| //===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=// |
| // |
| // This file implements the 'raising' part of the LevelChange API. This is |
| // useful because, in general, it makes the LLVM code terser and easier to |
| // analyze. Note that it is good to run DCE after doing this transformation. |
| // |
| // Eliminate silly things in the source that do not effect the level, but do |
| // clean up the code: |
| // * Casts of casts |
| // - getelementptr/load & getelementptr/store are folded into a direct |
| // load or store |
| // - Convert this code (for both alloca and malloc): |
| // %reg110 = shl uint %n, ubyte 2 ;;<uint> |
| // %reg108 = alloca ubyte, uint %reg110 ;;<ubyte*> |
| // %cast76 = cast ubyte* %reg108 to uint* ;;<uint*> |
| // To: %cast76 = alloca uint, uint %n |
| // Convert explicit addressing to use getelementptr instruction where possible |
| // - ... |
| // |
| // Convert explicit addressing on pointers to use getelementptr instruction. |
| // - If a pointer is used by arithmetic operation, insert an array casted |
| // version into the source program, only for the following pointer types: |
| // * Method argument pointers |
| // - Pointers returned by alloca or malloc |
| // - Pointers returned by function calls |
| // - If a pointer is indexed with a value scaled by a constant size equal |
| // to the element size of the array, the expression is replaced with a |
| // getelementptr instruction. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/LevelChange.h" |
| #include "llvm/Method.h" |
| #include "llvm/Support/STLExtras.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/ConstPoolVals.h" |
| #include "llvm/Target/TargetData.h" |
| #include <map> |
| #include <algorithm> |
| |
| #include "llvm/Assembly/Writer.h" |
| |
| //#define DEBUG_PEEPHOLE_INSTS 1 |
| |
| #ifdef DEBUG_PEEPHOLE_INSTS |
| #define PRINT_PEEPHOLE(ID, NUM, I) \ |
| cerr << "Inst P/H " << ID << "[" << NUM << "] " << I; |
| #else |
| #define PRINT_PEEPHOLE(ID, NUM, I) |
| #endif |
| |
| #define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0) |
| #define PRINT_PEEPHOLE2(ID, I1, I2) \ |
| do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0) |
| #define PRINT_PEEPHOLE3(ID, I1, I2, I3) \ |
| do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \ |
| PRINT_PEEPHOLE(ID, 2, I3); } while (0) |
| |
| |
| // TargetData Hack: Eventually we will have annotations given to us by the |
| // backend so that we know stuff about type size and alignments. For now |
| // though, just use this, because it happens to match the model that GCC uses. |
| // |
| const TargetData TD("LevelRaise: Should be GCC though!"); |
| |
| |
| // losslessCastableTypes - Return true if the types are bitwise equivalent. |
| // This predicate returns true if it is possible to cast from one type to |
| // another without gaining or losing precision, or altering the bits in any way. |
| // |
| static bool losslessCastableTypes(const Type *T1, const Type *T2) { |
| assert(T1->isPrimitiveType() || isa<PointerType>(T1)); |
| assert(T2->isPrimitiveType() || isa<PointerType>(T2)); |
| |
| if (T1->getPrimitiveID() == T2->getPrimitiveID()) |
| return true; // Handles identity cast, and cast of differing pointer types |
| |
| // Now we know that they are two differing primitive or pointer types |
| switch (T1->getPrimitiveID()) { |
| case Type::UByteTyID: return T2 == Type::SByteTy; |
| case Type::SByteTyID: return T2 == Type::UByteTy; |
| case Type::UShortTyID: return T2 == Type::ShortTy; |
| case Type::ShortTyID: return T2 == Type::UShortTy; |
| case Type::UIntTyID: return T2 == Type::IntTy; |
| case Type::IntTyID: return T2 == Type::UIntTy; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| case Type::PointerTyID: |
| return T2 == Type::ULongTy || T2 == Type::LongTy || |
| T2->getPrimitiveID() == Type::PointerTyID; |
| default: |
| return false; // Other types have no identity values |
| } |
| } |
| |
| |
| // isReinterpretingCast - Return true if the cast instruction specified will |
| // cause the operand to be "reinterpreted". A value is reinterpreted if the |
| // cast instruction would cause the underlying bits to change. |
| // |
| static inline bool isReinterpretingCast(const CastInst *CI) { |
| return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType()); |
| } |
| |
| |
| // getPointedToStruct - If the argument is a pointer type, and the pointed to |
| // value is a struct type, return the struct type, else return null. |
| // |
| static const StructType *getPointedToStruct(const Type *Ty) { |
| const PointerType *PT = dyn_cast<PointerType>(Ty); |
| return PT ? dyn_cast<StructType>(PT->getValueType()) : 0; |
| } |
| |
| |
| // getStructOffsetType - Return a vector of offsets that are to be used to index |
| // into the specified struct type to get as close as possible to index as we |
| // can. Note that it is possible that we cannot get exactly to Offset, in which |
| // case we update offset to be the offset we actually obtained. The resultant |
| // leaf type is returned. |
| // |
| static const Type *getStructOffsetType(const Type *Ty, unsigned &Offset, |
| vector<ConstPoolVal*> &Offsets) { |
| if (!isa<StructType>(Ty)) { |
| Offset = 0; // Return the offset that we were able to acheive |
| return Ty; // Return the leaf type |
| } |
| |
| assert(Offset < TD.getTypeSize(Ty) && "Offset not in struct!"); |
| const StructType *STy = cast<StructType>(Ty); |
| const StructLayout *SL = TD.getStructLayout(STy); |
| |
| // This loop terminates always on a 0 <= i < MemberOffsets.size() |
| unsigned i; |
| for (i = 0; i < SL->MemberOffsets.size()-1; ++i) |
| if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]) |
| break; |
| |
| assert(Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]); |
| |
| // Make sure to save the current index... |
| Offsets.push_back(ConstPoolUInt::get(Type::UByteTy, i)); |
| |
| unsigned SubOffs = Offset - SL->MemberOffsets[i]; |
| const Type *LeafTy = getStructOffsetType(STy->getElementTypes()[i], SubOffs, |
| Offsets); |
| Offset = SL->MemberOffsets[i] + SubOffs; |
| return LeafTy; |
| } |
| |
| |
| |
| // ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) |
| // with a value, then remove and delete the original instruction. |
| // |
| static void ReplaceInstWithValue(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Value *V) { |
| Instruction *I = *BI; |
| // Replaces all of the uses of the instruction with uses of the value |
| I->replaceAllUsesWith(V); |
| |
| // Remove the unneccesary instruction now... |
| BIL.remove(BI); |
| |
| // Make sure to propogate a name if there is one already... |
| if (I->hasName() && !V->hasName()) |
| V->setName(I->getName(), BIL.getParent()->getSymbolTable()); |
| |
| // Remove the dead instruction now... |
| delete I; |
| } |
| |
| |
| // ReplaceInstWithInst - Replace the instruction specified by BI with the |
| // instruction specified by I. The original instruction is deleted and BI is |
| // updated to point to the new instruction. |
| // |
| static void ReplaceInstWithInst(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Instruction *I) { |
| assert(I->getParent() == 0 && |
| "ReplaceInstWithInst: Instruction already inserted into basic block!"); |
| |
| // Insert the new instruction into the basic block... |
| BI = BIL.insert(BI, I)+1; |
| |
| // Replace all uses of the old instruction, and delete it. |
| ReplaceInstWithValue(BIL, BI, I); |
| |
| // Reexamine the instruction just inserted next time around the cleanup pass |
| // loop. |
| --BI; |
| } |
| |
| |
| // ExpressionConvertableToType - Return true if it is possible |
| static bool ExpressionConvertableToType(Value *V, const Type *Ty) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0) return false; // Noninstructions can't convert |
| if (I->getType() == Ty) return false; // Expression already correct type! |
| |
| switch (I->getOpcode()) { |
| case Instruction::Cast: |
| // We can convert the expr if the cast destination type is losslessly |
| // convertable to the requested type. |
| return losslessCastableTypes(Ty, I->getType()); |
| |
| case Instruction::Add: |
| case Instruction::Sub: |
| return ExpressionConvertableToType(I->getOperand(0), Ty) && |
| ExpressionConvertableToType(I->getOperand(1), Ty); |
| case Instruction::Shl: |
| case Instruction::Shr: |
| return ExpressionConvertableToType(I->getOperand(0), Ty); |
| } |
| return false; |
| } |
| |
| |
| static Instruction *ConvertExpressionToType(Value *V, const Type *Ty) { |
| Instruction *I = cast<Instruction>(V); |
| assert(ExpressionConvertableToType(I, Ty) && "Inst is not convertable!"); |
| BasicBlock *BB = I->getParent(); |
| BasicBlock::InstListType &BIL = BB->getInstList(); |
| string Name = I->getName(); if (!Name.empty()) I->setName(""); |
| Instruction *Res; // Result of conversion |
| |
| //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl; |
| |
| switch (I->getOpcode()) { |
| case Instruction::Cast: |
| Res = new CastInst(I->getOperand(0), Ty, Name); |
| break; |
| |
| case Instruction::Add: |
| case Instruction::Sub: |
| Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(), |
| ConvertExpressionToType(I->getOperand(0), Ty), |
| ConvertExpressionToType(I->getOperand(1), Ty), |
| Name); |
| break; |
| |
| case Instruction::Shl: |
| case Instruction::Shr: |
| Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), |
| ConvertExpressionToType(I->getOperand(0), Ty), |
| I->getOperand(1), Name); |
| break; |
| |
| default: |
| assert(0 && "Expression convertable, but don't know how to convert?"); |
| return 0; |
| } |
| |
| BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); |
| assert(It != BIL.end() && "Instruction not in own basic block??"); |
| BIL.insert(It, Res); |
| |
| //cerr << "RInst: " << Res << "BB After: " << BB << endl << endl; |
| |
| return Res; |
| } |
| |
| |
| |
| // DoInsertArrayCast - If the argument value has a pointer type, and if the |
| // argument value is used as an array, insert a cast before the specified |
| // basic block iterator that casts the value to an array pointer. Return the |
| // new cast instruction (in the CastResult var), or null if no cast is inserted. |
| // |
| static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB, |
| BasicBlock::iterator &InsertBefore, |
| CastInst *&CastResult) { |
| const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType()); |
| if (!ThePtrType) return false; |
| bool InsertCast = false; |
| |
| for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { |
| Instruction *Inst = cast<Instruction>(*I); |
| switch (Inst->getOpcode()) { |
| default: break; // Not an interesting use... |
| case Instruction::Add: // It's being used as an array index! |
| //case Instruction::Sub: |
| InsertCast = true; |
| break; |
| case Instruction::Cast: // There is already a cast instruction! |
| if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType())) |
| if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType())) |
| if (AT->getElementType() == ThePtrType->getValueType()) { |
| // Cast already exists! Return the existing one! |
| CastResult = cast<CastInst>(Inst); |
| return false; // No changes made to program though... |
| } |
| break; |
| } |
| } |
| |
| if (!InsertCast) return false; // There is no reason to insert a cast! |
| |
| // Insert a cast! |
| const Type *ElTy = ThePtrType->getValueType(); |
| const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy)); |
| |
| CastResult = new CastInst(V, DestTy); |
| BB->getInstList().insert(InsertBefore, CastResult); |
| //cerr << "Inserted cast: " << CastResult; |
| return true; // Made a change! |
| } |
| |
| |
| // DoInsertArrayCasts - Loop over all "incoming" values in the specified method, |
| // inserting a cast for pointer values that are used as arrays. For our |
| // purposes, an incoming value is considered to be either a value that is |
| // either a method parameter, a value created by alloca or malloc, or a value |
| // returned from a function call. All casts are kept attached to their original |
| // values through the PtrCasts map. |
| // |
| static bool DoInsertArrayCasts(Method *M, map<Value*, CastInst*> &PtrCasts) { |
| assert(!M->isExternal() && "Can't handle external methods!"); |
| |
| // Insert casts for all arguments to the function... |
| bool Changed = false; |
| BasicBlock *CurBB = M->front(); |
| BasicBlock::iterator It = CurBB->begin(); |
| for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), |
| AE = M->getArgumentList().end(); AI != AE; ++AI) { |
| CastInst *TheCast = 0; |
| if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) { |
| It = CurBB->begin(); // We might have just invalidated the iterator! |
| Changed = true; // Yes we made a change |
| ++It; // Insert next cast AFTER this one... |
| } |
| |
| if (TheCast) // Is there a cast associated with this value? |
| PtrCasts[*AI] = TheCast; // Yes, add it to the map... |
| } |
| |
| // TODO: insert casts for alloca, malloc, and function call results. Also, |
| // look for pointers that already have casts, to add to the map. |
| |
| return Changed; |
| } |
| |
| |
| |
| |
| // DoElminatePointerArithmetic - Loop over each incoming pointer variable, |
| // replacing indexing arithmetic with getelementptr calls. |
| // |
| static bool DoEliminatePointerArithmetic(const pair<Value*, CastInst*> &Val) { |
| Value *V = Val.first; // The original pointer |
| CastInst *CV = Val.second; // The array casted version of the pointer... |
| |
| for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { |
| Instruction *Inst = cast<Instruction>(*I); |
| if (Inst->getOpcode() != Instruction::Add) |
| continue; // We only care about add instructions |
| |
| BinaryOperator *Add = cast<BinaryOperator>(Inst); |
| |
| // Make sure the array is the first operand of the add expression... |
| if (Add->getOperand(0) != V) |
| Add->swapOperands(); |
| |
| // Get the amount added to the pointer value... |
| Value *AddAmount = Add->getOperand(1); |
| |
| |
| } |
| return false; |
| } |
| |
| |
| // Peephole Malloc instructions: we take a look at the use chain of the |
| // malloc instruction, and try to find out if the following conditions hold: |
| // 1. The malloc is of the form: 'malloc [sbyte], uint <constant>' |
| // 2. The only users of the malloc are cast instructions |
| // 3. Of the cast instructions, there is only one destination pointer type |
| // [RTy] where the size of the pointed to object is equal to the number |
| // of bytes allocated. |
| // |
| // If these conditions hold, we convert the malloc to allocate an [RTy] |
| // element. This should be extended in the future to handle arrays. TODO |
| // |
| static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) { |
| MallocInst *MI = cast<MallocInst>(*BI); |
| if (!MI->isArrayAllocation()) return false; // No array allocation? |
| |
| ConstPoolUInt *Amt = dyn_cast<ConstPoolUInt>(MI->getArraySize()); |
| if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy)) |
| return false; |
| |
| // Get the number of bytes allocated... |
| unsigned Size = Amt->getValue(); |
| const Type *ResultTy = 0; |
| |
| // Loop over all of the uses of the malloc instruction, inspecting casts. |
| for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); |
| I != E; ++I) { |
| if (!isa<CastInst>(*I)) { |
| //cerr << "\tnon" << *I; |
| return false; // A non cast user? |
| } |
| CastInst *CI = cast<CastInst>(*I); |
| //cerr << "\t" << CI; |
| |
| // We only work on casts to pointer types for sure, be conservative |
| if (!isa<PointerType>(CI->getType())) { |
| cerr << "Found cast of malloc value to non pointer type:\n" << CI; |
| return false; |
| } |
| |
| const Type *DestTy = cast<PointerType>(CI->getType())->getValueType(); |
| if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) { |
| // Does the size of the allocated type match the number of bytes |
| // allocated? |
| // |
| if (ResultTy == 0) { |
| ResultTy = DestTy; // Keep note of this for future uses... |
| } else { |
| // It's overdefined! We don't know which type to convert to! |
| return false; |
| } |
| } |
| } |
| |
| // If we get this far, we have either found, or not, a type that is cast to |
| // that is of the same size as the malloc instruction. |
| if (!ResultTy) return false; |
| |
| PRINT_PEEPHOLE1("mall-refine:in ", MI); |
| ReplaceInstWithInst(BB->getInstList(), BI, |
| MI = new MallocInst(PointerType::get(ResultTy))); |
| PRINT_PEEPHOLE1("mall-refine:out", MI); |
| return true; |
| } |
| |
| |
| |
| static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) { |
| Instruction *I = *BI; |
| if (I->use_size() == 0 && I->getType() != Type::VoidTy) return false; |
| |
| if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| Value *Src = CI->getOperand(0); |
| Instruction *SrcI = dyn_cast<Instruction>(Src); // Nonnull if instr source |
| const Type *DestTy = CI->getType(); |
| |
| // Check for a cast of the same type as the destination! |
| if (DestTy == Src->getType()) { |
| PRINT_PEEPHOLE1("cast-of-self-ty", CI); |
| CI->replaceAllUsesWith(Src); |
| if (!Src->hasName() && CI->hasName()) { |
| string Name = CI->getName(); |
| CI->setName(""); Src->setName(Name); |
| } |
| return true; |
| } |
| |
| // Check for a cast of cast, where no size information is lost... |
| if (SrcI) |
| if (CastInst *CSrc = dyn_cast<CastInst>(SrcI)) |
| if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) { |
| // We can only do c-c elimination if, at most, one cast does a |
| // reinterpretation of the input data. |
| // |
| // If legal, make this cast refer the the original casts argument! |
| // |
| PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc); |
| CI->setOperand(0, CSrc->getOperand(0)); |
| PRINT_PEEPHOLE1("cast-cast:out", CI); |
| return true; |
| } |
| |
| // Check to see if it's a cast of an instruction that does not depend on the |
| // specific type of the operands to do it's job. |
| if (SrcI && !isReinterpretingCast(CI) && |
| ExpressionConvertableToType(SrcI, DestTy)) { |
| PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, SrcI); |
| CI->setOperand(0, ConvertExpressionToType(SrcI, DestTy)); |
| BI = BB->begin(); // Rescan basic block. BI might be invalidated. |
| PRINT_PEEPHOLE2("EXPR-CONV:out", CI, CI->getOperand(0)); |
| return true; |
| } |
| |
| } else if (MallocInst *MI = dyn_cast<MallocInst>(I)) { |
| if (PeepholeMallocInst(BB, BI)) return true; |
| |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Val = SI->getOperand(0); |
| Value *Pointer = SI->getPtrOperand(); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Pointer)) { |
| PRINT_PEEPHOLE2("gep-store:in", GEP, SI); |
| ReplaceInstWithInst(BB->getInstList(), BI, |
| SI = new StoreInst(Val, GEP->getPtrOperand(), |
| GEP->getIndexVec())); |
| PRINT_PEEPHOLE1("gep-store:out", SI); |
| return true; |
| } |
| |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| Value *Pointer = LI->getPtrOperand(); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Pointer)) { |
| PRINT_PEEPHOLE2("gep-load:in", GEP, LI); |
| ReplaceInstWithInst(BB->getInstList(), BI, |
| LI = new LoadInst(GEP->getPtrOperand(), |
| GEP->getIndexVec())); |
| PRINT_PEEPHOLE1("gep-load:out", LI); |
| return true; |
| } |
| } else if (I->getOpcode() == Instruction::Add && |
| isa<CastInst>(I->getOperand(1))) { |
| |
| // Peephole optimize the following instructions: |
| // %t1 = cast ulong <const int> to {<...>} * |
| // %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand |
| // |
| // or |
| // %t1 = cast {<...>}* %SP to int* |
| // %t5 = cast ulong <const int> to int* |
| // %t2 = add int* %t1, %t5 ;; int is same size as field |
| // |
| // Into: %t3 = getelementptr {<...>} * %SP, <element indices> |
| // %t2 = cast <eltype> * %t3 to {<...>}* |
| // |
| Value *AddOp1 = I->getOperand(0); |
| CastInst *AddOp2 = cast<CastInst>(I->getOperand(1)); |
| ConstPoolUInt *OffsetV = dyn_cast<ConstPoolUInt>(AddOp2->getOperand(0)); |
| unsigned Offset = OffsetV ? OffsetV->getValue() : 0; |
| Value *SrcPtr; // Of type pointer to struct... |
| const StructType *StructTy; |
| |
| if ((StructTy = getPointedToStruct(AddOp1->getType()))) { |
| SrcPtr = AddOp1; // Handle the first case... |
| } else if (CastInst *AddOp1c = dyn_cast<CastInst>(AddOp1)) { |
| SrcPtr = AddOp1c->getOperand(0); // Handle the second case... |
| StructTy = getPointedToStruct(SrcPtr->getType()); |
| } |
| |
| // Only proceed if we have detected all of our conditions successfully... |
| if (Offset && StructTy && SrcPtr && Offset < TD.getTypeSize(StructTy)) { |
| const StructLayout *SL = TD.getStructLayout(StructTy); |
| vector<ConstPoolVal*> Offsets; |
| unsigned ActualOffset = Offset; |
| const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); |
| |
| if (getPointedToStruct(AddOp1->getType())) { // case 1 |
| PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, I); |
| } else { |
| PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, I); |
| } |
| |
| GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets); |
| BI = BB->getInstList().insert(BI, GEP)+1; |
| |
| assert(Offset-ActualOffset == 0 && |
| "GEP to middle of element not implemented yet!"); |
| |
| ReplaceInstWithInst(BB->getInstList(), BI, |
| I = new CastInst(GEP, I->getType())); |
| PRINT_PEEPHOLE2("add-to-gep:out", GEP, I); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| |
| |
| static bool DoRaisePass(Method *M) { |
| bool Changed = false; |
| for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) { |
| BasicBlock *BB = *MI; |
| BasicBlock::InstListType &BIL = BB->getInstList(); |
| |
| for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { |
| if (PeepholeOptimize(BB, BI)) |
| Changed = true; |
| else |
| ++BI; |
| } |
| } |
| return Changed; |
| } |
| |
| |
| // RaisePointerReferences::doit - Raise a method representation to a higher |
| // level. |
| // |
| bool RaisePointerReferences::doit(Method *M) { |
| if (M->isExternal()) return false; |
| bool Changed = false; |
| |
| while (DoRaisePass(M)) Changed = true; |
| |
| // PtrCasts - Keep a mapping between the pointer values (the key of the |
| // map), and the cast to array pointer (the value) in this map. This is |
| // used when converting pointer math into array addressing. |
| // |
| map<Value*, CastInst*> PtrCasts; |
| |
| // Insert casts for all incoming pointer values. Keep track of those casts |
| // and the identified incoming values in the PtrCasts map. |
| // |
| Changed |= DoInsertArrayCasts(M, PtrCasts); |
| |
| // Loop over each incoming pointer variable, replacing indexing arithmetic |
| // with getelementptr calls. |
| // |
| Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(), |
| ptr_fun(DoEliminatePointerArithmetic)); |
| |
| return Changed; |
| } |