| //===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ModuloSched" |
| |
| #include "ModuloScheduling.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Target/TargetSchedInfo.h" |
| #include "Support/Debug.h" |
| #include "Support/GraphWriter.h" |
| #include "Support/StringExtras.h" |
| #include <vector> |
| #include <utility> |
| #include <fstream> |
| #include <sstream> |
| |
| |
| using namespace llvm; |
| |
| /// Create ModuloSchedulingPass |
| /// |
| FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { |
| DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); |
| return new ModuloSchedulingPass(targ); |
| } |
| |
| template<typename GraphType> |
| static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, |
| const GraphType >) { |
| std::string Filename = GraphName + ".dot"; |
| O << "Writing '" << Filename << "'..."; |
| std::ofstream F(Filename.c_str()); |
| |
| if (F.good()) |
| WriteGraph(F, GT); |
| else |
| O << " error opening file for writing!"; |
| O << "\n"; |
| }; |
| |
| namespace llvm { |
| |
| template<> |
| struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { |
| static std::string getGraphName(MSchedGraph *F) { |
| return "Dependence Graph"; |
| } |
| |
| static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { |
| if (Node->getInst()) { |
| std::stringstream ss; |
| ss << *(Node->getInst()); |
| return ss.str(); //((MachineInstr*)Node->getInst()); |
| } |
| else |
| return "No Inst"; |
| } |
| static std::string getEdgeSourceLabel(MSchedGraphNode *Node, |
| MSchedGraphNode::succ_iterator I) { |
| //Label each edge with the type of dependence |
| std::string edgelabel = ""; |
| switch (I.getEdge().getDepOrderType()) { |
| |
| case MSchedGraphEdge::TrueDep: |
| edgelabel = "True"; |
| break; |
| |
| case MSchedGraphEdge::AntiDep: |
| edgelabel = "Anti"; |
| break; |
| |
| case MSchedGraphEdge::OutputDep: |
| edgelabel = "Output"; |
| break; |
| |
| default: |
| edgelabel = "Unknown"; |
| break; |
| } |
| |
| //FIXME |
| int iteDiff = I.getEdge().getIteDiff(); |
| std::string intStr = "(IteDiff: "; |
| intStr += itostr(iteDiff); |
| |
| intStr += ")"; |
| edgelabel += intStr; |
| |
| return edgelabel; |
| } |
| |
| |
| |
| }; |
| } |
| |
| /// ModuloScheduling::runOnFunction - main transformation entry point |
| bool ModuloSchedulingPass::runOnFunction(Function &F) { |
| bool Changed = false; |
| |
| DEBUG(std::cerr << "Creating ModuloSchedGraph for each BasicBlock in" + F.getName() + "\n"); |
| |
| //Get MachineFunction |
| MachineFunction &MF = MachineFunction::get(&F); |
| |
| //Iterate over BasicBlocks and do ModuloScheduling if they are valid |
| for (MachineFunction::const_iterator BI = MF.begin(); BI != MF.end(); ++BI) { |
| if(MachineBBisValid(BI)) { |
| MSchedGraph *MSG = new MSchedGraph(BI, target); |
| |
| //Write Graph out to file |
| DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); |
| |
| //Print out BB for debugging |
| DEBUG(BI->print(std::cerr)); |
| |
| //Calculate Resource II |
| int ResMII = calculateResMII(BI); |
| |
| //Calculate Recurrence II |
| int RecMII = calculateRecMII(MSG, ResMII); |
| |
| II = std::max(RecMII, ResMII); |
| |
| |
| DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n"); |
| |
| //Calculate Node Properties |
| calculateNodeAttributes(MSG, ResMII); |
| |
| //Dump node properties if in debug mode |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { |
| DEBUG(std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"); |
| } |
| |
| //Put nodes in order to schedule them |
| computePartialOrder(); |
| |
| //Dump out partial order |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) { |
| DEBUG(std::cerr << "Start set in PO\n"); |
| for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) |
| DEBUG(std::cerr << "PO:" << **J << "\n"); |
| } |
| |
| orderNodes(); |
| |
| //Dump out order of nodes |
| for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) |
| DEBUG(std::cerr << "FO:" << **I << "\n"); |
| |
| |
| //Finally schedule nodes |
| computeSchedule(); |
| |
| DEBUG(schedule.print(std::cerr)); |
| |
| reconstructLoop(BI); |
| |
| |
| nodeToAttributesMap.clear(); |
| partialOrder.clear(); |
| recurrenceList.clear(); |
| FinalNodeOrder.clear(); |
| schedule.clear(); |
| } |
| |
| } |
| |
| |
| return Changed; |
| } |
| |
| |
| bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { |
| |
| //Valid basic blocks must be loops and can not have if/else statements or calls. |
| bool isLoop = false; |
| |
| //Check first if its a valid loop |
| for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), |
| E = succ_end(BI->getBasicBlock()); I != E; ++I) { |
| if (*I == BI->getBasicBlock()) // has single block loop |
| isLoop = true; |
| } |
| |
| if(!isLoop) { |
| DEBUG(std::cerr << "Basic Block is not a loop\n"); |
| return false; |
| } |
| else |
| DEBUG(std::cerr << "Basic Block is a loop\n"); |
| |
| //Get Target machine instruction info |
| /*const TargetInstrInfo& TMI = targ.getInstrInfo(); |
| |
| //Check each instruction and look for calls or if/else statements |
| unsigned count = 0; |
| for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| //Get opcode to check instruction type |
| MachineOpCode OC = I->getOpcode(); |
| if(TMI.isControlFlow(OC) && (count+1 < BI->size())) |
| return false; |
| count++; |
| }*/ |
| return true; |
| |
| } |
| |
| //ResMII is calculated by determining the usage count for each resource |
| //and using the maximum. |
| //FIXME: In future there should be a way to get alternative resources |
| //for each instruction |
| int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { |
| |
| const TargetInstrInfo & mii = target.getInstrInfo(); |
| const TargetSchedInfo & msi = target.getSchedInfo(); |
| |
| int ResMII = 0; |
| |
| //Map to keep track of usage count of each resource |
| std::map<unsigned, unsigned> resourceUsageCount; |
| |
| for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { |
| |
| //Get resource usage for this instruction |
| InstrRUsage rUsage = msi.getInstrRUsage(I->getOpcode()); |
| std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; |
| |
| //Loop over resources in each cycle and increments their usage count |
| for(unsigned i=0; i < resources.size(); ++i) |
| for(unsigned j=0; j < resources[i].size(); ++j) { |
| if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { |
| resourceUsageCount[resources[i][j]] = 1; |
| } |
| else { |
| resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; |
| } |
| } |
| } |
| |
| //Find maximum usage count |
| |
| //Get max number of instructions that can be issued at once. (FIXME) |
| int issueSlots = msi.maxNumIssueTotal; |
| |
| for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { |
| |
| //Get the total number of the resources in our cpu |
| int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; |
| |
| //Get total usage count for this resources |
| unsigned usageCount = RB->second; |
| |
| //Divide the usage count by either the max number we can issue or the number of |
| //resources (whichever is its upper bound) |
| double finalUsageCount; |
| if( resourceNum <= issueSlots) |
| finalUsageCount = ceil(1.0 * usageCount / resourceNum); |
| else |
| finalUsageCount = ceil(1.0 * usageCount / issueSlots); |
| |
| |
| DEBUG(std::cerr << "Resource ID: " << RB->first << " (usage=" << usageCount << ", resourceNum=X" << ", issueSlots=" << issueSlots << ", finalUsage=" << finalUsageCount << ")\n"); |
| |
| //Only keep track of the max |
| ResMII = std::max( (int) finalUsageCount, ResMII); |
| |
| } |
| |
| DEBUG(std::cerr << "Final Resource MII: " << ResMII << "\n"); |
| |
| return ResMII; |
| |
| } |
| |
| int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { |
| std::vector<MSchedGraphNode*> vNodes; |
| //Loop over all nodes in the graph |
| for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| findAllReccurrences(I->second, vNodes, MII); |
| vNodes.clear(); |
| } |
| |
| int RecMII = 0; |
| |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { |
| std::cerr << "Recurrence: \n"; |
| for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| std::cerr << **N << "\n"; |
| } |
| RecMII = std::max(RecMII, I->first); |
| std::cerr << "End Recurrence with RecMII: " << I->first << "\n"; |
| } |
| DEBUG(std::cerr << "RecMII: " << RecMII << "\n"); |
| |
| return MII; |
| } |
| |
| void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { |
| |
| //Loop over the nodes and add them to the map |
| for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { |
| //Assert if its already in the map |
| assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); |
| |
| //Put into the map with default attribute values |
| nodeToAttributesMap[I->second] = MSNodeAttributes(); |
| } |
| |
| //Create set to deal with reccurrences |
| std::set<MSchedGraphNode*> visitedNodes; |
| |
| //Now Loop over map and calculate the node attributes |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateASAP(I->first, MII, (MSchedGraphNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| int maxASAP = findMaxASAP(); |
| //Calculate ALAP which depends on ASAP being totally calculated |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); |
| visitedNodes.clear(); |
| } |
| |
| //Calculate MOB which depends on ASAP being totally calculated, also do depth and height |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); |
| |
| DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); |
| calculateDepth(I->first, (MSchedGraphNode*) 0); |
| calculateHeight(I->first, (MSchedGraphNode*) 0); |
| } |
| |
| |
| } |
| |
| bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { |
| if(destNode == 0 || srcNode ==0) |
| return false; |
| |
| bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); |
| |
| return findEdge; |
| } |
| |
| int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { |
| |
| DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); |
| |
| //Get current node attributes |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ASAP != -1) |
| return attributes.ASAP; |
| |
| int maxPredValue = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(*P, node)) { |
| int predASAP = -1; |
| predASAP = calculateASAP(*P, MII, node); |
| |
| assert(predASAP != -1 && "ASAP has not been calculated"); |
| int iteDiff = node->getInEdge(*P).getIteDiff(); |
| |
| int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); |
| DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); |
| maxPredValue = std::max(maxPredValue, currentPredValue); |
| } |
| } |
| |
| attributes.ASAP = maxPredValue; |
| |
| DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); |
| |
| return maxPredValue; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, |
| int maxASAP, MSchedGraphNode *srcNode) { |
| |
| DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.ALAP != -1) |
| return attributes.ALAP; |
| |
| if(node->hasSuccessors()) { |
| |
| //Trying to deal with the issue where the node has successors, but |
| //we are ignoring all of the edges to them. So this is my hack for |
| //now.. there is probably a more elegant way of doing this (FIXME) |
| bool processedOneEdge = false; |
| |
| //FIXME, set to something high to start |
| int minSuccValue = 9999999; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| //Only process if we are not ignoring the edge |
| if(!ignoreEdge(node, *P)) { |
| processedOneEdge = true; |
| int succALAP = -1; |
| succALAP = calculateALAP(*P, MII, maxASAP, node); |
| |
| assert(succALAP != -1 && "Successors ALAP should have been caclulated"); |
| |
| int iteDiff = P.getEdge().getIteDiff(); |
| |
| int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; |
| |
| DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); |
| |
| minSuccValue = std::min(minSuccValue, currentSuccValue); |
| } |
| } |
| |
| if(processedOneEdge) |
| attributes.ALAP = minSuccValue; |
| |
| else |
| attributes.ALAP = maxASAP; |
| } |
| else |
| attributes.ALAP = maxASAP; |
| |
| DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); |
| |
| if(attributes.ALAP < 0) |
| attributes.ALAP = 0; |
| |
| return attributes.ALAP; |
| } |
| |
| int ModuloSchedulingPass::findMaxASAP() { |
| int maxASAP = 0; |
| |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), |
| E = nodeToAttributesMap.end(); I != E; ++I) |
| maxASAP = std::max(maxASAP, I->second.ASAP); |
| return maxASAP; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.height != -1) |
| return attributes.height; |
| |
| int maxHeight = 0; |
| |
| //Iterate over all of the predecessors and find max |
| for(MSchedGraphNode::succ_iterator P = node->succ_begin(), |
| E = node->succ_end(); P != E; ++P) { |
| |
| |
| if(!ignoreEdge(node, *P)) { |
| int succHeight = calculateHeight(*P, node); |
| |
| assert(succHeight != -1 && "Successors Height should have been caclulated"); |
| |
| int currentHeight = succHeight + node->getLatency(); |
| maxHeight = std::max(maxHeight, currentHeight); |
| } |
| } |
| attributes.height = maxHeight; |
| DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); |
| return maxHeight; |
| } |
| |
| |
| int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, |
| MSchedGraphNode *destNode) { |
| |
| MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; |
| |
| if(attributes.depth != -1) |
| return attributes.depth; |
| |
| int maxDepth = 0; |
| |
| //Iterate over all of the predecessors and fine max |
| for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { |
| |
| if(!ignoreEdge(*P, node)) { |
| int predDepth = -1; |
| predDepth = calculateDepth(*P, node); |
| |
| assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); |
| |
| int currentDepth = predDepth + (*P)->getLatency(); |
| maxDepth = std::max(maxDepth, currentDepth); |
| } |
| } |
| attributes.depth = maxDepth; |
| |
| DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); |
| return maxDepth; |
| } |
| |
| |
| |
| void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { |
| //Check to make sure that this recurrence is unique |
| bool same = false; |
| |
| |
| //Loop over all recurrences already in our list |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { |
| |
| bool all_same = true; |
| //First compare size |
| if(R->second.size() == recurrence.size()) { |
| |
| for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { |
| if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { |
| all_same = all_same && false; |
| break; |
| } |
| else |
| all_same = all_same && true; |
| } |
| if(all_same) { |
| same = true; |
| break; |
| } |
| } |
| } |
| |
| if(!same) { |
| srcBENode = recurrence.back(); |
| destBENode = recurrence.front(); |
| |
| //FIXME |
| if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { |
| //DEBUG(std::cerr << "NOT A BACKEDGE\n"); |
| //find actual backedge HACK HACK |
| for(unsigned i=0; i< recurrence.size()-1; ++i) { |
| if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { |
| srcBENode = recurrence[i]; |
| destBENode = recurrence[i+1]; |
| break; |
| } |
| |
| } |
| |
| } |
| DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); |
| edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); |
| recurrenceList.insert(std::make_pair(II, recurrence)); |
| } |
| |
| } |
| |
| void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, |
| std::vector<MSchedGraphNode*> &visitedNodes, |
| int II) { |
| |
| if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { |
| std::vector<MSchedGraphNode*> recurrence; |
| bool first = true; |
| int delay = 0; |
| int distance = 0; |
| int RecMII = II; //Starting value |
| MSchedGraphNode *last = node; |
| MSchedGraphNode *srcBackEdge; |
| MSchedGraphNode *destBackEdge; |
| |
| |
| |
| for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); |
| I !=E; ++I) { |
| |
| if(*I == node) |
| first = false; |
| if(first) |
| continue; |
| |
| delay = delay + (*I)->getLatency(); |
| |
| if(*I != node) { |
| int diff = (*I)->getInEdge(last).getIteDiff(); |
| distance += diff; |
| if(diff > 0) { |
| srcBackEdge = last; |
| destBackEdge = *I; |
| } |
| } |
| |
| recurrence.push_back(*I); |
| last = *I; |
| } |
| |
| |
| |
| //Get final distance calc |
| distance += node->getInEdge(last).getIteDiff(); |
| |
| |
| //Adjust II until we get close to the inequality delay - II*distance <= 0 |
| |
| int value = delay-(RecMII * distance); |
| int lastII = II; |
| while(value <= 0) { |
| |
| lastII = RecMII; |
| RecMII--; |
| value = delay-(RecMII * distance); |
| } |
| |
| |
| DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); |
| addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); |
| assert(distance != 0 && "Recurrence distance should not be zero"); |
| return; |
| } |
| |
| for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { |
| visitedNodes.push_back(node); |
| findAllReccurrences(*I, visitedNodes, II); |
| visitedNodes.pop_back(); |
| } |
| } |
| |
| |
| |
| |
| |
| void ModuloSchedulingPass::computePartialOrder() { |
| |
| |
| //Loop over all recurrences and add to our partial order |
| //be sure to remove nodes that are already in the partial order in |
| //a different recurrence and don't add empty recurrences. |
| for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { |
| |
| //Add nodes that connect this recurrence to the previous recurrence |
| |
| //If this is the first recurrence in the partial order, add all predecessors |
| for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| |
| } |
| |
| |
| std::vector<MSchedGraphNode*> new_recurrence; |
| //Loop through recurrence and remove any nodes already in the partial order |
| for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { |
| bool found = false; |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { |
| if(find(PO->begin(), PO->end(), *N) != PO->end()) |
| found = true; |
| } |
| if(!found) { |
| new_recurrence.push_back(*N); |
| |
| if(partialOrder.size() == 0) |
| //For each predecessors, add it to this recurrence ONLY if it is not already in it |
| for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), |
| PE = (*N)->pred_end(); P != PE; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(!ignoreEdge(*P, *N)) |
| //Check if already in this recurrence |
| if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) { |
| //Also need to check if in partial order |
| bool predFound = false; |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { |
| if(find(PO->begin(), PO->end(), *P) != PO->end()) |
| predFound = true; |
| } |
| |
| if(!predFound) |
| if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) |
| new_recurrence.push_back(*P); |
| |
| } |
| } |
| } |
| } |
| |
| |
| if(new_recurrence.size() > 0) |
| partialOrder.push_back(new_recurrence); |
| } |
| |
| //Add any nodes that are not already in the partial order |
| std::vector<MSchedGraphNode*> lastNodes; |
| for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { |
| bool found = false; |
| //Check if its already in our partial order, if not add it to the final vector |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { |
| if(find(PO->begin(), PO->end(), I->first) != PO->end()) |
| found = true; |
| } |
| if(!found) |
| lastNodes.push_back(I->first); |
| } |
| |
| if(lastNodes.size() > 0) |
| partialOrder.push_back(lastNodes); |
| |
| } |
| |
| |
| void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { |
| |
| //Sort CurrentSet so we can use lowerbound |
| sort(CurrentSet.begin(), CurrentSet.end()); |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), |
| E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(*P,FinalNodeOrder[j])) |
| continue; |
| |
| if(find(CurrentSet.begin(), |
| CurrentSet.end(), *P) != CurrentSet.end()) |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.push_back(*P); |
| } |
| } |
| } |
| |
| void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) { |
| |
| //Sort CurrentSet so we can use lowerbound |
| sort(CurrentSet.begin(), CurrentSet.end()); |
| |
| for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { |
| for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), |
| E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { |
| |
| //Check if we are supposed to ignore this edge or not |
| if(ignoreEdge(FinalNodeOrder[j],*P)) |
| continue; |
| |
| if(find(CurrentSet.begin(), |
| CurrentSet.end(), *P) != CurrentSet.end()) |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) |
| IntersectResult.push_back(*P); |
| } |
| } |
| } |
| |
| void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) { |
| std::cerr << "Intersection ("; |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) |
| std::cerr << **I << ", "; |
| std::cerr << ")\n"; |
| } |
| |
| |
| |
| void ModuloSchedulingPass::orderNodes() { |
| |
| int BOTTOM_UP = 0; |
| int TOP_DOWN = 1; |
| |
| //Set default order |
| int order = BOTTOM_UP; |
| |
| |
| //Loop over all the sets and place them in the final node order |
| for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { |
| |
| DEBUG(std::cerr << "Processing set in S\n"); |
| dumpIntersection(*CurrentSet); |
| //Result of intersection |
| std::vector<MSchedGraphNode*> IntersectCurrent; |
| |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| //If the intersection of predecessor and current set is not empty |
| //sort nodes bottom up |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); |
| order = BOTTOM_UP; |
| } |
| //If empty, use successors |
| else { |
| DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); |
| |
| succIntersect(*CurrentSet, IntersectCurrent); |
| |
| //sort top-down |
| if(IntersectCurrent.size() != 0) { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); |
| order = TOP_DOWN; |
| } |
| else { |
| DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); |
| //Find node with max ASAP in current Set |
| MSchedGraphNode *node; |
| int maxASAP = 0; |
| DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); |
| for(unsigned j=0; j < CurrentSet->size(); ++j) { |
| //Get node attributes |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; |
| //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); |
| DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); |
| if(maxASAP < nodeAttr.ASAP) { |
| maxASAP = nodeAttr.ASAP; |
| node = (*CurrentSet)[j]; |
| } |
| } |
| assert(node != 0 && "In node ordering node should not be null"); |
| IntersectCurrent.push_back(node); |
| order = BOTTOM_UP; |
| } |
| } |
| |
| //Repeat until all nodes are put into the final order from current set |
| while(IntersectCurrent.size() > 0) { |
| |
| if(order == TOP_DOWN) { |
| DEBUG(std::cerr << "Order is TOP DOWN\n"); |
| |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); |
| |
| int MOB = 0; |
| int height = 0; |
| MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; |
| |
| //Find node in intersection with highest heigh and lowest MOB |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| |
| //Get current nodes properties |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(height < nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| else if(height == nodeAttr.height) { |
| if(MOB > nodeAttr.height) { |
| highestHeightNode = *I; |
| height = nodeAttr.height; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| //Append our node with greatest height to the NodeOrder |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); |
| FinalNodeOrder.push_back(highestHeightNode); |
| } |
| |
| //Remove V from IntersectOrder |
| IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(), highestHeightNode)); |
| |
| |
| //Intersect V's successors with CurrentSet |
| for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), |
| E = highestHeightNode->succ_end(); P != E; ++P) { |
| //if(lower_bound(CurrentSet->begin(), |
| // CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(ignoreEdge(highestHeightNode, *P)) |
| continue; |
| //If not already in Intersect, add |
| if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| IntersectCurrent.push_back(*P); |
| } |
| } |
| } //End while loop over Intersect Size |
| |
| //Change direction |
| order = BOTTOM_UP; |
| |
| //Reset Intersect to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| predIntersect(*CurrentSet, IntersectCurrent); |
| |
| } //End If TOP_DOWN |
| |
| //Begin if BOTTOM_UP |
| else { |
| DEBUG(std::cerr << "Order is BOTTOM UP\n"); |
| while(IntersectCurrent.size() > 0) { |
| DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); |
| |
| //dump intersection |
| DEBUG(dumpIntersection(IntersectCurrent)); |
| //Get node with highest depth, if a tie, use one with lowest |
| //MOB |
| int MOB = 0; |
| int depth = 0; |
| MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; |
| |
| for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), |
| E = IntersectCurrent.end(); I != E; ++I) { |
| //Find node attribute in graph |
| MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; |
| |
| if(depth < nodeAttr.depth) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| else if(depth == nodeAttr.depth) { |
| if(MOB > nodeAttr.MOB) { |
| highestDepthNode = *I; |
| depth = nodeAttr.depth; |
| MOB = nodeAttr.MOB; |
| } |
| } |
| } |
| |
| |
| |
| //Append highest depth node to the NodeOrder |
| if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { |
| DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); |
| FinalNodeOrder.push_back(highestDepthNode); |
| } |
| //Remove heightestDepthNode from IntersectOrder |
| IntersectCurrent.erase(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(),highestDepthNode)); |
| |
| |
| //Intersect heightDepthNode's pred with CurrentSet |
| for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), |
| E = highestDepthNode->pred_end(); P != E; ++P) { |
| //if(lower_bound(CurrentSet->begin(), |
| // CurrentSet->end(), *P) != CurrentSet->end()) { |
| if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { |
| |
| if(ignoreEdge(*P, highestDepthNode)) |
| continue; |
| |
| //If not already in Intersect, add |
| if(find(IntersectCurrent.begin(), |
| IntersectCurrent.end(), *P) == IntersectCurrent.end()) |
| IntersectCurrent.push_back(*P); |
| } |
| } |
| |
| } //End while loop over Intersect Size |
| |
| //Change order |
| order = TOP_DOWN; |
| |
| //Reset IntersectCurrent to reflect changes in OrderNodes |
| IntersectCurrent.clear(); |
| succIntersect(*CurrentSet, IntersectCurrent); |
| } //End if BOTTOM_DOWN |
| |
| } |
| //End Wrapping while loop |
| |
| }//End for over all sets of nodes |
| |
| //Return final Order |
| //return FinalNodeOrder; |
| } |
| |
| void ModuloSchedulingPass::computeSchedule() { |
| |
| bool success = false; |
| |
| while(!success) { |
| |
| //Loop over the final node order and process each node |
| for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), |
| E = FinalNodeOrder.end(); I != E; ++I) { |
| |
| //CalculateEarly and Late start |
| int EarlyStart = -1; |
| int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) |
| bool hasSucc = false; |
| bool hasPred = false; |
| |
| if(!(*I)->isBranch()) { |
| //Loop over nodes in the schedule and determine if they are predecessors |
| //or successors of the node we are trying to schedule |
| for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); |
| nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { |
| |
| //For this cycle, get the vector of nodes schedule and loop over it |
| for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { |
| |
| if((*I)->isPredecessor(*schedNode)) { |
| if(!ignoreEdge(*schedNode, *I)) { |
| int diff = (*I)->getInEdge(*schedNode).getIteDiff(); |
| int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); |
| EarlyStart = std::max(EarlyStart, ES_Temp); |
| hasPred = true; |
| } |
| } |
| if((*I)->isSuccessor(*schedNode)) { |
| if(!ignoreEdge(*I,*schedNode)) { |
| int diff = (*schedNode)->getInEdge(*I).getIteDiff(); |
| int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; |
| DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); |
| DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); |
| LateStart = std::min(LateStart, LS_Temp); |
| hasSucc = true; |
| } |
| } |
| } |
| } |
| } |
| else { |
| //WARNING: HACK! FIXME!!!! |
| EarlyStart = II-1; |
| LateStart = II-1; |
| hasPred = 1; |
| hasSucc = 1; |
| } |
| |
| |
| DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); |
| DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); |
| |
| //Check if the node has no pred or successors and set Early Start to its ASAP |
| if(!hasSucc && !hasPred) |
| EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; |
| |
| //Now, try to schedule this node depending upon its pred and successor in the schedule |
| //already |
| if(!hasSucc && hasPred) |
| success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); |
| else if(!hasPred && hasSucc) |
| success = scheduleNode(*I, LateStart, (LateStart - II +1)); |
| else if(hasPred && hasSucc) |
| success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); |
| else |
| success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); |
| |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| break; |
| } |
| |
| } |
| |
| DEBUG(std::cerr << "Constructing Kernel\n"); |
| success = schedule.constructKernel(II); |
| if(!success) { |
| ++II; |
| schedule.clear(); |
| } |
| } |
| } |
| |
| |
| bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, |
| int start, int end) { |
| bool success = false; |
| |
| DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); |
| |
| //Make sure start and end are not negative |
| if(start < 0) |
| start = 0; |
| if(end < 0) |
| end = 0; |
| |
| bool forward = true; |
| if(start > end) |
| forward = false; |
| |
| bool increaseSC = true; |
| int cycle = start ; |
| |
| |
| while(increaseSC) { |
| |
| increaseSC = false; |
| |
| increaseSC = schedule.insert(node, cycle); |
| |
| if(!increaseSC) |
| return true; |
| |
| //Increment cycle to try again |
| if(forward) { |
| ++cycle; |
| DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); |
| if(cycle > end) |
| return false; |
| } |
| else { |
| --cycle; |
| DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); |
| if(cycle < end) |
| return false; |
| } |
| } |
| |
| return success; |
| } |
| |
| /*void ModuloSchedulingPass::saveValue(const MachineInstr *inst, std::set<const Value*> &valuestoSave, std::vector<Value*> *valuesForNode) { |
| int numFound = 0; |
| Instruction *tmp; |
| |
| //For each value* in this inst that is a def, we want to save a copy |
| //Target info |
| const TargetInstrInfo & mii = target.getInstrInfo(); |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { |
| //Save copy in tmpInstruction |
| numFound++; |
| tmp = TmpInstruction(mii.getMachineCodeFor(mOp.getVRegValue()), |
| mOp.getVRegValue()); |
| valuesForNode->push_back(tmp); |
| } |
| } |
| |
| assert(numFound == 1 && "We should have only found one def to this virtual register!"); |
| }*/ |
| |
| void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues) { |
| |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| int maxStageCount = 0; |
| |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| maxStageCount = std::max(maxStageCount, I->second); |
| |
| //Ignore the branch, we will handle this separately |
| if(I->first->isBranch()) |
| continue; |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| if(I->second > 0) { |
| DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n"); |
| inKernel[I->second].insert(I->first->getInst()); |
| } |
| } |
| |
| //Now write the prologues |
| for(int i = 1; i <= maxStageCount; ++i) { |
| BasicBlock *llvmBB = new BasicBlock(); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| //Loop over original machine basic block. If we see an instruction from this |
| //stage that is NOT in the kernel, then it needs to be added into the prologue |
| //We go in order to preserve dependencies |
| for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { |
| if(inKernel[i].count(&*MI)) { |
| inKernel[i].erase(&*MI); |
| if(inKernel[i].size() <= 0) |
| break; |
| else |
| continue; |
| } |
| else { |
| DEBUG(std::cerr << "Writing instruction to prologue\n"); |
| machineBB->push_back(MI->clone()); |
| } |
| } |
| |
| (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| prologues.push_back(machineBB); |
| llvm_prologues.push_back(llvmBB); |
| } |
| } |
| |
| void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues) { |
| std::map<int, std::set<const MachineInstr*> > inKernel; |
| int maxStageCount = 0; |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| maxStageCount = std::max(maxStageCount, I->second); |
| |
| //Ignore the branch, we will handle this separately |
| if(I->first->isBranch()) |
| continue; |
| |
| //Put int the map so we know what instructions in each stage are in the kernel |
| if(I->second > 0) { |
| DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n"); |
| inKernel[I->second].insert(I->first->getInst()); |
| } |
| } |
| |
| //Now write the epilogues |
| for(int i = 1; i <= maxStageCount; ++i) { |
| BasicBlock *llvmBB = new BasicBlock(); |
| MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); |
| |
| bool last = false; |
| for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { |
| |
| if(!last) { |
| if(inKernel[i].count(&*MI)) { |
| machineBB->push_back(MI->clone()); |
| inKernel[i].erase(&*MI); |
| if(inKernel[i].size() <= 0) |
| last = true; |
| } |
| } |
| |
| else |
| machineBB->push_back(MI->clone()); |
| |
| |
| } |
| (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); |
| epilogues.push_back(machineBB); |
| llvm_epilogues.push_back(llvmBB); |
| } |
| |
| } |
| |
| |
| |
| void ModuloSchedulingPass::reconstructLoop(const MachineBasicBlock *BB) { |
| |
| //The new loop will consist of an prologue, the kernel, and one or more epilogues. |
| |
| std::vector<MachineBasicBlock*> prologues; |
| std::vector<BasicBlock*> llvm_prologues; |
| |
| //Write prologue |
| writePrologues(prologues, BB, llvm_prologues); |
| |
| //Print out prologue |
| for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); |
| I != E; ++I) { |
| std::cerr << "PROLOGUE\n"; |
| (*I)->print(std::cerr); |
| } |
| |
| |
| std::vector<MachineBasicBlock*> epilogues; |
| std::vector<BasicBlock*> llvm_epilogues; |
| |
| //Write epilogues |
| writeEpilogues(epilogues, BB, llvm_epilogues); |
| |
| //Print out prologue |
| for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); |
| I != E; ++I) { |
| std::cerr << "EPILOGUE\n"; |
| (*I)->print(std::cerr); |
| } |
| |
| //create a vector of epilogues corresponding to each stage |
| /*std::vector<MachineBasicBlock*> epilogues; |
| |
| //Create kernel |
| MachineBasicBlock *kernel = new MachineBasicBlock(); |
| |
| //keep track of stage count |
| int stageCount = 0; |
| |
| //Target info |
| const TargetInstrInfo & mii = target.getInstrInfo(); |
| |
| //Map for creating MachinePhis |
| std::map<MSchedGraphNode *, std::vector<Value*> > nodeAndValueMap; |
| |
| |
| //Loop through the kernel and clone instructions that need to be put into the prologue |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { |
| //For each pair see if the stage is greater then 0 |
| //if so, then ALL instructions before this in the original loop, need to be |
| //copied into the prologue |
| MachineBasicBlock::const_iterator actualInst; |
| |
| |
| //ignore branch |
| if(I->first->isBranch()) |
| continue; |
| |
| if(I->second > 0) { |
| |
| assert(I->second >= stageCount && "Visiting instruction from previous stage count.\n"); |
| |
| |
| //Make a set that has all the Value*'s that we read |
| std::set<const Value*> valuesToSave; |
| |
| //For this instruction, get the Value*'s that it reads and put them into the set. |
| //Assert if there is an operand of another type that we need to save |
| const MachineInstr *inst = I->first->getInst(); |
| for(unsigned i=0; i < inst->getNumOperands(); ++i) { |
| //get machine operand |
| const MachineOperand &mOp = inst->getOperand(i); |
| |
| if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| //find the value in the map |
| if (const Value* srcI = mOp.getVRegValue()) |
| valuesToSave.insert(srcI); |
| } |
| |
| if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { |
| assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); |
| } |
| } |
| |
| //Check if we skipped a stage count, we need to add that stuff here |
| if(I->second - stageCount > 1) { |
| int temp = stageCount; |
| while(I->second - temp > 1) { |
| for(MachineBasicBlock::const_iterator MI = BB->begin(), ME = BB->end(); ME != MI; ++MI) { |
| //Check that MI is not a branch before adding, we add branches separately |
| if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode())) { |
| prologue->push_back(MI->clone()); |
| saveValue(&*MI, valuesToSave); |
| } |
| } |
| ++temp; |
| } |
| } |
| |
| if(I->second == stageCount) |
| continue; |
| |
| stageCount = I->second; |
| DEBUG(std::cerr << "Found Instruction from Stage > 0\n"); |
| //Loop over instructions in original basic block and clone them. Add to the prologue |
| for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) { |
| if(&*MI == I->first->getInst()) { |
| actualInst = MI; |
| break; |
| } |
| else { |
| //Check that MI is not a branch before adding, we add branches separately |
| if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode())) |
| prologue->push_back(MI->clone()); |
| } |
| } |
| |
| //Now add in all instructions from this one on to its corresponding epilogue |
| MachineBasicBlock *epi = new MachineBasicBlock(); |
| epilogues.push_back(epi); |
| |
| for(MachineBasicBlock::const_iterator MI = actualInst, ME = BB->end(); ME != MI; ++MI) { |
| //Check that MI is not a branch before adding, we add branches separately |
| if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode())) |
| epi->push_back(MI->clone()); |
| } |
| } |
| } |
| |
| //Create kernel |
| for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), |
| E = schedule.kernel_end(); I != E; ++I) { |
| kernel->push_back(I->first->getInst()->clone()); |
| |
| } |
| |
| //Debug stuff |
| ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(prologue); |
| std::cerr << "PROLOGUE:\n"; |
| prologue->print(std::cerr); |
| |
| ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(kernel); |
| std::cerr << "KERNEL: \n"; |
| kernel->print(std::cerr); |
| |
| for(std::vector<MachineBasicBlock*>::iterator MBB = epilogues.begin(), ME = epilogues.end(); |
| MBB != ME; ++MBB) { |
| std::cerr << "EPILOGUE:\n"; |
| ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(*MBB); |
| (*MBB)->print(std::cerr); |
| }*/ |
| |
| |
| |
| } |
| |