| //===-- ExternalFunctions.cpp - Implement External Functions --------------===// |
| // |
| // This file contains both code to deal with invoking "external" functions, but |
| // also contains code that implements "exported" external functions. |
| // |
| // External functions in LLI are implemented by dlopen'ing the lli executable |
| // and using dlsym to look op the functions that we want to invoke. If a |
| // function is found, then the arguments are mangled and passed in to the |
| // function call. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Interpreter.h" |
| #include "llvm/DerivedTypes.h" |
| #include <map> |
| #include <dlfcn.h> |
| #include <iostream> |
| #include <link.h> |
| #include <math.h> |
| #include <stdio.h> |
| using std::vector; |
| using std::cout; |
| |
| typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &); |
| static std::map<const Function *, ExFunc> Functions; |
| static std::map<std::string, ExFunc> FuncNames; |
| |
| static Interpreter *TheInterpreter; |
| |
| // getCurrentExecutablePath() - Return the directory that the lli executable |
| // lives in. |
| // |
| std::string Interpreter::getCurrentExecutablePath() const { |
| Dl_info Info; |
| if (dladdr(&TheInterpreter, &Info) == 0) return ""; |
| |
| std::string LinkAddr(Info.dli_fname); |
| unsigned SlashPos = LinkAddr.rfind('/'); |
| if (SlashPos != std::string::npos) |
| LinkAddr.resize(SlashPos); // Trim the executable name off... |
| |
| return LinkAddr; |
| } |
| |
| |
| static char getTypeID(const Type *Ty) { |
| switch (Ty->getPrimitiveID()) { |
| case Type::VoidTyID: return 'V'; |
| case Type::BoolTyID: return 'o'; |
| case Type::UByteTyID: return 'B'; |
| case Type::SByteTyID: return 'b'; |
| case Type::UShortTyID: return 'S'; |
| case Type::ShortTyID: return 's'; |
| case Type::UIntTyID: return 'I'; |
| case Type::IntTyID: return 'i'; |
| case Type::ULongTyID: return 'L'; |
| case Type::LongTyID: return 'l'; |
| case Type::FloatTyID: return 'F'; |
| case Type::DoubleTyID: return 'D'; |
| case Type::PointerTyID: return 'P'; |
| case Type::FunctionTyID: return 'M'; |
| case Type::StructTyID: return 'T'; |
| case Type::ArrayTyID: return 'A'; |
| case Type::OpaqueTyID: return 'O'; |
| default: return 'U'; |
| } |
| } |
| |
| static ExFunc lookupFunction(const Function *M) { |
| // Function not found, look it up... start by figuring out what the |
| // composite function name should be. |
| std::string ExtName = "lle_"; |
| const FunctionType *MT = M->getFunctionType(); |
| for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i) |
| ExtName += getTypeID(Ty); |
| ExtName += "_" + M->getName(); |
| |
| //cout << "Tried: '" << ExtName << "'\n"; |
| ExFunc FnPtr = FuncNames[ExtName]; |
| if (FnPtr == 0) |
| FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str()); |
| if (FnPtr == 0) |
| FnPtr = FuncNames["lle_X_"+M->getName()]; |
| if (FnPtr == 0) // Try calling a generic function... if it exists... |
| FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str()); |
| if (FnPtr != 0) |
| Functions.insert(std::make_pair(M, FnPtr)); // Cache for later |
| return FnPtr; |
| } |
| |
| GenericValue Interpreter::callExternalMethod(Function *M, |
| const vector<GenericValue> &ArgVals) { |
| TheInterpreter = this; |
| |
| // Do a lookup to see if the function is in our cache... this should just be a |
| // defered annotation! |
| std::map<const Function *, ExFunc>::iterator FI = Functions.find(M); |
| ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second; |
| if (Fn == 0) { |
| cout << "Tried to execute an unknown external function: " |
| << M->getType()->getDescription() << " " << M->getName() << "\n"; |
| return GenericValue(); |
| } |
| |
| // TODO: FIXME when types are not const! |
| GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()), |
| ArgVals); |
| return Result; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Functions "exported" to the running application... |
| // |
| extern "C" { // Don't add C++ manglings to llvm mangling :) |
| |
| // Implement void printstr([ubyte {x N}] *) |
| GenericValue lle_VP_printstr(FunctionType *M, const vector<GenericValue> &ArgVal){ |
| assert(ArgVal.size() == 1 && "printstr only takes one argument!"); |
| cout << (char*)ArgVal[0].PointerVal; |
| return GenericValue(); |
| } |
| |
| // Implement 'void print(X)' for every type... |
| GenericValue lle_X_print(FunctionType *M, const vector<GenericValue> &ArgVals) { |
| assert(ArgVals.size() == 1 && "generic print only takes one argument!"); |
| |
| Interpreter::print(M->getParamTypes()[0], ArgVals[0]); |
| return GenericValue(); |
| } |
| |
| // Implement 'void printVal(X)' for every type... |
| GenericValue lle_X_printVal(FunctionType *M, const vector<GenericValue> &ArgVal) { |
| assert(ArgVal.size() == 1 && "generic print only takes one argument!"); |
| |
| // Specialize print([ubyte {x N} ] *) and print(sbyte *) |
| if (PointerType *PTy = dyn_cast<PointerType>(M->getParamTypes()[0].get())) |
| if (PTy->getElementType() == Type::SByteTy || |
| isa<ArrayType>(PTy->getElementType())) { |
| return lle_VP_printstr(M, ArgVal); |
| } |
| |
| Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]); |
| return GenericValue(); |
| } |
| |
| // Implement 'void printString(X)' |
| // Argument must be [ubyte {x N} ] * or sbyte * |
| GenericValue lle_X_printString(FunctionType *M, const vector<GenericValue> &ArgVal) { |
| assert(ArgVal.size() == 1 && "generic print only takes one argument!"); |
| return lle_VP_printstr(M, ArgVal); |
| } |
| |
| // Implement 'void print<TYPE>(X)' for each primitive type or pointer type |
| #define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \ |
| GenericValue lle_X_print##TYPENAME(FunctionType *M,\ |
| const vector<GenericValue> &ArgVal) {\ |
| assert(ArgVal.size() == 1 && "generic print only takes one argument!");\ |
| assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::TYPEID);\ |
| Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\ |
| return GenericValue();\ |
| } |
| |
| PRINT_TYPE_FUNC(SByte, SByteTyID) |
| PRINT_TYPE_FUNC(UByte, UByteTyID) |
| PRINT_TYPE_FUNC(Short, ShortTyID) |
| PRINT_TYPE_FUNC(UShort, UShortTyID) |
| PRINT_TYPE_FUNC(Int, IntTyID) |
| PRINT_TYPE_FUNC(UInt, UIntTyID) |
| PRINT_TYPE_FUNC(Long, LongTyID) |
| PRINT_TYPE_FUNC(ULong, ULongTyID) |
| PRINT_TYPE_FUNC(Float, FloatTyID) |
| PRINT_TYPE_FUNC(Double, DoubleTyID) |
| PRINT_TYPE_FUNC(Pointer, PointerTyID) |
| |
| |
| // void "putchar"(sbyte) |
| GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) { |
| cout << Args[0].SByteVal; |
| return GenericValue(); |
| } |
| |
| // int "putchar"(int) |
| GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) { |
| cout << ((char)Args[0].IntVal) << std::flush; |
| return Args[0]; |
| } |
| |
| // void "putchar"(ubyte) |
| GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) { |
| cout << Args[0].SByteVal << std::flush; |
| return Args[0]; |
| } |
| |
| // void "__main"() |
| GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) { |
| return GenericValue(); |
| } |
| |
| // void "exit"(int) |
| GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) { |
| TheInterpreter->exitCalled(Args[0]); |
| return GenericValue(); |
| } |
| |
| // void *malloc(uint) |
| GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1 && "Malloc expects one argument!"); |
| GenericValue GV; |
| GV.PointerVal = (PointerTy)malloc(Args[0].UIntVal); |
| return GV; |
| } |
| |
| // void free(void *) |
| GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| free((void*)Args[0].PointerVal); |
| return GenericValue(); |
| } |
| |
| // int atoi(char *) |
| GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| GV.IntVal = atoi((char*)Args[0].PointerVal); |
| return GV; |
| } |
| |
| // double pow(double, double) |
| GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 2); |
| GenericValue GV; |
| GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); |
| return GV; |
| } |
| |
| // double exp(double) |
| GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| GV.DoubleVal = exp(Args[0].DoubleVal); |
| return GV; |
| } |
| |
| // double sqrt(double) |
| GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| GV.DoubleVal = sqrt(Args[0].DoubleVal); |
| return GV; |
| } |
| |
| // double log(double) |
| GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| GV.DoubleVal = log(Args[0].DoubleVal); |
| return GV; |
| } |
| |
| // double floor(double) |
| GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| GV.DoubleVal = floor(Args[0].DoubleVal); |
| return GV; |
| } |
| |
| // double drand48() |
| GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 0); |
| GenericValue GV; |
| GV.DoubleVal = drand48(); |
| return GV; |
| } |
| |
| // long lrand48() |
| GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 0); |
| GenericValue GV; |
| GV.IntVal = lrand48(); |
| return GV; |
| } |
| |
| // void srand48(long) |
| GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| srand48(Args[0].IntVal); |
| return GenericValue(); |
| } |
| |
| // void srand(uint) |
| GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| srand(Args[0].UIntVal); |
| return GenericValue(); |
| } |
| |
| // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make |
| // output useful. |
| GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) { |
| char *OutputBuffer = (char *)Args[0].PointerVal; |
| const char *FmtStr = (const char *)Args[1].PointerVal; |
| unsigned ArgNo = 2; |
| |
| // printf should return # chars printed. This is completely incorrect, but |
| // close enough for now. |
| GenericValue GV; GV.IntVal = strlen(FmtStr); |
| while (1) { |
| switch (*FmtStr) { |
| case 0: return GV; // Null terminator... |
| default: // Normal nonspecial character |
| sprintf(OutputBuffer++, "%c", *FmtStr++); |
| break; |
| case '\\': { // Handle escape codes |
| sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); |
| FmtStr += 2; OutputBuffer += 2; |
| break; |
| } |
| case '%': { // Handle format specifiers |
| char FmtBuf[100] = "", Buffer[1000] = ""; |
| char *FB = FmtBuf; |
| *FB++ = *FmtStr++; |
| char Last = *FB++ = *FmtStr++; |
| unsigned HowLong = 0; |
| while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && |
| Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && |
| Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && |
| Last != 'p' && Last != 's' && Last != '%') { |
| if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's |
| Last = *FB++ = *FmtStr++; |
| } |
| *FB = 0; |
| |
| switch (Last) { |
| case '%': |
| sprintf(Buffer, FmtBuf); break; |
| case 'c': |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].SByteVal); break; |
| case 'd': case 'i': |
| case 'u': case 'o': |
| case 'x': case 'X': |
| if (HowLong == 2) |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal); |
| else |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break; |
| case 'e': case 'E': case 'g': case 'G': case 'f': |
| sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; |
| case 'p': |
| sprintf(Buffer, FmtBuf, (void*)Args[ArgNo++].PointerVal); break; |
| case 's': |
| sprintf(Buffer, FmtBuf, (char*)Args[ArgNo++].PointerVal); break; |
| default: cout << "<unknown printf code '" << *FmtStr << "'!>"; |
| ArgNo++; break; |
| } |
| strcpy(OutputBuffer, Buffer); |
| OutputBuffer += strlen(Buffer); |
| } |
| break; |
| } |
| } |
| } |
| |
| // int printf(sbyte *, ...) - a very rough implementation to make output useful. |
| GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) { |
| char Buffer[10000]; |
| vector<GenericValue> NewArgs; |
| GenericValue GV; GV.PointerVal = (PointerTy)Buffer; |
| NewArgs.push_back(GV); |
| NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); |
| GV = lle_X_sprintf(M, NewArgs); |
| cout << Buffer; |
| return GV; |
| } |
| |
| // int sscanf(const char *format, ...); |
| GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) { |
| assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); |
| |
| const char *Args[10]; |
| for (unsigned i = 0; i < args.size(); ++i) |
| Args[i] = (const char*)args[i].PointerVal; |
| |
| GenericValue GV; |
| GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], |
| Args[5], Args[6], Args[7], Args[8], Args[9]); |
| return GV; |
| } |
| |
| |
| // int clock(void) - Profiling implementation |
| GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) { |
| extern int clock(void); |
| GenericValue GV; GV.IntVal = clock(); |
| return GV; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IO Functions... |
| //===----------------------------------------------------------------------===// |
| |
| // FILE *fopen(const char *filename, const char *mode); |
| GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 2); |
| GenericValue GV; |
| |
| GV.PointerVal = (PointerTy)fopen((const char *)Args[0].PointerVal, |
| (const char *)Args[1].PointerVal); |
| return GV; |
| } |
| |
| // int fclose(FILE *F); |
| GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| |
| GV.IntVal = fclose((FILE *)Args[0].PointerVal); |
| return GV; |
| } |
| |
| // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); |
| GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 4); |
| GenericValue GV; |
| |
| GV.UIntVal = fread((void*)Args[0].PointerVal, Args[1].UIntVal, |
| Args[2].UIntVal, (FILE*)Args[3].PointerVal); |
| return GV; |
| } |
| |
| // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); |
| GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 4); |
| GenericValue GV; |
| |
| GV.UIntVal = fwrite((void*)Args[0].PointerVal, Args[1].UIntVal, |
| Args[2].UIntVal, (FILE*)Args[3].PointerVal); |
| return GV; |
| } |
| |
| // char *fgets(char *s, int n, FILE *stream); |
| GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 3); |
| GenericValue GV; |
| |
| GV.PointerVal = (PointerTy)fgets((char*)Args[0].PointerVal, Args[1].IntVal, |
| (FILE*)Args[2].PointerVal); |
| return GV; |
| } |
| |
| // int fflush(FILE *stream); |
| GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) { |
| assert(Args.size() == 1); |
| GenericValue GV; |
| |
| GV.IntVal = fflush((FILE*)Args[0].PointerVal); |
| return GV; |
| } |
| |
| } // End extern "C" |
| |
| |
| void Interpreter::initializeExternalMethods() { |
| FuncNames["lle_VP_printstr"] = lle_VP_printstr; |
| FuncNames["lle_X_print"] = lle_X_print; |
| FuncNames["lle_X_printVal"] = lle_X_printVal; |
| FuncNames["lle_X_printString"] = lle_X_printString; |
| FuncNames["lle_X_printUByte"] = lle_X_printUByte; |
| FuncNames["lle_X_printSByte"] = lle_X_printSByte; |
| FuncNames["lle_X_printUShort"] = lle_X_printUShort; |
| FuncNames["lle_X_printShort"] = lle_X_printShort; |
| FuncNames["lle_X_printInt"] = lle_X_printInt; |
| FuncNames["lle_X_printUInt"] = lle_X_printUInt; |
| FuncNames["lle_X_printLong"] = lle_X_printLong; |
| FuncNames["lle_X_printULong"] = lle_X_printULong; |
| FuncNames["lle_X_printFloat"] = lle_X_printFloat; |
| FuncNames["lle_X_printDouble"] = lle_X_printDouble; |
| FuncNames["lle_X_printPointer"] = lle_X_printPointer; |
| FuncNames["lle_Vb_putchar"] = lle_Vb_putchar; |
| FuncNames["lle_ii_putchar"] = lle_ii_putchar; |
| FuncNames["lle_VB_putchar"] = lle_VB_putchar; |
| FuncNames["lle_V___main"] = lle_V___main; |
| FuncNames["lle_X_exit"] = lle_X_exit; |
| FuncNames["lle_X_malloc"] = lle_X_malloc; |
| FuncNames["lle_X_free"] = lle_X_free; |
| FuncNames["lle_X_atoi"] = lle_X_atoi; |
| FuncNames["lle_X_pow"] = lle_X_pow; |
| FuncNames["lle_X_exp"] = lle_X_exp; |
| FuncNames["lle_X_log"] = lle_X_log; |
| FuncNames["lle_X_floor"] = lle_X_floor; |
| FuncNames["lle_X_srand"] = lle_X_srand; |
| FuncNames["lle_X_drand48"] = lle_X_drand48; |
| FuncNames["lle_X_srand48"] = lle_X_srand48; |
| FuncNames["lle_X_lrand48"] = lle_X_lrand48; |
| FuncNames["lle_X_sqrt"] = lle_X_sqrt; |
| FuncNames["lle_X_printf"] = lle_X_printf; |
| FuncNames["lle_X_sprintf"] = lle_X_sprintf; |
| FuncNames["lle_X_sscanf"] = lle_X_sscanf; |
| FuncNames["lle_i_clock"] = lle_i_clock; |
| FuncNames["lle_X_fopen"] = lle_X_fopen; |
| FuncNames["lle_X_fclose"] = lle_X_fclose; |
| FuncNames["lle_X_fread"] = lle_X_fread; |
| FuncNames["lle_X_fwrite"] = lle_X_fwrite; |
| FuncNames["lle_X_fgets"] = lle_X_fgets; |
| FuncNames["lle_X_fflush"] = lle_X_fflush; |
| } |