| //===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the default implementation of the Alias Analysis interface |
| // that simply implements a few identities (two different globals cannot alias, |
| // etc), but otherwise does no analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Argument.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iOther.h" |
| #include "llvm/ConstantHandling.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace llvm; |
| |
| // Make sure that anything that uses AliasAnalysis pulls in this file... |
| namespace llvm { void BasicAAStub() {} } |
| |
| namespace { |
| struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AliasAnalysis::getAnalysisUsage(AU); |
| } |
| |
| virtual void initializePass(); |
| |
| // alias - This is the only method here that does anything interesting... |
| // |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| private: |
| // CheckGEPInstructions - Check two GEP instructions of compatible types and |
| // equal number of arguments. This checks to see if the index expressions |
| // preclude the pointers from aliasing... |
| AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size, |
| GetElementPtrInst *GEP2, unsigned G2Size); |
| }; |
| |
| // Register this pass... |
| RegisterOpt<BasicAliasAnalysis> |
| X("basicaa", "Basic Alias Analysis (default AA impl)"); |
| |
| // Declare that we implement the AliasAnalysis interface |
| RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y; |
| } // End of anonymous namespace |
| |
| void BasicAliasAnalysis::initializePass() { |
| InitializeAliasAnalysis(this); |
| } |
| |
| // hasUniqueAddress - Return true if the specified value points to something |
| // with a unique, discernable, address. |
| static inline bool hasUniqueAddress(const Value *V) { |
| return isa<GlobalValue>(V) || isa<AllocationInst>(V); |
| } |
| |
| // getUnderlyingObject - This traverses the use chain to figure out what object |
| // the specified value points to. If the value points to, or is derived from, a |
| // unique object or an argument, return it. |
| static const Value *getUnderlyingObject(const Value *V) { |
| if (!isa<PointerType>(V->getType())) return 0; |
| |
| // If we are at some type of object... return it. |
| if (hasUniqueAddress(V) || isa<Argument>(V)) return V; |
| |
| // Traverse through different addressing mechanisms... |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (isa<CastInst>(I) || isa<GetElementPtrInst>(I)) |
| return getUnderlyingObject(I->getOperand(0)); |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { |
| if (CE->getOpcode() == Instruction::Cast || |
| CE->getOpcode() == Instruction::GetElementPtr) |
| return getUnderlyingObject(CE->getOperand(0)); |
| } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) { |
| return CPR->getValue(); |
| } |
| return 0; |
| } |
| |
| |
| // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such |
| // as array references. Note that this function is heavily tail recursive. |
| // Hopefully we have a smart C++ compiler. :) |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| // Strip off constant pointer refs if they exist |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1)) |
| V1 = CPR->getValue(); |
| if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2)) |
| V2 = CPR->getValue(); |
| |
| // Are we checking for alias of the same value? |
| if (V1 == V2) return MustAlias; |
| |
| if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) && |
| V1->getType() != Type::LongTy && V2->getType() != Type::LongTy) |
| return NoAlias; // Scalars cannot alias each other |
| |
| // Strip off cast instructions... |
| if (const Instruction *I = dyn_cast<CastInst>(V1)) |
| return alias(I->getOperand(0), V1Size, V2, V2Size); |
| if (const Instruction *I = dyn_cast<CastInst>(V2)) |
| return alias(V1, V1Size, I->getOperand(0), V2Size); |
| |
| // Figure out what objects these things are pointing to if we can... |
| const Value *O1 = getUnderlyingObject(V1); |
| const Value *O2 = getUnderlyingObject(V2); |
| |
| // Pointing at a discernible object? |
| if (O1 && O2) { |
| if (isa<Argument>(O1)) { |
| // Incoming argument cannot alias locally allocated object! |
| if (isa<AllocationInst>(O2)) return NoAlias; |
| // Otherwise, nothing is known... |
| } else if (isa<Argument>(O2)) { |
| // Incoming argument cannot alias locally allocated object! |
| if (isa<AllocationInst>(O1)) return NoAlias; |
| // Otherwise, nothing is known... |
| } else { |
| // If they are two different objects, we know that we have no alias... |
| if (O1 != O2) return NoAlias; |
| } |
| |
| // If they are the same object, they we can look at the indexes. If they |
| // index off of the object is the same for both pointers, they must alias. |
| // If they are provably different, they must not alias. Otherwise, we can't |
| // tell anything. |
| } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) { |
| return NoAlias; // Unique values don't alias null |
| } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) { |
| return NoAlias; // Unique values don't alias null |
| } |
| |
| // If we have two gep instructions with identical indices, return an alias |
| // result equal to the alias result of the original pointer... |
| // |
| if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1)) |
| if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2)) |
| if (GEP1->getNumOperands() == GEP2->getNumOperands() && |
| GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) { |
| AliasResult GAlias = |
| CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size, |
| (GetElementPtrInst*)GEP2, V2Size); |
| if (GAlias != MayAlias) |
| return GAlias; |
| } |
| |
| // Check to see if these two pointers are related by a getelementptr |
| // instruction. If one pointer is a GEP with a non-zero index of the other |
| // pointer, we know they cannot alias. |
| // |
| if (isa<GetElementPtrInst>(V2)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| } |
| |
| if (V1Size != ~0U && V2Size != ~0U) |
| if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) { |
| AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size); |
| if (R == MustAlias) { |
| // If there is at least one non-zero constant index, we know they cannot |
| // alias. |
| bool ConstantFound = false; |
| for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) |
| if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i))) |
| if (!C->isNullValue()) { |
| ConstantFound = true; |
| break; |
| } |
| if (ConstantFound) { |
| if (V2Size <= 1 && V1Size <= 1) // Just pointer check? |
| return NoAlias; |
| |
| // Otherwise we have to check to see that the distance is more than |
| // the size of the argument... build an index vector that is equal to |
| // the arguments provided, except substitute 0's for any variable |
| // indexes we find... |
| |
| std::vector<Value*> Indices; |
| Indices.reserve(GEP->getNumOperands()-1); |
| for (unsigned i = 1; i != GEP->getNumOperands(); ++i) |
| if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i))) |
| Indices.push_back((Value*)C); |
| else |
| Indices.push_back(Constant::getNullValue(Type::LongTy)); |
| const Type *Ty = GEP->getOperand(0)->getType(); |
| int Offset = getTargetData().getIndexedOffset(Ty, Indices); |
| if (Offset >= (int)V2Size || Offset <= -(int)V1Size) |
| return NoAlias; |
| } |
| } |
| } |
| |
| return MayAlias; |
| } |
| |
| static Value *CheckArrayIndicesForOverflow(const Type *PtrTy, |
| const std::vector<Value*> &Indices, |
| const ConstantInt *Idx) { |
| if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) { |
| if (IdxS->getValue() < 0) // Underflow on the array subscript? |
| return Constant::getNullValue(Type::LongTy); |
| else { // Check for overflow |
| const ArrayType *ATy = |
| cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true)); |
| if (IdxS->getValue() >= (int64_t)ATy->getNumElements()) |
| return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1); |
| } |
| } |
| return (Value*)Idx; // Everything is acceptable. |
| } |
| |
| // CheckGEPInstructions - Check two GEP instructions of compatible types and |
| // equal number of arguments. This checks to see if the index expressions |
| // preclude the pointers from aliasing... |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S, |
| GetElementPtrInst *GEP2, unsigned G2S){ |
| // Do the base pointers alias? |
| AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S, |
| GEP2->getOperand(0), G2S); |
| if (BaseAlias != MustAlias) // No or May alias: We cannot add anything... |
| return BaseAlias; |
| |
| // Find the (possibly empty) initial sequence of equal values... |
| unsigned NumGEPOperands = GEP1->getNumOperands(); |
| unsigned UnequalOper = 1; |
| while (UnequalOper != NumGEPOperands && |
| GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper)) |
| ++UnequalOper; |
| |
| // If all operands equal each other, then the derived pointers must |
| // alias each other... |
| if (UnequalOper == NumGEPOperands) return MustAlias; |
| |
| // So now we know that the indexes derived from the base pointers, |
| // which are known to alias, are different. We can still determine a |
| // no-alias result if there are differing constant pairs in the index |
| // chain. For example: |
| // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S)) |
| // |
| unsigned SizeMax = std::max(G1S, G2S); |
| if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work... |
| |
| // Scan for the first operand that is constant and unequal in the |
| // two getelemenptrs... |
| unsigned FirstConstantOper = UnequalOper; |
| for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) { |
| const Value *G1Oper = GEP1->getOperand(FirstConstantOper); |
| const Value *G2Oper = GEP2->getOperand(FirstConstantOper); |
| if (G1Oper != G2Oper && // Found non-equal constant indexes... |
| isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) { |
| // Make sure they are comparable... and make sure the GEP with |
| // the smaller leading constant is GEP1. |
| ConstantBool *Compare = |
| *cast<Constant>(GEP1->getOperand(FirstConstantOper)) > |
| *cast<Constant>(GEP2->getOperand(FirstConstantOper)); |
| if (Compare) { // If they are comparable... |
| if (Compare->getValue()) |
| std::swap(GEP1, GEP2); // Make GEP1 < GEP2 |
| break; |
| } |
| } |
| } |
| |
| // No constant operands, we cannot tell anything... |
| if (FirstConstantOper == NumGEPOperands) return MayAlias; |
| |
| // If there are non-equal constants arguments, then we can figure |
| // out a minimum known delta between the two index expressions... at |
| // this point we know that the first constant index of GEP1 is less |
| // than the first constant index of GEP2. |
| // |
| std::vector<Value*> Indices1; |
| Indices1.reserve(NumGEPOperands-1); |
| for (unsigned i = 1; i != FirstConstantOper; ++i) |
| if (GEP1->getOperand(i)->getType() == Type::UByteTy) |
| Indices1.push_back(GEP1->getOperand(i)); |
| else |
| Indices1.push_back(Constant::getNullValue(Type::LongTy)); |
| std::vector<Value*> Indices2; |
| Indices2.reserve(NumGEPOperands-1); |
| Indices2 = Indices1; // Copy the zeros prefix... |
| |
| // Add the two known constant operands... |
| Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper)); |
| Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper)); |
| |
| const Type *GEPPointerTy = GEP1->getOperand(0)->getType(); |
| |
| // Loop over the rest of the operands... |
| for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) { |
| const Value *Op1 = GEP1->getOperand(i); |
| const Value *Op2 = GEP2->getOperand(i); |
| if (Op1 == Op2) { // If they are equal, use a zero index... |
| if (!isa<Constant>(Op1)) { |
| Indices1.push_back(Constant::getNullValue(Op1->getType())); |
| Indices2.push_back(Indices1.back()); |
| } else { |
| Indices1.push_back((Value*)Op1); |
| Indices2.push_back((Value*)Op2); |
| } |
| } else { |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| // If this is an array index, make sure the array element is in range... |
| if (i != 1) // The pointer index can be "out of range" |
| Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C); |
| |
| Indices1.push_back((Value*)Op1); |
| } else { |
| // GEP1 is known to produce a value less than GEP2. To be |
| // conservatively correct, we must assume the largest possible constant |
| // is used in this position. This cannot be the initial index to the |
| // GEP instructions (because we know we have at least one element before |
| // this one with the different constant arguments), so we know that the |
| // current index must be into either a struct or array. Because we know |
| // it's not constant, this cannot be a structure index. Because of |
| // this, we can calculate the maximum value possible. |
| // |
| const ArrayType *ElTy = |
| cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true)); |
| Indices1.push_back(ConstantSInt::get(Type::LongTy, |
| ElTy->getNumElements()-1)); |
| } |
| |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) { |
| // If this is an array index, make sure the array element is in range... |
| if (i != 1) // The pointer index can be "out of range" |
| Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C); |
| |
| Indices2.push_back((Value*)Op2); |
| } |
| else // Conservatively assume the minimum value for this index |
| Indices2.push_back(Constant::getNullValue(Op2->getType())); |
| } |
| } |
| |
| int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1); |
| int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2); |
| assert(Offset1 < Offset2 &&"There is at least one different constant here!"); |
| |
| if ((uint64_t)(Offset2-Offset1) >= SizeMax) { |
| //std::cerr << "Determined that these two GEP's don't alias [" |
| // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2; |
| return NoAlias; |
| } |
| return MayAlias; |
| } |
| |