
| case MVT::i8: Opc = isIdx ? PPC::STBX : PPC::STB; break; |
| case MVT::i16: Opc = isIdx ? PPC::STHX : PPC::STH; break; |
| } |
| } |
| |
| CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(1)), |
| AddrOp1, AddrOp2, Select(N->getOperand(0))); |
| return SDOperand(N, 0); |
| } |
| |
| case ISD::SELECT_CC: { |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| |
| // handle the setcc cases here. select_cc lhs, 0, 1, 0, cc |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| if (N1C->isNullValue() && N3C->isNullValue() && |
| N2C->getValue() == 1ULL && CC == ISD::SETNE) { |
| SDOperand LHS = Select(N->getOperand(0)); |
| SDOperand Tmp = |
| CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag, |
| LHS, getI32Imm(~0U)); |
| CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, Tmp, LHS, |
| Tmp.getValue(1)); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC); |
| unsigned BROpc = getBCCForSetCC(CC); |
| |
| bool isFP = MVT::isFloatingPoint(N->getValueType(0)); |
| unsigned SelectCCOp; |
| if (MVT::isInteger(N->getValueType(0))) |
| SelectCCOp = PPC::SELECT_CC_Int; |
| else if (N->getValueType(0) == MVT::f32) |
| SelectCCOp = PPC::SELECT_CC_F4; |
| else |
| SelectCCOp = PPC::SELECT_CC_F8; |
| CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg, |
| Select(N->getOperand(2)), Select(N->getOperand(3)), |
| getI32Imm(BROpc)); |
| return SDOperand(N, 0); |
| } |
| |
| case ISD::CALLSEQ_START: |
| case ISD::CALLSEQ_END: { |
| unsigned Amt = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? |
| PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; |
| CurDAG->SelectNodeTo(N, Opc, MVT::Other, |
| getI32Imm(Amt), Select(N->getOperand(0))); |
| return SDOperand(N, 0); |
| } |
| case ISD::RET: { |
| SDOperand Chain = Select(N->getOperand(0)); // Token chain. |
| |
| if (N->getNumOperands() == 2) { |
| SDOperand Val = Select(N->getOperand(1)); |
| if (N->getOperand(1).getValueType() == MVT::i32) { |
| Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val); |
| } else { |
| assert(MVT::isFloatingPoint(N->getOperand(1).getValueType())); |
| Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val); |
| } |
| } else if (N->getNumOperands() > 1) { |
| assert(N->getOperand(1).getValueType() == MVT::i32 && |
| N->getOperand(2).getValueType() == MVT::i32 && |
| N->getNumOperands() == 3 && "Unknown two-register ret value!"); |
| Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Select(N->getOperand(1))); |
| Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Select(N->getOperand(2))); |
| } |
| |
| // Finally, select this to a blr (return) instruction. |
| CurDAG->SelectNodeTo(N, PPC::BLR, MVT::Other, Chain); |
| return SDOperand(N, 0); |
| } |
| case ISD::BR: |
| CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, N->getOperand(1), |
| Select(N->getOperand(0))); |
| return SDOperand(N, 0); |
| case ISD::BR_CC: |
| case ISD::BRTWOWAY_CC: { |
| SDOperand Chain = Select(N->getOperand(0)); |
| MachineBasicBlock *Dest = |
| cast<BasicBlockSDNode>(N->getOperand(4))->getBasicBlock(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); |
| SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC); |
| |
| // If this is a two way branch, then grab the fallthrough basic block |
| // argument and build a PowerPC branch pseudo-op, suitable for long branch |
| // conversion if necessary by the branch selection pass. Otherwise, emit a |
| // standard conditional branch. |
| if (N->getOpcode() == ISD::BRTWOWAY_CC) { |
| SDOperand CondTrueBlock = N->getOperand(4); |
| SDOperand CondFalseBlock = N->getOperand(5); |
| |
| // If the false case is the current basic block, then this is a self loop. |
| // We do not want to emit "Loop: ... brcond Out; br Loop", as it adds an |
| // extra dispatch group to the loop. Instead, invert the condition and |
| // emit "Loop: ... br!cond Loop; br Out |
| if (cast<BasicBlockSDNode>(CondFalseBlock)->getBasicBlock() == BB) { |
| std::swap(CondTrueBlock, CondFalseBlock); |
| CC = getSetCCInverse(CC, |
| MVT::isInteger(N->getOperand(2).getValueType())); |
| } |
| |
| unsigned Opc = getBCCForSetCC(CC); |
| SDOperand CB = CurDAG->getTargetNode(PPC::COND_BRANCH, MVT::Other, |
| CondCode, getI32Imm(Opc), |
| CondTrueBlock, CondFalseBlock, |
| Chain); |
| CurDAG->SelectNodeTo(N, PPC::B, MVT::Other, CondFalseBlock, CB); |
| } else { |
| // Iterate to the next basic block |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // If the fallthrough path is off the end of the function, which would be |
| // undefined behavior, set it to be the same as the current block because |
| // we have nothing better to set it to, and leaving it alone will cause |
| // the PowerPC Branch Selection pass to crash. |
| if (It == BB->getParent()->end()) It = Dest; |
| CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, CondCode, |
| getI32Imm(getBCCForSetCC(CC)), N->getOperand(4), |
| CurDAG->getBasicBlock(It), Chain); |
| } |
| return SDOperand(N, 0); |
| } |
| } |
| |
| return SelectCode(Op); |
| } |
| |
| |
| /// createPPCISelDag - This pass converts a legalized DAG into a |
| /// PowerPC-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createPPCISelDag(TargetMachine &TM) { |
| return new PPCDAGToDAGISel(TM); |
| } |
| |