| //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interface for lazy computation of value constraint |
| // information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lazy-value-info" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| using namespace llvm; |
| |
| char LazyValueInfo::ID = 0; |
| static RegisterPass<LazyValueInfo> |
| X("lazy-value-info", "Lazy Value Information Analysis", false, true); |
| |
| namespace llvm { |
| FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LVILatticeVal |
| //===----------------------------------------------------------------------===// |
| |
| /// LVILatticeVal - This is the information tracked by LazyValueInfo for each |
| /// value. |
| /// |
| /// FIXME: This is basically just for bringup, this can be made a lot more rich |
| /// in the future. |
| /// |
| namespace { |
| class LVILatticeVal { |
| enum LatticeValueTy { |
| /// undefined - This LLVM Value has no known value yet. |
| undefined, |
| /// constant - This LLVM Value has a specific constant value. |
| constant, |
| /// overdefined - This instruction is not known to be constant, and we know |
| /// it has a value. |
| overdefined |
| }; |
| |
| /// Val: This stores the current lattice value along with the Constant* for |
| /// the constant if this is a 'constant' value. |
| PointerIntPair<Constant *, 2, LatticeValueTy> Val; |
| |
| public: |
| LVILatticeVal() : Val(0, undefined) {} |
| |
| static LVILatticeVal get(Constant *C) { |
| LVILatticeVal Res; |
| Res.markConstant(C); |
| return Res; |
| } |
| |
| bool isUndefined() const { return Val.getInt() == undefined; } |
| bool isConstant() const { return Val.getInt() == constant; } |
| bool isOverdefined() const { return Val.getInt() == overdefined; } |
| |
| Constant *getConstant() const { |
| assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| return Val.getPointer(); |
| } |
| |
| /// getConstantInt - If this is a constant with a ConstantInt value, return it |
| /// otherwise return null. |
| ConstantInt *getConstantInt() const { |
| if (isConstant()) |
| return dyn_cast<ConstantInt>(getConstant()); |
| return 0; |
| } |
| |
| /// markOverdefined - Return true if this is a change in status. |
| bool markOverdefined() { |
| if (isOverdefined()) |
| return false; |
| Val.setInt(overdefined); |
| return true; |
| } |
| |
| /// markConstant - Return true if this is a change in status. |
| bool markConstant(Constant *V) { |
| if (isConstant()) { |
| assert(getConstant() == V && "Marking constant with different value"); |
| return false; |
| } |
| |
| assert(isUndefined()); |
| Val.setInt(constant); |
| assert(V && "Marking constant with NULL"); |
| Val.setPointer(V); |
| return true; |
| } |
| |
| /// mergeIn - Merge the specified lattice value into this one, updating this |
| /// one and returning true if anything changed. |
| bool mergeIn(const LVILatticeVal &RHS) { |
| if (RHS.isUndefined() || isOverdefined()) return false; |
| if (RHS.isOverdefined()) return markOverdefined(); |
| |
| // RHS must be a constant, we must be undef or constant. |
| if (isConstant() && getConstant() != RHS.getConstant()) |
| return markOverdefined(); |
| return markConstant(RHS.getConstant()); |
| } |
| |
| }; |
| |
| } // end anonymous namespace. |
| |
| namespace llvm { |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) { |
| if (Val.isUndefined()) |
| return OS << "undefined"; |
| if (Val.isOverdefined()) |
| return OS << "overdefined"; |
| return OS << "constant<" << *Val.getConstant() << '>'; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LazyValueInfo Impl |
| //===----------------------------------------------------------------------===// |
| |
| bool LazyValueInfo::runOnFunction(Function &F) { |
| TD = getAnalysisIfAvailable<TargetData>(); |
| // Fully lazy. |
| return false; |
| } |
| |
| void LazyValueInfo::releaseMemory() { |
| // No caching yet. |
| } |
| |
| static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB, |
| DenseMap<BasicBlock*, LVILatticeVal> &); |
| |
| static LVILatticeVal GetValueOnEdge(Value *V, BasicBlock *BBFrom, |
| BasicBlock *BBTo, |
| DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) { |
| // FIXME: Pull edge logic out of jump threading. |
| |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { |
| // If this is a conditional branch and only one successor goes to BBTo, then |
| // we maybe able to infer something from the condition. |
| if (BI->isConditional() && |
| BI->getSuccessor(0) != BI->getSuccessor(1)) { |
| bool isTrueDest = BI->getSuccessor(0) == BBTo; |
| assert(BI->getSuccessor(!isTrueDest) == BBTo && |
| "BBTo isn't a successor of BBFrom"); |
| |
| // If V is the condition of the branch itself, then we know exactly what |
| // it is. |
| if (BI->getCondition() == V) |
| return LVILatticeVal::get(ConstantInt::get( |
| Type::getInt1Ty(V->getContext()), isTrueDest)); |
| |
| // If the condition of the branch is an equality comparison, we may be |
| // able to infer the value. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) |
| if (ICI->isEquality() && ICI->getOperand(0) == V && |
| isa<Constant>(ICI->getOperand(1))) { |
| // We know that V has the RHS constant if this is a true SETEQ or |
| // false SETNE. |
| if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ)) |
| return LVILatticeVal::get(cast<Constant>(ICI->getOperand(1))); |
| } |
| } |
| } |
| |
| // TODO: Info from switch. |
| |
| |
| // Otherwise see if the value is known in the block. |
| return GetValueInBlock(V, BBFrom, BlockVals); |
| } |
| |
| static LVILatticeVal GetValueInBlock(Value *V, BasicBlock *BB, |
| DenseMap<BasicBlock*, LVILatticeVal> &BlockVals) { |
| // See if we already have a value for this block. |
| LVILatticeVal &BBLV = BlockVals[BB]; |
| |
| // If we've already computed this block's value, return it. |
| if (!BBLV.isUndefined()) |
| return BBLV; |
| |
| // Otherwise, this is the first time we're seeing this block. Reset the |
| // lattice value to overdefined, so that cycles will terminate and be |
| // conservatively correct. |
| BBLV.markOverdefined(); |
| |
| LVILatticeVal Result; // Start Undefined. |
| |
| // If V is live in to BB, see if our predecessors know anything about it. |
| Instruction *BBI = dyn_cast<Instruction>(V); |
| if (BBI == 0 || BBI->getParent() != BB) { |
| unsigned NumPreds = 0; |
| |
| // Loop over all of our predecessors, merging what we know from them into |
| // result. |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| Result.mergeIn(GetValueOnEdge(V, *PI, BB, BlockVals)); |
| |
| // If we hit overdefined, exit early. The BlockVals entry is already set |
| // to overdefined. |
| if (Result.isOverdefined()) |
| return Result; |
| ++NumPreds; |
| } |
| |
| // If this is the entry block, we must be asking about an argument. The |
| // value is overdefined. |
| if (NumPreds == 0 && BB == &BB->getParent()->front()) { |
| assert(isa<Argument>(V) && "Unknown live-in to the entry block"); |
| Result.markOverdefined(); |
| return Result; |
| } |
| |
| // Return the merged value, which is more precise than 'overdefined'. |
| assert(!Result.isOverdefined()); |
| return BlockVals[BB] = Result; |
| } |
| |
| // If this value is defined by an instruction in this block, we have to |
| // process it here somehow or return overdefined. |
| if (PHINode *PN = dyn_cast<PHINode>(BBI)) { |
| (void)PN; |
| // TODO: PHI Translation in preds. |
| } else { |
| |
| } |
| |
| Result.markOverdefined(); |
| return BlockVals[BB] = Result; |
| } |
| |
| |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) { |
| // If already a constant, return it. |
| if (Constant *VC = dyn_cast<Constant>(V)) |
| return VC; |
| |
| DenseMap<BasicBlock*, LVILatticeVal> BlockValues; |
| |
| DEBUG(errs() << "Getting value " << *V << " at end of block '" |
| << BB->getName() << "'\n"); |
| LVILatticeVal Result = GetValueInBlock(V, BB, BlockValues); |
| |
| DEBUG(errs() << " Result = " << Result << "\n"); |
| |
| if (Result.isConstant()) |
| return Result.getConstant(); |
| return 0; |
| } |
| |
| /// isEqual - Determine whether the specified value is known to be equal or |
| /// not-equal to the specified constant at the end of the specified block. |
| LazyValueInfo::Tristate |
| LazyValueInfo::isEqual(Value *V, Constant *C, BasicBlock *BB) { |
| // If already a constant, we can use constant folding. |
| if (Constant *VC = dyn_cast<Constant>(V)) { |
| // Ignore FP for now. TODO, consider what form of equality we want. |
| if (C->getType()->isFPOrFPVector()) |
| return Unknown; |
| |
| Constant *Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, VC,C,TD); |
| if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) |
| return ResCI->isZero() ? No : Yes; |
| } |
| |
| // Not a very good implementation. |
| return Unknown; |
| } |
| |
| |