| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveInterval analysis pass which is used |
| // by the Linear Scan Register allocator. This pass linearizes the |
| // basic blocks of the function in DFS order and uses the |
| // LiveVariables pass to conservatively compute live intervals for |
| // each virtual and physical register. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "liveintervals" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Value.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis"); |
| |
| static Statistic<> numIntervals |
| ("liveintervals", "Number of original intervals"); |
| |
| static Statistic<> numIntervalsAfter |
| ("liveintervals", "Number of intervals after coalescing"); |
| |
| static Statistic<> numJoins |
| ("liveintervals", "Number of interval joins performed"); |
| |
| static Statistic<> numPeep |
| ("liveintervals", "Number of identity moves eliminated after coalescing"); |
| |
| static Statistic<> numFolded |
| ("liveintervals", "Number of loads/stores folded into instructions"); |
| |
| static cl::opt<bool> |
| EnableJoining("join-liveintervals", |
| cl::desc("Join compatible live intervals"), |
| cl::init(true)); |
| } |
| |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const |
| { |
| AU.addRequired<LiveVariables>(); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequiredID(PHIEliminationID); |
| AU.addRequiredID(TwoAddressInstructionPassID); |
| AU.addRequired<LoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| void LiveIntervals::releaseMemory() |
| { |
| mi2iMap_.clear(); |
| i2miMap_.clear(); |
| r2iMap_.clear(); |
| r2rMap_.clear(); |
| } |
| |
| |
| static bool isZeroLengthInterval(LiveInterval *li) { |
| for (LiveInterval::Ranges::const_iterator |
| i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) |
| if (i->end - i->start > LiveIntervals::InstrSlots::NUM) |
| return false; |
| return true; |
| } |
| |
| |
| /// runOnMachineFunction - Register allocate the whole function |
| /// |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| tm_ = &fn.getTarget(); |
| mri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| lv_ = &getAnalysis<LiveVariables>(); |
| allocatableRegs_ = mri_->getAllocatableSet(fn); |
| r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); |
| |
| // If this function has any live ins, insert a dummy instruction at the |
| // beginning of the function that we will pretend "defines" the values. This |
| // is to make the interval analysis simpler by providing a number. |
| if (fn.livein_begin() != fn.livein_end()) { |
| unsigned FirstLiveIn = fn.livein_begin()->first; |
| |
| // Find a reg class that contains this live in. |
| const TargetRegisterClass *RC = 0; |
| for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(), |
| E = mri_->regclass_end(); RCI != E; ++RCI) |
| if ((*RCI)->contains(FirstLiveIn)) { |
| RC = *RCI; |
| break; |
| } |
| |
| MachineInstr *OldFirstMI = fn.begin()->begin(); |
| mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(), |
| FirstLiveIn, FirstLiveIn, RC); |
| assert(OldFirstMI != fn.begin()->begin() && |
| "copyRetToReg didn't insert anything!"); |
| } |
| |
| // number MachineInstrs |
| unsigned miIndex = 0; |
| for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); |
| mbb != mbbEnd; ++mbb) |
| for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); |
| mi != miEnd; ++mi) { |
| bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; |
| assert(inserted && "multiple MachineInstr -> index mappings"); |
| i2miMap_.push_back(mi); |
| miIndex += InstrSlots::NUM; |
| } |
| |
| // Note intervals due to live-in values. |
| if (fn.livein_begin() != fn.livein_end()) { |
| MachineBasicBlock *Entry = fn.begin(); |
| for (MachineFunction::livein_iterator I = fn.livein_begin(), |
| E = fn.livein_end(); I != E; ++I) { |
| handlePhysicalRegisterDef(Entry, Entry->begin(), |
| getOrCreateInterval(I->first), 0, 0, true); |
| for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS) |
| handlePhysicalRegisterDef(Entry, Entry->begin(), |
| getOrCreateInterval(*AS), 0, 0, true); |
| } |
| } |
| |
| computeIntervals(); |
| |
| numIntervals += getNumIntervals(); |
| |
| DEBUG(std::cerr << "********** INTERVALS **********\n"; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(std::cerr, mri_); |
| std::cerr << "\n"; |
| }); |
| |
| // join intervals if requested |
| if (EnableJoining) joinIntervals(); |
| |
| numIntervalsAfter += getNumIntervals(); |
| |
| // perform a final pass over the instructions and compute spill |
| // weights, coalesce virtual registers and remove identity moves |
| const LoopInfo& loopInfo = getAnalysis<LoopInfo>(); |
| |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| MachineBasicBlock* mbb = mbbi; |
| unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); |
| |
| for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); |
| mii != mie; ) { |
| // if the move will be an identity move delete it |
| unsigned srcReg, dstReg, RegRep; |
| if (tii_->isMoveInstr(*mii, srcReg, dstReg) && |
| (RegRep = rep(srcReg)) == rep(dstReg)) { |
| // remove from def list |
| LiveInterval &interval = getOrCreateInterval(RegRep); |
| // remove index -> MachineInstr and |
| // MachineInstr -> index mappings |
| Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii); |
| if (mi2i != mi2iMap_.end()) { |
| i2miMap_[mi2i->second/InstrSlots::NUM] = 0; |
| mi2iMap_.erase(mi2i); |
| } |
| mii = mbbi->erase(mii); |
| ++numPeep; |
| } |
| else { |
| for (unsigned i = 0; i < mii->getNumOperands(); ++i) { |
| const MachineOperand& mop = mii->getOperand(i); |
| if (mop.isRegister() && mop.getReg() && |
| MRegisterInfo::isVirtualRegister(mop.getReg())) { |
| // replace register with representative register |
| unsigned reg = rep(mop.getReg()); |
| mii->getOperand(i).setReg(reg); |
| |
| LiveInterval &RegInt = getInterval(reg); |
| RegInt.weight += |
| (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth); |
| } |
| } |
| ++mii; |
| } |
| } |
| } |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| LiveInterval &li = I->second; |
| if (MRegisterInfo::isVirtualRegister(li.reg)) |
| // If the live interval legnth is essentially zero, i.e. in every live |
| // range the use follows def immediately, it doesn't make sense to spill |
| // it and hope it will be easier to allocate for this li. |
| if (isZeroLengthInterval(&li)) |
| li.weight = float(HUGE_VAL); |
| } |
| |
| DEBUG(dump()); |
| return true; |
| } |
| |
| /// print - Implement the dump method. |
| void LiveIntervals::print(std::ostream &O, const Module* ) const { |
| O << "********** INTERVALS **********\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| I->second.print(std::cerr, mri_); |
| std::cerr << "\n"; |
| } |
| |
| O << "********** MACHINEINSTRS **********\n"; |
| for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); |
| mbbi != mbbe; ++mbbi) { |
| O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; |
| for (MachineBasicBlock::iterator mii = mbbi->begin(), |
| mie = mbbi->end(); mii != mie; ++mii) { |
| O << getInstructionIndex(mii) << '\t' << *mii; |
| } |
| } |
| } |
| |
| std::vector<LiveInterval*> LiveIntervals:: |
| addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { |
| // since this is called after the analysis is done we don't know if |
| // LiveVariables is available |
| lv_ = getAnalysisToUpdate<LiveVariables>(); |
| |
| std::vector<LiveInterval*> added; |
| |
| assert(li.weight != HUGE_VAL && |
| "attempt to spill already spilled interval!"); |
| |
| DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: " |
| << li << '\n'); |
| |
| const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); |
| |
| for (LiveInterval::Ranges::const_iterator |
| i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { |
| unsigned index = getBaseIndex(i->start); |
| unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; |
| for (; index != end; index += InstrSlots::NUM) { |
| // skip deleted instructions |
| while (index != end && !getInstructionFromIndex(index)) |
| index += InstrSlots::NUM; |
| if (index == end) break; |
| |
| MachineInstr *MI = getInstructionFromIndex(index); |
| |
| // NewRegLiveIn - This instruction might have multiple uses of the spilled |
| // register. In this case, for the first use, keep track of the new vreg |
| // that we reload it into. If we see a second use, reuse this vreg |
| // instead of creating live ranges for two reloads. |
| unsigned NewRegLiveIn = 0; |
| |
| for_operand: |
| for (unsigned i = 0; i != MI->getNumOperands(); ++i) { |
| MachineOperand& mop = MI->getOperand(i); |
| if (mop.isRegister() && mop.getReg() == li.reg) { |
| if (NewRegLiveIn && mop.isUse()) { |
| // We already emitted a reload of this value, reuse it for |
| // subsequent operands. |
| MI->getOperand(i).setReg(NewRegLiveIn); |
| DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn |
| << " for operand #" << i << '\n'); |
| } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) { |
| // Attempt to fold the memory reference into the instruction. If we |
| // can do this, we don't need to insert spill code. |
| if (lv_) |
| lv_->instructionChanged(MI, fmi); |
| MachineBasicBlock &MBB = *MI->getParent(); |
| vrm.virtFolded(li.reg, MI, i, fmi); |
| mi2iMap_.erase(MI); |
| i2miMap_[index/InstrSlots::NUM] = fmi; |
| mi2iMap_[fmi] = index; |
| MI = MBB.insert(MBB.erase(MI), fmi); |
| ++numFolded; |
| // Folding the load/store can completely change the instruction in |
| // unpredictable ways, rescan it from the beginning. |
| goto for_operand; |
| } else { |
| // This is tricky. We need to add information in the interval about |
| // the spill code so we have to use our extra load/store slots. |
| // |
| // If we have a use we are going to have a load so we start the |
| // interval from the load slot onwards. Otherwise we start from the |
| // def slot. |
| unsigned start = (mop.isUse() ? |
| getLoadIndex(index) : |
| getDefIndex(index)); |
| // If we have a def we are going to have a store right after it so |
| // we end the interval after the use of the next |
| // instruction. Otherwise we end after the use of this instruction. |
| unsigned end = 1 + (mop.isDef() ? |
| getStoreIndex(index) : |
| getUseIndex(index)); |
| |
| // create a new register for this spill |
| NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc); |
| MI->getOperand(i).setReg(NewRegLiveIn); |
| vrm.grow(); |
| vrm.assignVirt2StackSlot(NewRegLiveIn, slot); |
| LiveInterval& nI = getOrCreateInterval(NewRegLiveIn); |
| assert(nI.empty()); |
| |
| // the spill weight is now infinity as it |
| // cannot be spilled again |
| nI.weight = float(HUGE_VAL); |
| LiveRange LR(start, end, nI.getNextValue()); |
| DEBUG(std::cerr << " +" << LR); |
| nI.addRange(LR); |
| added.push_back(&nI); |
| |
| // update live variables if it is available |
| if (lv_) |
| lv_->addVirtualRegisterKilled(NewRegLiveIn, MI); |
| |
| // If this is a live in, reuse it for subsequent live-ins. If it's |
| // a def, we can't do this. |
| if (!mop.isUse()) NewRegLiveIn = 0; |
| |
| DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n'); |
| } |
| } |
| } |
| } |
| } |
| |
| return added; |
| } |
| |
| void LiveIntervals::printRegName(unsigned reg) const |
| { |
| if (MRegisterInfo::isPhysicalRegister(reg)) |
| std::cerr << mri_->getName(reg); |
| else |
| std::cerr << "%reg" << reg; |
| } |
| |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb, |
| MachineBasicBlock::iterator mi, |
| LiveInterval& interval) |
| { |
| DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); |
| LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); |
| |
| // Virtual registers may be defined multiple times (due to phi |
| // elimination and 2-addr elimination). Much of what we do only has to be |
| // done once for the vreg. We use an empty interval to detect the first |
| // time we see a vreg. |
| if (interval.empty()) { |
| // Get the Idx of the defining instructions. |
| unsigned defIndex = getDefIndex(getInstructionIndex(mi)); |
| |
| unsigned ValNum = interval.getNextValue(); |
| assert(ValNum == 0 && "First value in interval is not 0?"); |
| ValNum = 0; // Clue in the optimizer. |
| |
| // Loop over all of the blocks that the vreg is defined in. There are |
| // two cases we have to handle here. The most common case is a vreg |
| // whose lifetime is contained within a basic block. In this case there |
| // will be a single kill, in MBB, which comes after the definition. |
| if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { |
| // FIXME: what about dead vars? |
| unsigned killIdx; |
| if (vi.Kills[0] != mi) |
| killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; |
| else |
| killIdx = defIndex+1; |
| |
| // If the kill happens after the definition, we have an intra-block |
| // live range. |
| if (killIdx > defIndex) { |
| assert(vi.AliveBlocks.empty() && |
| "Shouldn't be alive across any blocks!"); |
| LiveRange LR(defIndex, killIdx, ValNum); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR << "\n"); |
| return; |
| } |
| } |
| |
| // The other case we handle is when a virtual register lives to the end |
| // of the defining block, potentially live across some blocks, then is |
| // live into some number of blocks, but gets killed. Start by adding a |
| // range that goes from this definition to the end of the defining block. |
| LiveRange NewLR(defIndex, |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, |
| ValNum); |
| DEBUG(std::cerr << " +" << NewLR); |
| interval.addRange(NewLR); |
| |
| // Iterate over all of the blocks that the variable is completely |
| // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the |
| // live interval. |
| for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { |
| if (vi.AliveBlocks[i]) { |
| MachineBasicBlock* mbb = mf_->getBlockNumbered(i); |
| if (!mbb->empty()) { |
| LiveRange LR(getInstructionIndex(&mbb->front()), |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, |
| ValNum); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR); |
| } |
| } |
| } |
| |
| // Finally, this virtual register is live from the start of any killing |
| // block to the 'use' slot of the killing instruction. |
| for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { |
| MachineInstr *Kill = vi.Kills[i]; |
| LiveRange LR(getInstructionIndex(Kill->getParent()->begin()), |
| getUseIndex(getInstructionIndex(Kill))+1, |
| ValNum); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR); |
| } |
| |
| } else { |
| // If this is the second time we see a virtual register definition, it |
| // must be due to phi elimination or two addr elimination. If this is |
| // the result of two address elimination, then the vreg is the first |
| // operand, and is a def-and-use. |
| if (mi->getOperand(0).isRegister() && |
| mi->getOperand(0).getReg() == interval.reg && |
| mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) { |
| // If this is a two-address definition, then we have already processed |
| // the live range. The only problem is that we didn't realize there |
| // are actually two values in the live interval. Because of this we |
| // need to take the LiveRegion that defines this register and split it |
| // into two values. |
| unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); |
| unsigned RedefIndex = getDefIndex(getInstructionIndex(mi)); |
| |
| // Delete the initial value, which should be short and continuous, |
| // becuase the 2-addr copy must be in the same MBB as the redef. |
| interval.removeRange(DefIndex, RedefIndex); |
| |
| LiveRange LR(DefIndex, RedefIndex, interval.getNextValue()); |
| DEBUG(std::cerr << " replace range with " << LR); |
| interval.addRange(LR); |
| |
| // If this redefinition is dead, we need to add a dummy unit live |
| // range covering the def slot. |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) |
| interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); |
| |
| DEBUG(std::cerr << "RESULT: " << interval); |
| |
| } else { |
| // Otherwise, this must be because of phi elimination. If this is the |
| // first redefinition of the vreg that we have seen, go back and change |
| // the live range in the PHI block to be a different value number. |
| if (interval.containsOneValue()) { |
| assert(vi.Kills.size() == 1 && |
| "PHI elimination vreg should have one kill, the PHI itself!"); |
| |
| // Remove the old range that we now know has an incorrect number. |
| MachineInstr *Killer = vi.Kills[0]; |
| unsigned Start = getInstructionIndex(Killer->getParent()->begin()); |
| unsigned End = getUseIndex(getInstructionIndex(Killer))+1; |
| DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: " |
| << interval << "\n"); |
| interval.removeRange(Start, End); |
| DEBUG(std::cerr << "RESULT: " << interval); |
| |
| // Replace the interval with one of a NEW value number. |
| LiveRange LR(Start, End, interval.getNextValue()); |
| DEBUG(std::cerr << " replace range with " << LR); |
| interval.addRange(LR); |
| DEBUG(std::cerr << "RESULT: " << interval); |
| } |
| |
| // In the case of PHI elimination, each variable definition is only |
| // live until the end of the block. We've already taken care of the |
| // rest of the live range. |
| unsigned defIndex = getDefIndex(getInstructionIndex(mi)); |
| LiveRange LR(defIndex, |
| getInstructionIndex(&mbb->back()) + InstrSlots::NUM, |
| interval.getNextValue()); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR); |
| } |
| } |
| |
| DEBUG(std::cerr << '\n'); |
| } |
| |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator mi, |
| LiveInterval& interval, |
| unsigned SrcReg, unsigned DestReg, |
| bool isLiveIn) |
| { |
| // A physical register cannot be live across basic block, so its |
| // lifetime must end somewhere in its defining basic block. |
| DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); |
| typedef LiveVariables::killed_iterator KillIter; |
| |
| unsigned baseIndex = getInstructionIndex(mi); |
| unsigned start = getDefIndex(baseIndex); |
| unsigned end = start; |
| |
| // If it is not used after definition, it is considered dead at |
| // the instruction defining it. Hence its interval is: |
| // [defSlot(def), defSlot(def)+1) |
| if (lv_->RegisterDefIsDead(mi, interval.reg)) { |
| DEBUG(std::cerr << " dead"); |
| end = getDefIndex(start) + 1; |
| goto exit; |
| } |
| |
| // If it is not dead on definition, it must be killed by a |
| // subsequent instruction. Hence its interval is: |
| // [defSlot(def), useSlot(kill)+1) |
| while (++mi != MBB->end()) { |
| baseIndex += InstrSlots::NUM; |
| if (lv_->KillsRegister(mi, interval.reg)) { |
| DEBUG(std::cerr << " killed"); |
| end = getUseIndex(baseIndex) + 1; |
| goto exit; |
| } |
| } |
| |
| // The only case we should have a dead physreg here without a killing or |
| // instruction where we know it's dead is if it is live-in to the function |
| // and never used. |
| assert(isLiveIn && "physreg was not killed in defining block!"); |
| end = getDefIndex(start) + 1; // It's dead. |
| |
| exit: |
| assert(start < end && "did not find end of interval?"); |
| |
| // Finally, if this is defining a new range for the physical register, and if |
| // that physreg is just a copy from a vreg, and if THAT vreg was a copy from |
| // the physreg, then the new fragment has the same value as the one copied |
| // into the vreg. |
| if (interval.reg == DestReg && !interval.empty() && |
| MRegisterInfo::isVirtualRegister(SrcReg)) { |
| |
| // Get the live interval for the vreg, see if it is defined by a copy. |
| LiveInterval &SrcInterval = getOrCreateInterval(SrcReg); |
| |
| if (SrcInterval.containsOneValue()) { |
| assert(!SrcInterval.empty() && "Can't contain a value and be empty!"); |
| |
| // Get the first index of the first range. Though the interval may have |
| // multiple liveranges in it, we only check the first. |
| unsigned StartIdx = SrcInterval.begin()->start; |
| MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx); |
| |
| // Check to see if the vreg was defined by a copy instruction, and that |
| // the source was this physreg. |
| unsigned VRegSrcSrc, VRegSrcDest; |
| if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) && |
| SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) { |
| // Okay, now we know that the vreg was defined by a copy from this |
| // physreg. Find the value number being copied and use it as the value |
| // for this range. |
| const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1); |
| if (DefRange) { |
| LiveRange LR(start, end, DefRange->ValId); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR << '\n'); |
| return; |
| } |
| } |
| } |
| } |
| |
| |
| LiveRange LR(start, end, interval.getNextValue()); |
| interval.addRange(LR); |
| DEBUG(std::cerr << " +" << LR << '\n'); |
| } |
| |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned reg) { |
| if (MRegisterInfo::isVirtualRegister(reg)) |
| handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg)); |
| else if (allocatableRegs_[reg]) { |
| unsigned SrcReg = 0, DestReg = 0; |
| if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) |
| SrcReg = DestReg = 0; |
| |
| handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg), |
| SrcReg, DestReg); |
| for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS) |
| handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS), |
| SrcReg, DestReg); |
| } |
| } |
| |
| /// computeIntervals - computes the live intervals for virtual |
| /// registers. for some ordering of the machine instructions [1,N] a |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for |
| /// which a variable is live |
| void LiveIntervals::computeIntervals() |
| { |
| DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); |
| DEBUG(std::cerr << "********** Function: " |
| << ((Value*)mf_->getFunction())->getName() << '\n'); |
| bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end(); |
| |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) { |
| MachineBasicBlock* mbb = I; |
| DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n"); |
| |
| MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); |
| if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; } |
| for (; mi != miEnd; ++mi) { |
| const TargetInstrDescriptor& tid = |
| tm_->getInstrInfo()->get(mi->getOpcode()); |
| DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi); |
| |
| // handle implicit defs |
| for (const unsigned* id = tid.ImplicitDefs; *id; ++id) |
| handleRegisterDef(mbb, mi, *id); |
| |
| // handle explicit defs |
| for (int i = mi->getNumOperands() - 1; i >= 0; --i) { |
| MachineOperand& mop = mi->getOperand(i); |
| // handle register defs - build intervals |
| if (mop.isRegister() && mop.getReg() && mop.isDef()) |
| handleRegisterDef(mbb, mi, mop.getReg()); |
| } |
| } |
| } |
| } |
| |
| /// IntA is defined as a copy from IntB and we know it only has one value |
| /// number. If all of the places that IntA and IntB overlap are defined by |
| /// copies from IntA to IntB, we know that these two ranges can really be |
| /// merged if we adjust the value numbers. If it is safe, adjust the value |
| /// numbers and return true, allowing coalescing to occur. |
| bool LiveIntervals:: |
| AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA, |
| LiveInterval &IntB, |
| unsigned CopyIdx) { |
| std::vector<LiveRange*> Ranges; |
| IntA.getOverlapingRanges(IntB, CopyIdx, Ranges); |
| |
| assert(!Ranges.empty() && "Why didn't we do a simple join of this?"); |
| |
| unsigned IntBRep = rep(IntB.reg); |
| |
| // Check to see if all of the overlaps (entries in Ranges) are defined by a |
| // copy from IntA. If not, exit. |
| for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { |
| unsigned Idx = Ranges[i]->start; |
| MachineInstr *MI = getInstructionFromIndex(Idx); |
| unsigned SrcReg, DestReg; |
| if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false; |
| |
| // If this copy isn't actually defining this range, it must be a live |
| // range spanning basic blocks or something. |
| if (rep(DestReg) != rep(IntA.reg)) return false; |
| |
| // Check to see if this is coming from IntB. If not, bail out. |
| if (rep(SrcReg) != IntBRep) return false; |
| } |
| |
| // Okay, we can change this one. Get the IntB value number that IntA is |
| // copied from. |
| unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId; |
| |
| // Change all of the value numbers to the same as what we IntA is copied from. |
| for (unsigned i = 0, e = Ranges.size(); i != e; ++i) |
| Ranges[i]->ValId = ActualValNo; |
| |
| return true; |
| } |
| |
| void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) { |
| DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n"); |
| |
| for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end(); |
| mi != mie; ++mi) { |
| DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi); |
| |
| // we only join virtual registers with allocatable |
| // physical registers since we do not have liveness information |
| // on not allocatable physical registers |
| unsigned SrcReg, DestReg; |
| if (tii_->isMoveInstr(*mi, SrcReg, DestReg) && |
| (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&& |
| (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){ |
| |
| // Get representative registers. |
| SrcReg = rep(SrcReg); |
| DestReg = rep(DestReg); |
| |
| // If they are already joined we continue. |
| if (SrcReg == DestReg) |
| continue; |
| |
| // If they are both physical registers, we cannot join them. |
| if (MRegisterInfo::isPhysicalRegister(SrcReg) && |
| MRegisterInfo::isPhysicalRegister(DestReg)) |
| continue; |
| |
| // If they are not of the same register class, we cannot join them. |
| if (differingRegisterClasses(SrcReg, DestReg)) |
| continue; |
| |
| LiveInterval &SrcInt = getInterval(SrcReg); |
| LiveInterval &DestInt = getInterval(DestReg); |
| assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg && |
| "Register mapping is horribly broken!"); |
| |
| DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt |
| << ": "); |
| |
| // If two intervals contain a single value and are joined by a copy, it |
| // does not matter if the intervals overlap, they can always be joined. |
| bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue(); |
| |
| unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi)); |
| |
| // If the intervals think that this is joinable, do so now. |
| if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx)) |
| Joinable = true; |
| |
| // If DestInt is actually a copy from SrcInt (which we know) that is used |
| // to define another value of SrcInt, we can change the other range of |
| // SrcInt to be the value of the range that defines DestInt, allowing a |
| // coalesce. |
| if (!Joinable && DestInt.containsOneValue() && |
| AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx)) |
| Joinable = true; |
| |
| if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) { |
| DEBUG(std::cerr << "Interference!\n"); |
| } else { |
| DestInt.join(SrcInt, MIDefIdx); |
| DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n"); |
| |
| if (!MRegisterInfo::isPhysicalRegister(SrcReg)) { |
| r2iMap_.erase(SrcReg); |
| r2rMap_[SrcReg] = DestReg; |
| } else { |
| // Otherwise merge the data structures the other way so we don't lose |
| // the physreg information. |
| r2rMap_[DestReg] = SrcReg; |
| DestInt.reg = SrcReg; |
| SrcInt.swap(DestInt); |
| r2iMap_.erase(DestReg); |
| } |
| ++numJoins; |
| } |
| } |
| } |
| } |
| |
| namespace { |
| // DepthMBBCompare - Comparison predicate that sort first based on the loop |
| // depth of the basic block (the unsigned), and then on the MBB number. |
| struct DepthMBBCompare { |
| typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair; |
| bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { |
| if (LHS.first > RHS.first) return true; // Deeper loops first |
| return LHS.first == RHS.first && |
| LHS.second->getNumber() < RHS.second->getNumber(); |
| } |
| }; |
| } |
| |
| void LiveIntervals::joinIntervals() { |
| DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); |
| |
| const LoopInfo &LI = getAnalysis<LoopInfo>(); |
| if (LI.begin() == LI.end()) { |
| // If there are no loops in the function, join intervals in function order. |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) |
| joinIntervalsInMachineBB(I); |
| } else { |
| // Otherwise, join intervals in inner loops before other intervals. |
| // Unfortunately we can't just iterate over loop hierarchy here because |
| // there may be more MBB's than BB's. Collect MBB's for sorting. |
| std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs; |
| for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); |
| I != E; ++I) |
| MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); |
| |
| // Sort by loop depth. |
| std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); |
| |
| // Finally, join intervals in loop nest order. |
| for (unsigned i = 0, e = MBBs.size(); i != e; ++i) |
| joinIntervalsInMachineBB(MBBs[i].second); |
| } |
| |
| DEBUG(std::cerr << "*** Register mapping ***\n"); |
| DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i) |
| if (r2rMap_[i]) |
| std::cerr << " reg " << i << " -> reg " << r2rMap_[i] << "\n"); |
| } |
| |
| /// Return true if the two specified registers belong to different register |
| /// classes. The registers may be either phys or virt regs. |
| bool LiveIntervals::differingRegisterClasses(unsigned RegA, |
| unsigned RegB) const { |
| |
| // Get the register classes for the first reg. |
| if (MRegisterInfo::isPhysicalRegister(RegA)) { |
| assert(MRegisterInfo::isVirtualRegister(RegB) && |
| "Shouldn't consider two physregs!"); |
| return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); |
| } |
| |
| // Compare against the regclass for the second reg. |
| const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); |
| if (MRegisterInfo::isVirtualRegister(RegB)) |
| return RegClass != mf_->getSSARegMap()->getRegClass(RegB); |
| else |
| return !RegClass->contains(RegB); |
| } |
| |
| bool LiveIntervals::overlapsAliases(const LiveInterval *LHS, |
| const LiveInterval *RHS) const { |
| if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) { |
| if (!MRegisterInfo::isPhysicalRegister(RHS->reg)) |
| return false; // vreg-vreg merge has no aliases! |
| std::swap(LHS, RHS); |
| } |
| |
| assert(MRegisterInfo::isPhysicalRegister(LHS->reg) && |
| MRegisterInfo::isVirtualRegister(RHS->reg) && |
| "first interval must describe a physical register"); |
| |
| for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS) |
| if (RHS->overlaps(getInterval(*AS))) |
| return true; |
| |
| return false; |
| } |
| |
| LiveInterval LiveIntervals::createInterval(unsigned reg) { |
| float Weight = MRegisterInfo::isPhysicalRegister(reg) ? |
| (float)HUGE_VAL :0.0F; |
| return LiveInterval(reg, Weight); |
| } |