| //===-- APFloat.cpp - Implement APFloat class -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a class to represent arbitrary precision floating |
| // point values and provide a variety of arithmetic operations on them. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cstring> |
| #include <limits.h> |
| |
| using namespace llvm; |
| |
| /// A macro used to combine two fcCategory enums into one key which can be used |
| /// in a switch statement to classify how the interaction of two APFloat's |
| /// categories affects an operation. |
| /// |
| /// TODO: If clang source code is ever allowed to use constexpr in its own |
| /// codebase, change this into a static inline function. |
| #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) |
| |
| /* Assumed in hexadecimal significand parsing, and conversion to |
| hexadecimal strings. */ |
| #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] |
| COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); |
| |
| namespace llvm { |
| |
| /* Represents floating point arithmetic semantics. */ |
| struct fltSemantics { |
| /* The largest E such that 2^E is representable; this matches the |
| definition of IEEE 754. */ |
| APFloat::ExponentType maxExponent; |
| |
| /* The smallest E such that 2^E is a normalized number; this |
| matches the definition of IEEE 754. */ |
| APFloat::ExponentType minExponent; |
| |
| /* Number of bits in the significand. This includes the integer |
| bit. */ |
| unsigned int precision; |
| }; |
| |
| const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 }; |
| const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 }; |
| const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 }; |
| const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 }; |
| const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 }; |
| const fltSemantics APFloat::Bogus = { 0, 0, 0 }; |
| |
| /* The PowerPC format consists of two doubles. It does not map cleanly |
| onto the usual format above. It is approximated using twice the |
| mantissa bits. Note that for exponents near the double minimum, |
| we no longer can represent the full 106 mantissa bits, so those |
| will be treated as denormal numbers. |
| |
| FIXME: While this approximation is equivalent to what GCC uses for |
| compile-time arithmetic on PPC double-double numbers, it is not able |
| to represent all possible values held by a PPC double-double number, |
| for example: (long double) 1.0 + (long double) 0x1p-106 |
| Should this be replaced by a full emulation of PPC double-double? */ |
| const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 }; |
| |
| /* A tight upper bound on number of parts required to hold the value |
| pow(5, power) is |
| |
| power * 815 / (351 * integerPartWidth) + 1 |
| |
| However, whilst the result may require only this many parts, |
| because we are multiplying two values to get it, the |
| multiplication may require an extra part with the excess part |
| being zero (consider the trivial case of 1 * 1, tcFullMultiply |
| requires two parts to hold the single-part result). So we add an |
| extra one to guarantee enough space whilst multiplying. */ |
| const unsigned int maxExponent = 16383; |
| const unsigned int maxPrecision = 113; |
| const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; |
| const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) |
| / (351 * integerPartWidth)); |
| } |
| |
| /* A bunch of private, handy routines. */ |
| |
| static inline unsigned int |
| partCountForBits(unsigned int bits) |
| { |
| return ((bits) + integerPartWidth - 1) / integerPartWidth; |
| } |
| |
| /* Returns 0U-9U. Return values >= 10U are not digits. */ |
| static inline unsigned int |
| decDigitValue(unsigned int c) |
| { |
| return c - '0'; |
| } |
| |
| /* Return the value of a decimal exponent of the form |
| [+-]ddddddd. |
| |
| If the exponent overflows, returns a large exponent with the |
| appropriate sign. */ |
| static int |
| readExponent(StringRef::iterator begin, StringRef::iterator end) |
| { |
| bool isNegative; |
| unsigned int absExponent; |
| const unsigned int overlargeExponent = 24000; /* FIXME. */ |
| StringRef::iterator p = begin; |
| |
| assert(p != end && "Exponent has no digits"); |
| |
| isNegative = (*p == '-'); |
| if (*p == '-' || *p == '+') { |
| p++; |
| assert(p != end && "Exponent has no digits"); |
| } |
| |
| absExponent = decDigitValue(*p++); |
| assert(absExponent < 10U && "Invalid character in exponent"); |
| |
| for (; p != end; ++p) { |
| unsigned int value; |
| |
| value = decDigitValue(*p); |
| assert(value < 10U && "Invalid character in exponent"); |
| |
| value += absExponent * 10; |
| if (absExponent >= overlargeExponent) { |
| absExponent = overlargeExponent; |
| p = end; /* outwit assert below */ |
| break; |
| } |
| absExponent = value; |
| } |
| |
| assert(p == end && "Invalid exponent in exponent"); |
| |
| if (isNegative) |
| return -(int) absExponent; |
| else |
| return (int) absExponent; |
| } |
| |
| /* This is ugly and needs cleaning up, but I don't immediately see |
| how whilst remaining safe. */ |
| static int |
| totalExponent(StringRef::iterator p, StringRef::iterator end, |
| int exponentAdjustment) |
| { |
| int unsignedExponent; |
| bool negative, overflow; |
| int exponent = 0; |
| |
| assert(p != end && "Exponent has no digits"); |
| |
| negative = *p == '-'; |
| if (*p == '-' || *p == '+') { |
| p++; |
| assert(p != end && "Exponent has no digits"); |
| } |
| |
| unsignedExponent = 0; |
| overflow = false; |
| for (; p != end; ++p) { |
| unsigned int value; |
| |
| value = decDigitValue(*p); |
| assert(value < 10U && "Invalid character in exponent"); |
| |
| unsignedExponent = unsignedExponent * 10 + value; |
| if (unsignedExponent > 32767) { |
| overflow = true; |
| break; |
| } |
| } |
| |
| if (exponentAdjustment > 32767 || exponentAdjustment < -32768) |
| overflow = true; |
| |
| if (!overflow) { |
| exponent = unsignedExponent; |
| if (negative) |
| exponent = -exponent; |
| exponent += exponentAdjustment; |
| if (exponent > 32767 || exponent < -32768) |
| overflow = true; |
| } |
| |
| if (overflow) |
| exponent = negative ? -32768: 32767; |
| |
| return exponent; |
| } |
| |
| static StringRef::iterator |
| skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, |
| StringRef::iterator *dot) |
| { |
| StringRef::iterator p = begin; |
| *dot = end; |
| while (*p == '0' && p != end) |
| p++; |
| |
| if (*p == '.') { |
| *dot = p++; |
| |
| assert(end - begin != 1 && "Significand has no digits"); |
| |
| while (*p == '0' && p != end) |
| p++; |
| } |
| |
| return p; |
| } |
| |
| /* Given a normal decimal floating point number of the form |
| |
| dddd.dddd[eE][+-]ddd |
| |
| where the decimal point and exponent are optional, fill out the |
| structure D. Exponent is appropriate if the significand is |
| treated as an integer, and normalizedExponent if the significand |
| is taken to have the decimal point after a single leading |
| non-zero digit. |
| |
| If the value is zero, V->firstSigDigit points to a non-digit, and |
| the return exponent is zero. |
| */ |
| struct decimalInfo { |
| const char *firstSigDigit; |
| const char *lastSigDigit; |
| int exponent; |
| int normalizedExponent; |
| }; |
| |
| static void |
| interpretDecimal(StringRef::iterator begin, StringRef::iterator end, |
| decimalInfo *D) |
| { |
| StringRef::iterator dot = end; |
| StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); |
| |
| D->firstSigDigit = p; |
| D->exponent = 0; |
| D->normalizedExponent = 0; |
| |
| for (; p != end; ++p) { |
| if (*p == '.') { |
| assert(dot == end && "String contains multiple dots"); |
| dot = p++; |
| if (p == end) |
| break; |
| } |
| if (decDigitValue(*p) >= 10U) |
| break; |
| } |
| |
| if (p != end) { |
| assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); |
| assert(p != begin && "Significand has no digits"); |
| assert((dot == end || p - begin != 1) && "Significand has no digits"); |
| |
| /* p points to the first non-digit in the string */ |
| D->exponent = readExponent(p + 1, end); |
| |
| /* Implied decimal point? */ |
| if (dot == end) |
| dot = p; |
| } |
| |
| /* If number is all zeroes accept any exponent. */ |
| if (p != D->firstSigDigit) { |
| /* Drop insignificant trailing zeroes. */ |
| if (p != begin) { |
| do |
| do |
| p--; |
| while (p != begin && *p == '0'); |
| while (p != begin && *p == '.'); |
| } |
| |
| /* Adjust the exponents for any decimal point. */ |
| D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); |
| D->normalizedExponent = (D->exponent + |
| static_cast<APFloat::ExponentType>((p - D->firstSigDigit) |
| - (dot > D->firstSigDigit && dot < p))); |
| } |
| |
| D->lastSigDigit = p; |
| } |
| |
| /* Return the trailing fraction of a hexadecimal number. |
| DIGITVALUE is the first hex digit of the fraction, P points to |
| the next digit. */ |
| static lostFraction |
| trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, |
| unsigned int digitValue) |
| { |
| unsigned int hexDigit; |
| |
| /* If the first trailing digit isn't 0 or 8 we can work out the |
| fraction immediately. */ |
| if (digitValue > 8) |
| return lfMoreThanHalf; |
| else if (digitValue < 8 && digitValue > 0) |
| return lfLessThanHalf; |
| |
| /* Otherwise we need to find the first non-zero digit. */ |
| while (*p == '0') |
| p++; |
| |
| assert(p != end && "Invalid trailing hexadecimal fraction!"); |
| |
| hexDigit = hexDigitValue(*p); |
| |
| /* If we ran off the end it is exactly zero or one-half, otherwise |
| a little more. */ |
| if (hexDigit == -1U) |
| return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; |
| else |
| return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; |
| } |
| |
| /* Return the fraction lost were a bignum truncated losing the least |
| significant BITS bits. */ |
| static lostFraction |
| lostFractionThroughTruncation(const integerPart *parts, |
| unsigned int partCount, |
| unsigned int bits) |
| { |
| unsigned int lsb; |
| |
| lsb = APInt::tcLSB(parts, partCount); |
| |
| /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ |
| if (bits <= lsb) |
| return lfExactlyZero; |
| if (bits == lsb + 1) |
| return lfExactlyHalf; |
| if (bits <= partCount * integerPartWidth && |
| APInt::tcExtractBit(parts, bits - 1)) |
| return lfMoreThanHalf; |
| |
| return lfLessThanHalf; |
| } |
| |
| /* Shift DST right BITS bits noting lost fraction. */ |
| static lostFraction |
| shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) |
| { |
| lostFraction lost_fraction; |
| |
| lost_fraction = lostFractionThroughTruncation(dst, parts, bits); |
| |
| APInt::tcShiftRight(dst, parts, bits); |
| |
| return lost_fraction; |
| } |
| |
| /* Combine the effect of two lost fractions. */ |
| static lostFraction |
| combineLostFractions(lostFraction moreSignificant, |
| lostFraction lessSignificant) |
| { |
| if (lessSignificant != lfExactlyZero) { |
| if (moreSignificant == lfExactlyZero) |
| moreSignificant = lfLessThanHalf; |
| else if (moreSignificant == lfExactlyHalf) |
| moreSignificant = lfMoreThanHalf; |
| } |
| |
| return moreSignificant; |
| } |
| |
| /* The error from the true value, in half-ulps, on multiplying two |
| floating point numbers, which differ from the value they |
| approximate by at most HUE1 and HUE2 half-ulps, is strictly less |
| than the returned value. |
| |
| See "How to Read Floating Point Numbers Accurately" by William D |
| Clinger. */ |
| static unsigned int |
| HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) |
| { |
| assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); |
| |
| if (HUerr1 + HUerr2 == 0) |
| return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ |
| else |
| return inexactMultiply + 2 * (HUerr1 + HUerr2); |
| } |
| |
| /* The number of ulps from the boundary (zero, or half if ISNEAREST) |
| when the least significant BITS are truncated. BITS cannot be |
| zero. */ |
| static integerPart |
| ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest) |
| { |
| unsigned int count, partBits; |
| integerPart part, boundary; |
| |
| assert(bits != 0); |
| |
| bits--; |
| count = bits / integerPartWidth; |
| partBits = bits % integerPartWidth + 1; |
| |
| part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits)); |
| |
| if (isNearest) |
| boundary = (integerPart) 1 << (partBits - 1); |
| else |
| boundary = 0; |
| |
| if (count == 0) { |
| if (part - boundary <= boundary - part) |
| return part - boundary; |
| else |
| return boundary - part; |
| } |
| |
| if (part == boundary) { |
| while (--count) |
| if (parts[count]) |
| return ~(integerPart) 0; /* A lot. */ |
| |
| return parts[0]; |
| } else if (part == boundary - 1) { |
| while (--count) |
| if (~parts[count]) |
| return ~(integerPart) 0; /* A lot. */ |
| |
| return -parts[0]; |
| } |
| |
| return ~(integerPart) 0; /* A lot. */ |
| } |
| |
| /* Place pow(5, power) in DST, and return the number of parts used. |
| DST must be at least one part larger than size of the answer. */ |
| static unsigned int |
| powerOf5(integerPart *dst, unsigned int power) |
| { |
| static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, |
| 15625, 78125 }; |
| integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; |
| pow5s[0] = 78125 * 5; |
| |
| unsigned int partsCount[16] = { 1 }; |
| integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; |
| unsigned int result; |
| assert(power <= maxExponent); |
| |
| p1 = dst; |
| p2 = scratch; |
| |
| *p1 = firstEightPowers[power & 7]; |
| power >>= 3; |
| |
| result = 1; |
| pow5 = pow5s; |
| |
| for (unsigned int n = 0; power; power >>= 1, n++) { |
| unsigned int pc; |
| |
| pc = partsCount[n]; |
| |
| /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ |
| if (pc == 0) { |
| pc = partsCount[n - 1]; |
| APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); |
| pc *= 2; |
| if (pow5[pc - 1] == 0) |
| pc--; |
| partsCount[n] = pc; |
| } |
| |
| if (power & 1) { |
| integerPart *tmp; |
| |
| APInt::tcFullMultiply(p2, p1, pow5, result, pc); |
| result += pc; |
| if (p2[result - 1] == 0) |
| result--; |
| |
| /* Now result is in p1 with partsCount parts and p2 is scratch |
| space. */ |
| tmp = p1, p1 = p2, p2 = tmp; |
| } |
| |
| pow5 += pc; |
| } |
| |
| if (p1 != dst) |
| APInt::tcAssign(dst, p1, result); |
| |
| return result; |
| } |
| |
| /* Zero at the end to avoid modular arithmetic when adding one; used |
| when rounding up during hexadecimal output. */ |
| static const char hexDigitsLower[] = "0123456789abcdef0"; |
| static const char hexDigitsUpper[] = "0123456789ABCDEF0"; |
| static const char infinityL[] = "infinity"; |
| static const char infinityU[] = "INFINITY"; |
| static const char NaNL[] = "nan"; |
| static const char NaNU[] = "NAN"; |
| |
| /* Write out an integerPart in hexadecimal, starting with the most |
| significant nibble. Write out exactly COUNT hexdigits, return |
| COUNT. */ |
| static unsigned int |
| partAsHex (char *dst, integerPart part, unsigned int count, |
| const char *hexDigitChars) |
| { |
| unsigned int result = count; |
| |
| assert(count != 0 && count <= integerPartWidth / 4); |
| |
| part >>= (integerPartWidth - 4 * count); |
| while (count--) { |
| dst[count] = hexDigitChars[part & 0xf]; |
| part >>= 4; |
| } |
| |
| return result; |
| } |
| |
| /* Write out an unsigned decimal integer. */ |
| static char * |
| writeUnsignedDecimal (char *dst, unsigned int n) |
| { |
| char buff[40], *p; |
| |
| p = buff; |
| do |
| *p++ = '0' + n % 10; |
| while (n /= 10); |
| |
| do |
| *dst++ = *--p; |
| while (p != buff); |
| |
| return dst; |
| } |
| |
| /* Write out a signed decimal integer. */ |
| static char * |
| writeSignedDecimal (char *dst, int value) |
| { |
| if (value < 0) { |
| *dst++ = '-'; |
| dst = writeUnsignedDecimal(dst, -(unsigned) value); |
| } else |
| dst = writeUnsignedDecimal(dst, value); |
| |
| return dst; |
| } |
| |
| /* Constructors. */ |
| void |
| APFloat::initialize(const fltSemantics *ourSemantics) |
| { |
| unsigned int count; |
| |
| semantics = ourSemantics; |
| count = partCount(); |
| if (count > 1) |
| significand.parts = new integerPart[count]; |
| } |
| |
| void |
| APFloat::freeSignificand() |
| { |
| if (needsCleanup()) |
| delete [] significand.parts; |
| } |
| |
| void |
| APFloat::assign(const APFloat &rhs) |
| { |
| assert(semantics == rhs.semantics); |
| |
| sign = rhs.sign; |
| category = rhs.category; |
| exponent = rhs.exponent; |
| if (isFiniteNonZero() || category == fcNaN) |
| copySignificand(rhs); |
| } |
| |
| void |
| APFloat::copySignificand(const APFloat &rhs) |
| { |
| assert(isFiniteNonZero() || category == fcNaN); |
| assert(rhs.partCount() >= partCount()); |
| |
| APInt::tcAssign(significandParts(), rhs.significandParts(), |
| partCount()); |
| } |
| |
| /* Make this number a NaN, with an arbitrary but deterministic value |
| for the significand. If double or longer, this is a signalling NaN, |
| which may not be ideal. If float, this is QNaN(0). */ |
| void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) |
| { |
| category = fcNaN; |
| sign = Negative; |
| |
| integerPart *significand = significandParts(); |
| unsigned numParts = partCount(); |
| |
| // Set the significand bits to the fill. |
| if (!fill || fill->getNumWords() < numParts) |
| APInt::tcSet(significand, 0, numParts); |
| if (fill) { |
| APInt::tcAssign(significand, fill->getRawData(), |
| std::min(fill->getNumWords(), numParts)); |
| |
| // Zero out the excess bits of the significand. |
| unsigned bitsToPreserve = semantics->precision - 1; |
| unsigned part = bitsToPreserve / 64; |
| bitsToPreserve %= 64; |
| significand[part] &= ((1ULL << bitsToPreserve) - 1); |
| for (part++; part != numParts; ++part) |
| significand[part] = 0; |
| } |
| |
| unsigned QNaNBit = semantics->precision - 2; |
| |
| if (SNaN) { |
| // We always have to clear the QNaN bit to make it an SNaN. |
| APInt::tcClearBit(significand, QNaNBit); |
| |
| // If there are no bits set in the payload, we have to set |
| // *something* to make it a NaN instead of an infinity; |
| // conventionally, this is the next bit down from the QNaN bit. |
| if (APInt::tcIsZero(significand, numParts)) |
| APInt::tcSetBit(significand, QNaNBit - 1); |
| } else { |
| // We always have to set the QNaN bit to make it a QNaN. |
| APInt::tcSetBit(significand, QNaNBit); |
| } |
| |
| // For x87 extended precision, we want to make a NaN, not a |
| // pseudo-NaN. Maybe we should expose the ability to make |
| // pseudo-NaNs? |
| if (semantics == &APFloat::x87DoubleExtended) |
| APInt::tcSetBit(significand, QNaNBit + 1); |
| } |
| |
| APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, |
| const APInt *fill) { |
| APFloat value(Sem, uninitialized); |
| value.makeNaN(SNaN, Negative, fill); |
| return value; |
| } |
| |
| APFloat & |
| APFloat::operator=(const APFloat &rhs) |
| { |
| if (this != &rhs) { |
| if (semantics != rhs.semantics) { |
| freeSignificand(); |
| initialize(rhs.semantics); |
| } |
| assign(rhs); |
| } |
| |
| return *this; |
| } |
| |
| bool |
| APFloat::isDenormal() const { |
| return isFiniteNonZero() && (exponent == semantics->minExponent) && |
| (APInt::tcExtractBit(significandParts(), |
| semantics->precision - 1) == 0); |
| } |
| |
| bool |
| APFloat::isSmallest() const { |
| // The smallest number by magnitude in our format will be the smallest |
| // denormal, i.e. the floating point number with exponent being minimum |
| // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). |
| return isFiniteNonZero() && exponent == semantics->minExponent && |
| significandMSB() == 0; |
| } |
| |
| bool APFloat::isSignificandAllOnes() const { |
| // Test if the significand excluding the integral bit is all ones. This allows |
| // us to test for binade boundaries. |
| const integerPart *Parts = significandParts(); |
| const unsigned PartCount = partCount(); |
| for (unsigned i = 0; i < PartCount - 1; i++) |
| if (~Parts[i]) |
| return false; |
| |
| // Set the unused high bits to all ones when we compare. |
| const unsigned NumHighBits = |
| PartCount*integerPartWidth - semantics->precision + 1; |
| assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " |
| "fill than integerPartWidth"); |
| const integerPart HighBitFill = |
| ~integerPart(0) << (integerPartWidth - NumHighBits); |
| if (~(Parts[PartCount - 1] | HighBitFill)) |
| return false; |
| |
| return true; |
| } |
| |
| bool APFloat::isSignificandAllZeros() const { |
| // Test if the significand excluding the integral bit is all zeros. This |
| // allows us to test for binade boundaries. |
| const integerPart *Parts = significandParts(); |
| const unsigned PartCount = partCount(); |
| |
| for (unsigned i = 0; i < PartCount - 1; i++) |
| if (Parts[i]) |
| return false; |
| |
| const unsigned NumHighBits = |
| PartCount*integerPartWidth - semantics->precision + 1; |
| assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " |
| "clear than integerPartWidth"); |
| const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; |
| |
| if (Parts[PartCount - 1] & HighBitMask) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| APFloat::isLargest() const { |
| // The largest number by magnitude in our format will be the floating point |
| // number with maximum exponent and with significand that is all ones. |
| return isFiniteNonZero() && exponent == semantics->maxExponent |
| && isSignificandAllOnes(); |
| } |
| |
| bool |
| APFloat::bitwiseIsEqual(const APFloat &rhs) const { |
| if (this == &rhs) |
| return true; |
| if (semantics != rhs.semantics || |
| category != rhs.category || |
| sign != rhs.sign) |
| return false; |
| if (category==fcZero || category==fcInfinity) |
| return true; |
| else if (isFiniteNonZero() && exponent!=rhs.exponent) |
| return false; |
| else { |
| int i= partCount(); |
| const integerPart* p=significandParts(); |
| const integerPart* q=rhs.significandParts(); |
| for (; i>0; i--, p++, q++) { |
| if (*p != *q) |
| return false; |
| } |
| return true; |
| } |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) { |
| initialize(&ourSemantics); |
| sign = 0; |
| zeroSignificand(); |
| exponent = ourSemantics.precision - 1; |
| significandParts()[0] = value; |
| normalize(rmNearestTiesToEven, lfExactlyZero); |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics) { |
| initialize(&ourSemantics); |
| category = fcZero; |
| sign = false; |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) { |
| // Allocates storage if necessary but does not initialize it. |
| initialize(&ourSemantics); |
| } |
| |
| APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) { |
| initialize(&ourSemantics); |
| convertFromString(text, rmNearestTiesToEven); |
| } |
| |
| APFloat::APFloat(const APFloat &rhs) { |
| initialize(rhs.semantics); |
| assign(rhs); |
| } |
| |
| APFloat::~APFloat() |
| { |
| freeSignificand(); |
| } |
| |
| // Profile - This method 'profiles' an APFloat for use with FoldingSet. |
| void APFloat::Profile(FoldingSetNodeID& ID) const { |
| ID.Add(bitcastToAPInt()); |
| } |
| |
| unsigned int |
| APFloat::partCount() const |
| { |
| return partCountForBits(semantics->precision + 1); |
| } |
| |
| unsigned int |
| APFloat::semanticsPrecision(const fltSemantics &semantics) |
| { |
| return semantics.precision; |
| } |
| |
| const integerPart * |
| APFloat::significandParts() const |
| { |
| return const_cast<APFloat *>(this)->significandParts(); |
| } |
| |
| integerPart * |
| APFloat::significandParts() |
| { |
| if (partCount() > 1) |
| return significand.parts; |
| else |
| return &significand.part; |
| } |
| |
| void |
| APFloat::zeroSignificand() |
| { |
| category = fcNormal; |
| APInt::tcSet(significandParts(), 0, partCount()); |
| } |
| |
| /* Increment an fcNormal floating point number's significand. */ |
| void |
| APFloat::incrementSignificand() |
| { |
| integerPart carry; |
| |
| carry = APInt::tcIncrement(significandParts(), partCount()); |
| |
| /* Our callers should never cause us to overflow. */ |
| assert(carry == 0); |
| (void)carry; |
| } |
| |
| /* Add the significand of the RHS. Returns the carry flag. */ |
| integerPart |
| APFloat::addSignificand(const APFloat &rhs) |
| { |
| integerPart *parts; |
| |
| parts = significandParts(); |
| |
| assert(semantics == rhs.semantics); |
| assert(exponent == rhs.exponent); |
| |
| return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); |
| } |
| |
| /* Subtract the significand of the RHS with a borrow flag. Returns |
| the borrow flag. */ |
| integerPart |
| APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) |
| { |
| integerPart *parts; |
| |
| parts = significandParts(); |
| |
| assert(semantics == rhs.semantics); |
| assert(exponent == rhs.exponent); |
| |
| return APInt::tcSubtract(parts, rhs.significandParts(), borrow, |
| partCount()); |
| } |
| |
| /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it |
| on to the full-precision result of the multiplication. Returns the |
| lost fraction. */ |
| lostFraction |
| APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) |
| { |
| unsigned int omsb; // One, not zero, based MSB. |
| unsigned int partsCount, newPartsCount, precision; |
| integerPart *lhsSignificand; |
| integerPart scratch[4]; |
| integerPart *fullSignificand; |
| lostFraction lost_fraction; |
| bool ignored; |
| |
| assert(semantics == rhs.semantics); |
| |
| precision = semantics->precision; |
| newPartsCount = partCountForBits(precision * 2); |
| |
| if (newPartsCount > 4) |
| fullSignificand = new integerPart[newPartsCount]; |
| else |
| fullSignificand = scratch; |
| |
| lhsSignificand = significandParts(); |
| partsCount = partCount(); |
| |
| APInt::tcFullMultiply(fullSignificand, lhsSignificand, |
| rhs.significandParts(), partsCount, partsCount); |
| |
| lost_fraction = lfExactlyZero; |
| omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| exponent += rhs.exponent; |
| |
| // Assume the operands involved in the multiplication are single-precision |
| // FP, and the two multiplicants are: |
| // *this = a23 . a22 ... a0 * 2^e1 |
| // rhs = b23 . b22 ... b0 * 2^e2 |
| // the result of multiplication is: |
| // *this = c47 c46 . c45 ... c0 * 2^(e1+e2) |
| // Note that there are two significant bits at the left-hand side of the |
| // radix point. Move the radix point toward left by one bit, and adjust |
| // exponent accordingly. |
| exponent += 1; |
| |
| if (addend) { |
| // The intermediate result of the multiplication has "2 * precision" |
| // signicant bit; adjust the addend to be consistent with mul result. |
| // |
| Significand savedSignificand = significand; |
| const fltSemantics *savedSemantics = semantics; |
| fltSemantics extendedSemantics; |
| opStatus status; |
| unsigned int extendedPrecision; |
| |
| /* Normalize our MSB. */ |
| extendedPrecision = 2 * precision; |
| if (omsb != extendedPrecision) { |
| assert(extendedPrecision > omsb); |
| APInt::tcShiftLeft(fullSignificand, newPartsCount, |
| extendedPrecision - omsb); |
| exponent -= extendedPrecision - omsb; |
| } |
| |
| /* Create new semantics. */ |
| extendedSemantics = *semantics; |
| extendedSemantics.precision = extendedPrecision; |
| |
| if (newPartsCount == 1) |
| significand.part = fullSignificand[0]; |
| else |
| significand.parts = fullSignificand; |
| semantics = &extendedSemantics; |
| |
| APFloat extendedAddend(*addend); |
| status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); |
| assert(status == opOK); |
| (void)status; |
| lost_fraction = addOrSubtractSignificand(extendedAddend, false); |
| |
| /* Restore our state. */ |
| if (newPartsCount == 1) |
| fullSignificand[0] = significand.part; |
| significand = savedSignificand; |
| semantics = savedSemantics; |
| |
| omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| } |
| |
| // Convert the result having "2 * precision" significant-bits back to the one |
| // having "precision" significant-bits. First, move the radix point from |
| // poision "2*precision - 1" to "precision - 1". The exponent need to be |
| // adjusted by "2*precision - 1" - "precision - 1" = "precision". |
| exponent -= precision; |
| |
| // In case MSB resides at the left-hand side of radix point, shift the |
| // mantissa right by some amount to make sure the MSB reside right before |
| // the radix point (i.e. "MSB . rest-significant-bits"). |
| // |
| // Note that the result is not normalized when "omsb < precision". So, the |
| // caller needs to call APFloat::normalize() if normalized value is expected. |
| if (omsb > precision) { |
| unsigned int bits, significantParts; |
| lostFraction lf; |
| |
| bits = omsb - precision; |
| significantParts = partCountForBits(omsb); |
| lf = shiftRight(fullSignificand, significantParts, bits); |
| lost_fraction = combineLostFractions(lf, lost_fraction); |
| exponent += bits; |
| } |
| |
| APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); |
| |
| if (newPartsCount > 4) |
| delete [] fullSignificand; |
| |
| return lost_fraction; |
| } |
| |
| /* Multiply the significands of LHS and RHS to DST. */ |
| lostFraction |
| APFloat::divideSignificand(const APFloat &rhs) |
| { |
| unsigned int bit, i, partsCount; |
| const integerPart *rhsSignificand; |
| integerPart *lhsSignificand, *dividend, *divisor; |
| integerPart scratch[4]; |
| lostFraction lost_fraction; |
| |
| assert(semantics == rhs.semantics); |
| |
| lhsSignificand = significandParts(); |
| rhsSignificand = rhs.significandParts(); |
| partsCount = partCount(); |
| |
| if (partsCount > 2) |
| dividend = new integerPart[partsCount * 2]; |
| else |
| dividend = scratch; |
| |
| divisor = dividend + partsCount; |
| |
| /* Copy the dividend and divisor as they will be modified in-place. */ |
| for (i = 0; i < partsCount; i++) { |
| dividend[i] = lhsSignificand[i]; |
| divisor[i] = rhsSignificand[i]; |
| lhsSignificand[i] = 0; |
| } |
| |
| exponent -= rhs.exponent; |
| |
| unsigned int precision = semantics->precision; |
| |
| /* Normalize the divisor. */ |
| bit = precision - APInt::tcMSB(divisor, partsCount) - 1; |
| if (bit) { |
| exponent += bit; |
| APInt::tcShiftLeft(divisor, partsCount, bit); |
| } |
| |
| /* Normalize the dividend. */ |
| bit = precision - APInt::tcMSB(dividend, partsCount) - 1; |
| if (bit) { |
| exponent -= bit; |
| APInt::tcShiftLeft(dividend, partsCount, bit); |
| } |
| |
| /* Ensure the dividend >= divisor initially for the loop below. |
| Incidentally, this means that the division loop below is |
| guaranteed to set the integer bit to one. */ |
| if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { |
| exponent--; |
| APInt::tcShiftLeft(dividend, partsCount, 1); |
| assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); |
| } |
| |
| /* Long division. */ |
| for (bit = precision; bit; bit -= 1) { |
| if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { |
| APInt::tcSubtract(dividend, divisor, 0, partsCount); |
| APInt::tcSetBit(lhsSignificand, bit - 1); |
| } |
| |
| APInt::tcShiftLeft(dividend, partsCount, 1); |
| } |
| |
| /* Figure out the lost fraction. */ |
| int cmp = APInt::tcCompare(dividend, divisor, partsCount); |
| |
| if (cmp > 0) |
| lost_fraction = lfMoreThanHalf; |
| else if (cmp == 0) |
| lost_fraction = lfExactlyHalf; |
| else if (APInt::tcIsZero(dividend, partsCount)) |
| lost_fraction = lfExactlyZero; |
| else |
| lost_fraction = lfLessThanHalf; |
| |
| if (partsCount > 2) |
| delete [] dividend; |
| |
| return lost_fraction; |
| } |
| |
| unsigned int |
| APFloat::significandMSB() const |
| { |
| return APInt::tcMSB(significandParts(), partCount()); |
| } |
| |
| unsigned int |
| APFloat::significandLSB() const |
| { |
| return APInt::tcLSB(significandParts(), partCount()); |
| } |
| |
| /* Note that a zero result is NOT normalized to fcZero. */ |
| lostFraction |
| APFloat::shiftSignificandRight(unsigned int bits) |
| { |
| /* Our exponent should not overflow. */ |
| assert((ExponentType) (exponent + bits) >= exponent); |
| |
| exponent += bits; |
| |
| return shiftRight(significandParts(), partCount(), bits); |
| } |
| |
| /* Shift the significand left BITS bits, subtract BITS from its exponent. */ |
| void |
| APFloat::shiftSignificandLeft(unsigned int bits) |
| { |
| assert(bits < semantics->precision); |
| |
| if (bits) { |
| unsigned int partsCount = partCount(); |
| |
| APInt::tcShiftLeft(significandParts(), partsCount, bits); |
| exponent -= bits; |
| |
| assert(!APInt::tcIsZero(significandParts(), partsCount)); |
| } |
| } |
| |
| APFloat::cmpResult |
| APFloat::compareAbsoluteValue(const APFloat &rhs) const |
| { |
| int compare; |
| |
| assert(semantics == rhs.semantics); |
| assert(isFiniteNonZero()); |
| assert(rhs.isFiniteNonZero()); |
| |
| compare = exponent - rhs.exponent; |
| |
| /* If exponents are equal, do an unsigned bignum comparison of the |
| significands. */ |
| if (compare == 0) |
| compare = APInt::tcCompare(significandParts(), rhs.significandParts(), |
| partCount()); |
| |
| if (compare > 0) |
| return cmpGreaterThan; |
| else if (compare < 0) |
| return cmpLessThan; |
| else |
| return cmpEqual; |
| } |
| |
| /* Handle overflow. Sign is preserved. We either become infinity or |
| the largest finite number. */ |
| APFloat::opStatus |
| APFloat::handleOverflow(roundingMode rounding_mode) |
| { |
| /* Infinity? */ |
| if (rounding_mode == rmNearestTiesToEven || |
| rounding_mode == rmNearestTiesToAway || |
| (rounding_mode == rmTowardPositive && !sign) || |
| (rounding_mode == rmTowardNegative && sign)) { |
| category = fcInfinity; |
| return (opStatus) (opOverflow | opInexact); |
| } |
| |
| /* Otherwise we become the largest finite number. */ |
| category = fcNormal; |
| exponent = semantics->maxExponent; |
| APInt::tcSetLeastSignificantBits(significandParts(), partCount(), |
| semantics->precision); |
| |
| return opInexact; |
| } |
| |
| /* Returns TRUE if, when truncating the current number, with BIT the |
| new LSB, with the given lost fraction and rounding mode, the result |
| would need to be rounded away from zero (i.e., by increasing the |
| signficand). This routine must work for fcZero of both signs, and |
| fcNormal numbers. */ |
| bool |
| APFloat::roundAwayFromZero(roundingMode rounding_mode, |
| lostFraction lost_fraction, |
| unsigned int bit) const |
| { |
| /* NaNs and infinities should not have lost fractions. */ |
| assert(isFiniteNonZero() || category == fcZero); |
| |
| /* Current callers never pass this so we don't handle it. */ |
| assert(lost_fraction != lfExactlyZero); |
| |
| switch (rounding_mode) { |
| case rmNearestTiesToAway: |
| return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; |
| |
| case rmNearestTiesToEven: |
| if (lost_fraction == lfMoreThanHalf) |
| return true; |
| |
| /* Our zeroes don't have a significand to test. */ |
| if (lost_fraction == lfExactlyHalf && category != fcZero) |
| return APInt::tcExtractBit(significandParts(), bit); |
| |
| return false; |
| |
| case rmTowardZero: |
| return false; |
| |
| case rmTowardPositive: |
| return sign == false; |
| |
| case rmTowardNegative: |
| return sign == true; |
| } |
| llvm_unreachable("Invalid rounding mode found"); |
| } |
| |
| APFloat::opStatus |
| APFloat::normalize(roundingMode rounding_mode, |
| lostFraction lost_fraction) |
| { |
| unsigned int omsb; /* One, not zero, based MSB. */ |
| int exponentChange; |
| |
| if (!isFiniteNonZero()) |
| return opOK; |
| |
| /* Before rounding normalize the exponent of fcNormal numbers. */ |
| omsb = significandMSB() + 1; |
| |
| if (omsb) { |
| /* OMSB is numbered from 1. We want to place it in the integer |
| bit numbered PRECISION if possible, with a compensating change in |
| the exponent. */ |
| exponentChange = omsb - semantics->precision; |
| |
| /* If the resulting exponent is too high, overflow according to |
| the rounding mode. */ |
| if (exponent + exponentChange > semantics->maxExponent) |
| return handleOverflow(rounding_mode); |
| |
| /* Subnormal numbers have exponent minExponent, and their MSB |
| is forced based on that. */ |
| if (exponent + exponentChange < semantics->minExponent) |
| exponentChange = semantics->minExponent - exponent; |
| |
| /* Shifting left is easy as we don't lose precision. */ |
| if (exponentChange < 0) { |
| assert(lost_fraction == lfExactlyZero); |
| |
| shiftSignificandLeft(-exponentChange); |
| |
| return opOK; |
| } |
| |
| if (exponentChange > 0) { |
| lostFraction lf; |
| |
| /* Shift right and capture any new lost fraction. */ |
| lf = shiftSignificandRight(exponentChange); |
| |
| lost_fraction = combineLostFractions(lf, lost_fraction); |
| |
| /* Keep OMSB up-to-date. */ |
| if (omsb > (unsigned) exponentChange) |
| omsb -= exponentChange; |
| else |
| omsb = 0; |
| } |
| } |
| |
| /* Now round the number according to rounding_mode given the lost |
| fraction. */ |
| |
| /* As specified in IEEE 754, since we do not trap we do not report |
| underflow for exact results. */ |
| if (lost_fraction == lfExactlyZero) { |
| /* Canonicalize zeroes. */ |
| if (omsb == 0) |
| category = fcZero; |
| |
| return opOK; |
| } |
| |
| /* Increment the significand if we're rounding away from zero. */ |
| if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { |
| if (omsb == 0) |
| exponent = semantics->minExponent; |
| |
| incrementSignificand(); |
| omsb = significandMSB() + 1; |
| |
| /* Did the significand increment overflow? */ |
| if (omsb == (unsigned) semantics->precision + 1) { |
| /* Renormalize by incrementing the exponent and shifting our |
| significand right one. However if we already have the |
| maximum exponent we overflow to infinity. */ |
| if (exponent == semantics->maxExponent) { |
| category = fcInfinity; |
| |
| return (opStatus) (opOverflow | opInexact); |
| } |
| |
| shiftSignificandRight(1); |
| |
| return opInexact; |
| } |
| } |
| |
| /* The normal case - we were and are not denormal, and any |
| significand increment above didn't overflow. */ |
| if (omsb == semantics->precision) |
| return opInexact; |
| |
| /* We have a non-zero denormal. */ |
| assert(omsb < semantics->precision); |
| |
| /* Canonicalize zeroes. */ |
| if (omsb == 0) |
| category = fcZero; |
| |
| /* The fcZero case is a denormal that underflowed to zero. */ |
| return (opStatus) (opUnderflow | opInexact); |
| } |
| |
| APFloat::opStatus |
| APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) |
| { |
| switch (PackCategoriesIntoKey(category, rhs.category)) { |
| default: |
| llvm_unreachable(0); |
| |
| case PackCategoriesIntoKey(fcNaN, fcZero): |
| case PackCategoriesIntoKey(fcNaN, fcNormal): |
| case PackCategoriesIntoKey(fcNaN, fcInfinity): |
| case PackCategoriesIntoKey(fcNaN, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcZero): |
| case PackCategoriesIntoKey(fcInfinity, fcNormal): |
| case PackCategoriesIntoKey(fcInfinity, fcZero): |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcInfinity): |
| category = fcInfinity; |
| sign = rhs.sign ^ subtract; |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNormal): |
| assign(rhs); |
| sign = rhs.sign ^ subtract; |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcZero): |
| /* Sign depends on rounding mode; handled by caller. */ |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcInfinity, fcInfinity): |
| /* Differently signed infinities can only be validly |
| subtracted. */ |
| if (((sign ^ rhs.sign)!=0) != subtract) { |
| makeNaN(); |
| return opInvalidOp; |
| } |
| |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcNormal): |
| return opDivByZero; |
| } |
| } |
| |
| /* Add or subtract two normal numbers. */ |
| lostFraction |
| APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) |
| { |
| integerPart carry; |
| lostFraction lost_fraction; |
| int bits; |
| |
| /* Determine if the operation on the absolute values is effectively |
| an addition or subtraction. */ |
| subtract ^= (sign ^ rhs.sign) ? true : false; |
| |
| /* Are we bigger exponent-wise than the RHS? */ |
| bits = exponent - rhs.exponent; |
| |
| /* Subtraction is more subtle than one might naively expect. */ |
| if (subtract) { |
| APFloat temp_rhs(rhs); |
| bool reverse; |
| |
| if (bits == 0) { |
| reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; |
| lost_fraction = lfExactlyZero; |
| } else if (bits > 0) { |
| lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); |
| shiftSignificandLeft(1); |
| reverse = false; |
| } else { |
| lost_fraction = shiftSignificandRight(-bits - 1); |
| temp_rhs.shiftSignificandLeft(1); |
| reverse = true; |
| } |
| |
| if (reverse) { |
| carry = temp_rhs.subtractSignificand |
| (*this, lost_fraction != lfExactlyZero); |
| copySignificand(temp_rhs); |
| sign = !sign; |
| } else { |
| carry = subtractSignificand |
| (temp_rhs, lost_fraction != lfExactlyZero); |
| } |
| |
| /* Invert the lost fraction - it was on the RHS and |
| subtracted. */ |
| if (lost_fraction == lfLessThanHalf) |
| lost_fraction = lfMoreThanHalf; |
| else if (lost_fraction == lfMoreThanHalf) |
| lost_fraction = lfLessThanHalf; |
| |
| /* The code above is intended to ensure that no borrow is |
| necessary. */ |
| assert(!carry); |
| (void)carry; |
| } else { |
| if (bits > 0) { |
| APFloat temp_rhs(rhs); |
| |
| lost_fraction = temp_rhs.shiftSignificandRight(bits); |
| carry = addSignificand(temp_rhs); |
| } else { |
| lost_fraction = shiftSignificandRight(-bits); |
| carry = addSignificand(rhs); |
| } |
| |
| /* We have a guard bit; generating a carry cannot happen. */ |
| assert(!carry); |
| (void)carry; |
| } |
| |
| return lost_fraction; |
| } |
| |
| APFloat::opStatus |
| APFloat::multiplySpecials(const APFloat &rhs) |
| { |
| switch (PackCategoriesIntoKey(category, rhs.category)) { |
| default: |
| llvm_unreachable(0); |
| |
| case PackCategoriesIntoKey(fcNaN, fcZero): |
| case PackCategoriesIntoKey(fcNaN, fcNormal): |
| case PackCategoriesIntoKey(fcNaN, fcInfinity): |
| case PackCategoriesIntoKey(fcNaN, fcNaN): |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcInfinity): |
| case PackCategoriesIntoKey(fcInfinity, fcNormal): |
| case PackCategoriesIntoKey(fcInfinity, fcInfinity): |
| category = fcInfinity; |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNormal): |
| case PackCategoriesIntoKey(fcNormal, fcZero): |
| case PackCategoriesIntoKey(fcZero, fcZero): |
| category = fcZero; |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcInfinity): |
| case PackCategoriesIntoKey(fcInfinity, fcZero): |
| makeNaN(); |
| return opInvalidOp; |
| |
| case PackCategoriesIntoKey(fcNormal, fcNormal): |
| return opOK; |
| } |
| } |
| |
| APFloat::opStatus |
| APFloat::divideSpecials(const APFloat &rhs) |
| { |
| switch (PackCategoriesIntoKey(category, rhs.category)) { |
| default: |
| llvm_unreachable(0); |
| |
| case PackCategoriesIntoKey(fcNaN, fcZero): |
| case PackCategoriesIntoKey(fcNaN, fcNormal): |
| case PackCategoriesIntoKey(fcNaN, fcInfinity): |
| case PackCategoriesIntoKey(fcNaN, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcZero): |
| case PackCategoriesIntoKey(fcInfinity, fcNormal): |
| case PackCategoriesIntoKey(fcZero, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcNormal): |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcInfinity): |
| category = fcZero; |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcZero): |
| category = fcInfinity; |
| return opDivByZero; |
| |
| case PackCategoriesIntoKey(fcInfinity, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcZero): |
| makeNaN(); |
| return opInvalidOp; |
| |
| case PackCategoriesIntoKey(fcNormal, fcNormal): |
| return opOK; |
| } |
| } |
| |
| APFloat::opStatus |
| APFloat::modSpecials(const APFloat &rhs) |
| { |
| switch (PackCategoriesIntoKey(category, rhs.category)) { |
| default: |
| llvm_unreachable(0); |
| |
| case PackCategoriesIntoKey(fcNaN, fcZero): |
| case PackCategoriesIntoKey(fcNaN, fcNormal): |
| case PackCategoriesIntoKey(fcNaN, fcInfinity): |
| case PackCategoriesIntoKey(fcNaN, fcNaN): |
| case PackCategoriesIntoKey(fcZero, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcNormal): |
| case PackCategoriesIntoKey(fcNormal, fcInfinity): |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcZero, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcNaN): |
| category = fcNaN; |
| copySignificand(rhs); |
| return opOK; |
| |
| case PackCategoriesIntoKey(fcNormal, fcZero): |
| case PackCategoriesIntoKey(fcInfinity, fcZero): |
| case PackCategoriesIntoKey(fcInfinity, fcNormal): |
| case PackCategoriesIntoKey(fcInfinity, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcZero): |
| makeNaN(); |
| return opInvalidOp; |
| |
| case PackCategoriesIntoKey(fcNormal, fcNormal): |
| return opOK; |
| } |
| } |
| |
| /* Change sign. */ |
| void |
| APFloat::changeSign() |
| { |
| /* Look mummy, this one's easy. */ |
| sign = !sign; |
| } |
| |
| void |
| APFloat::clearSign() |
| { |
| /* So is this one. */ |
| sign = 0; |
| } |
| |
| void |
| APFloat::copySign(const APFloat &rhs) |
| { |
| /* And this one. */ |
| sign = rhs.sign; |
| } |
| |
| /* Normalized addition or subtraction. */ |
| APFloat::opStatus |
| APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, |
| bool subtract) |
| { |
| opStatus fs; |
| |
| fs = addOrSubtractSpecials(rhs, subtract); |
| |
| /* This return code means it was not a simple case. */ |
| if (fs == opDivByZero) { |
| lostFraction lost_fraction; |
| |
| lost_fraction = addOrSubtractSignificand(rhs, subtract); |
| fs = normalize(rounding_mode, lost_fraction); |
| |
| /* Can only be zero if we lost no fraction. */ |
| assert(category != fcZero || lost_fraction == lfExactlyZero); |
| } |
| |
| /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| positive zero unless rounding to minus infinity, except that |
| adding two like-signed zeroes gives that zero. */ |
| if (category == fcZero) { |
| if (rhs.category != fcZero || (sign == rhs.sign) == subtract) |
| sign = (rounding_mode == rmTowardNegative); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized addition. */ |
| APFloat::opStatus |
| APFloat::add(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| return addOrSubtract(rhs, rounding_mode, false); |
| } |
| |
| /* Normalized subtraction. */ |
| APFloat::opStatus |
| APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| return addOrSubtract(rhs, rounding_mode, true); |
| } |
| |
| /* Normalized multiply. */ |
| APFloat::opStatus |
| APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| sign ^= rhs.sign; |
| fs = multiplySpecials(rhs); |
| |
| if (isFiniteNonZero()) { |
| lostFraction lost_fraction = multiplySignificand(rhs, 0); |
| fs = normalize(rounding_mode, lost_fraction); |
| if (lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized divide. */ |
| APFloat::opStatus |
| APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| sign ^= rhs.sign; |
| fs = divideSpecials(rhs); |
| |
| if (isFiniteNonZero()) { |
| lostFraction lost_fraction = divideSignificand(rhs); |
| fs = normalize(rounding_mode, lost_fraction); |
| if (lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| } |
| |
| return fs; |
| } |
| |
| /* Normalized remainder. This is not currently correct in all cases. */ |
| APFloat::opStatus |
| APFloat::remainder(const APFloat &rhs) |
| { |
| opStatus fs; |
| APFloat V = *this; |
| unsigned int origSign = sign; |
| |
| fs = V.divide(rhs, rmNearestTiesToEven); |
| if (fs == opDivByZero) |
| return fs; |
| |
| int parts = partCount(); |
| integerPart *x = new integerPart[parts]; |
| bool ignored; |
| fs = V.convertToInteger(x, parts * integerPartWidth, true, |
| rmNearestTiesToEven, &ignored); |
| if (fs==opInvalidOp) |
| return fs; |
| |
| fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, |
| rmNearestTiesToEven); |
| assert(fs==opOK); // should always work |
| |
| fs = V.multiply(rhs, rmNearestTiesToEven); |
| assert(fs==opOK || fs==opInexact); // should not overflow or underflow |
| |
| fs = subtract(V, rmNearestTiesToEven); |
| assert(fs==opOK || fs==opInexact); // likewise |
| |
| if (isZero()) |
| sign = origSign; // IEEE754 requires this |
| delete[] x; |
| return fs; |
| } |
| |
| /* Normalized llvm frem (C fmod). |
| This is not currently correct in all cases. */ |
| APFloat::opStatus |
| APFloat::mod(const APFloat &rhs, roundingMode rounding_mode) |
| { |
| opStatus fs; |
| fs = modSpecials(rhs); |
| |
| if (isFiniteNonZero() && rhs.isFiniteNonZero()) { |
| APFloat V = *this; |
| unsigned int origSign = sign; |
| |
| fs = V.divide(rhs, rmNearestTiesToEven); |
| if (fs == opDivByZero) |
| return fs; |
| |
| int parts = partCount(); |
| integerPart *x = new integerPart[parts]; |
| bool ignored; |
| fs = V.convertToInteger(x, parts * integerPartWidth, true, |
| rmTowardZero, &ignored); |
| if (fs==opInvalidOp) |
| return fs; |
| |
| fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, |
| rmNearestTiesToEven); |
| assert(fs==opOK); // should always work |
| |
| fs = V.multiply(rhs, rounding_mode); |
| assert(fs==opOK || fs==opInexact); // should not overflow or underflow |
| |
| fs = subtract(V, rounding_mode); |
| assert(fs==opOK || fs==opInexact); // likewise |
| |
| if (isZero()) |
| sign = origSign; // IEEE754 requires this |
| delete[] x; |
| } |
| return fs; |
| } |
| |
| /* Normalized fused-multiply-add. */ |
| APFloat::opStatus |
| APFloat::fusedMultiplyAdd(const APFloat &multiplicand, |
| const APFloat &addend, |
| roundingMode rounding_mode) |
| { |
| opStatus fs; |
| |
| /* Post-multiplication sign, before addition. */ |
| sign ^= multiplicand.sign; |
| |
| /* If and only if all arguments are normal do we need to do an |
| extended-precision calculation. */ |
| if (isFiniteNonZero() && |
| multiplicand.isFiniteNonZero() && |
| addend.isFiniteNonZero()) { |
| lostFraction lost_fraction; |
| |
| lost_fraction = multiplySignificand(multiplicand, &addend); |
| fs = normalize(rounding_mode, lost_fraction); |
| if (lost_fraction != lfExactlyZero) |
| fs = (opStatus) (fs | opInexact); |
| |
| /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| positive zero unless rounding to minus infinity, except that |
| adding two like-signed zeroes gives that zero. */ |
| if (category == fcZero && sign != addend.sign) |
| sign = (rounding_mode == rmTowardNegative); |
| } else { |
| fs = multiplySpecials(multiplicand); |
| |
| /* FS can only be opOK or opInvalidOp. There is no more work |
| to do in the latter case. The IEEE-754R standard says it is |
| implementation-defined in this case whether, if ADDEND is a |
| quiet NaN, we raise invalid op; this implementation does so. |
| |
| If we need to do the addition we can do so with normal |
| precision. */ |
| if (fs == opOK) |
| fs = addOrSubtract(addend, rounding_mode, false); |
| } |
| |
| return fs; |
| } |
| |
| /* Rounding-mode corrrect round to integral value. */ |
| APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) { |
| opStatus fs; |
| |
| // If the exponent is large enough, we know that this value is already |
| // integral, and the arithmetic below would potentially cause it to saturate |
| // to +/-Inf. Bail out early instead. |
| if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics)) |
| return opOK; |
| |
| // The algorithm here is quite simple: we add 2^(p-1), where p is the |
| // precision of our format, and then subtract it back off again. The choice |
| // of rounding modes for the addition/subtraction determines the rounding mode |
| // for our integral rounding as well. |
| // NOTE: When the input value is negative, we do subtraction followed by |
| // addition instead. |
| APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); |
| IntegerConstant <<= semanticsPrecision(*semantics)-1; |
| APFloat MagicConstant(*semantics); |
| fs = MagicConstant.convertFromAPInt(IntegerConstant, false, |
| rmNearestTiesToEven); |
| MagicConstant.copySign(*this); |
| |
| if (fs != opOK) |
| return fs; |
| |
| // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly. |
| bool inputSign = isNegative(); |
| |
| fs = add(MagicConstant, rounding_mode); |
| if (fs != opOK && fs != opInexact) |
| return fs; |
| |
| fs = subtract(MagicConstant, rounding_mode); |
| |
| // Restore the input sign. |
| if (inputSign != isNegative()) |
| changeSign(); |
| |
| return fs; |
| } |
| |
| |
| /* Comparison requires normalized numbers. */ |
| APFloat::cmpResult |
| APFloat::compare(const APFloat &rhs) const |
| { |
| cmpResult result; |
| |
| assert(semantics == rhs.semantics); |
| |
| switch (PackCategoriesIntoKey(category, rhs.category)) { |
| default: |
| llvm_unreachable(0); |
| |
| case PackCategoriesIntoKey(fcNaN, fcZero): |
| case PackCategoriesIntoKey(fcNaN, fcNormal): |
| case PackCategoriesIntoKey(fcNaN, fcInfinity): |
| case PackCategoriesIntoKey(fcNaN, fcNaN): |
| case PackCategoriesIntoKey(fcZero, fcNaN): |
| case PackCategoriesIntoKey(fcNormal, fcNaN): |
| case PackCategoriesIntoKey(fcInfinity, fcNaN): |
| return cmpUnordered; |
| |
| case PackCategoriesIntoKey(fcInfinity, fcNormal): |
| case PackCategoriesIntoKey(fcInfinity, fcZero): |
| case PackCategoriesIntoKey(fcNormal, fcZero): |
| if (sign) |
| return cmpLessThan; |
| else |
| return cmpGreaterThan; |
| |
| case PackCategoriesIntoKey(fcNormal, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcInfinity): |
| case PackCategoriesIntoKey(fcZero, fcNormal): |
| if (rhs.sign) |
| return cmpGreaterThan; |
| else |
| return cmpLessThan; |
| |
| case PackCategoriesIntoKey(fcInfinity, fcInfinity): |
| if (sign == rhs.sign) |
| return cmpEqual; |
| else if (sign) |
| return cmpLessThan; |
| else |
| return cmpGreaterThan; |
| |
| case PackCategoriesIntoKey(fcZero, fcZero): |
| return cmpEqual; |
| |
| case PackCategoriesIntoKey(fcNormal, fcNormal): |
| break; |
| } |
| |
| /* Two normal numbers. Do they have the same sign? */ |
| if (sign != rhs.sign) { |
| if (sign) |
| result = cmpLessThan; |
| else |
| result = cmpGreaterThan; |
| } else { |
| /* Compare absolute values; invert result if negative. */ |
| result = compareAbsoluteValue(rhs); |
| |
| if (sign) { |
| if (result == cmpLessThan) |
| result = cmpGreaterThan; |
| else if (result == cmpGreaterThan) |
| result = cmpLessThan; |
| } |
| } |
| |
| return result; |
| } |
| |
| /// APFloat::convert - convert a value of one floating point type to another. |
| /// The return value corresponds to the IEEE754 exceptions. *losesInfo |
| /// records whether the transformation lost information, i.e. whether |
| /// converting the result back to the original type will produce the |
| /// original value (this is almost the same as return value==fsOK, but there |
| /// are edge cases where this is not so). |
| |
| APFloat::opStatus |
| APFloat::convert(const fltSemantics &toSemantics, |
| roundingMode rounding_mode, bool *losesInfo) |
| { |
| lostFraction lostFraction; |
| unsigned int newPartCount, oldPartCount; |
| opStatus fs; |
| int shift; |
| const fltSemantics &fromSemantics = *semantics; |
| |
| lostFraction = lfExactlyZero; |
| newPartCount = partCountForBits(toSemantics.precision + 1); |
| oldPartCount = partCount(); |
| shift = toSemantics.precision - fromSemantics.precision; |
| |
| bool X86SpecialNan = false; |
| if (&fromSemantics == &APFloat::x87DoubleExtended && |
| &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN && |
| (!(*significandParts() & 0x8000000000000000ULL) || |
| !(*significandParts() & 0x4000000000000000ULL))) { |
| // x86 has some unusual NaNs which cannot be represented in any other |
| // format; note them here. |
| X86SpecialNan = true; |
| } |
| |
| // If this is a truncation of a denormal number, and the target semantics |
| // has larger exponent range than the source semantics (this can happen |
| // when truncating from PowerPC double-double to double format), the |
| // right shift could lose result mantissa bits. Adjust exponent instead |
| // of performing excessive shift. |
| if (shift < 0 && isFiniteNonZero()) { |
| int exponentChange = significandMSB() + 1 - fromSemantics.precision; |
| if (exponent + exponentChange < toSemantics.minExponent) |
| exponentChange = toSemantics.minExponent - exponent; |
| if (exponentChange < shift) |
| exponentChange = shift; |
| if (exponentChange < 0) { |
| shift -= exponentChange; |
| exponent += exponentChange; |
| } |
| } |
| |
| // If this is a truncation, perform the shift before we narrow the storage. |
| if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) |
| lostFraction = shiftRight(significandParts(), oldPartCount, -shift); |
| |
| // Fix the storage so it can hold to new value. |
| if (newPartCount > oldPartCount) { |
| // The new type requires more storage; make it available. |
| integerPart *newParts; |
| newParts = new integerPart[newPartCount]; |
| APInt::tcSet(newParts, 0, newPartCount); |
| if (isFiniteNonZero() || category==fcNaN) |
| APInt::tcAssign(newParts, significandParts(), oldPartCount); |
| freeSignificand(); |
| significand.parts = newParts; |
| } else if (newPartCount == 1 && oldPartCount != 1) { |
| // Switch to built-in storage for a single part. |
| integerPart newPart = 0; |
| if (isFiniteNonZero() || category==fcNaN) |
| newPart = significandParts()[0]; |
| freeSignificand(); |
| significand.part = newPart; |
| } |
| |
| // Now that we have the right storage, switch the semantics. |
| semantics = &toSemantics; |
| |
| // If this is an extension, perform the shift now that the storage is |
| // available. |
| if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) |
| APInt::tcShiftLeft(significandParts(), newPartCount, shift); |
| |
| if (isFiniteNonZero()) { |
| fs = normalize(rounding_mode, lostFraction); |
| *losesInfo = (fs != opOK); |
| } else if (category == fcNaN) { |
| *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; |
| |
| // For x87 extended precision, we want to make a NaN, not a special NaN if |
| // the input wasn't special either. |
| if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended) |
| APInt::tcSetBit(significandParts(), semantics->precision - 1); |
| |
| // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) |
| // does not give you back the same bits. This is dubious, and we |
| // don't currently do it. You're really supposed to get |
| // an invalid operation signal at runtime, but nobody does that. |
| fs = opOK; |
| } else { |
| *losesInfo = false; |
| fs = opOK; |
| } |
| |
| return fs; |
| } |
| |
| /* Convert a floating point number to an integer according to the |
| rounding mode. If the rounded integer value is out of range this |
| returns an invalid operation exception and the contents of the |
| destination parts are unspecified. If the rounded value is in |
| range but the floating point number is not the exact integer, the C |
| standard doesn't require an inexact exception to be raised. IEEE |
| 854 does require it so we do that. |
| |
| Note that for conversions to integer type the C standard requires |
| round-to-zero to always be used. */ |
| APFloat::opStatus |
| APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width, |
| bool isSigned, |
| roundingMode rounding_mode, |
| bool *isExact) const |
| { |
| lostFraction lost_fraction; |
| const integerPart *src; |
| unsigned int dstPartsCount, truncatedBits; |
| |
| *isExact = false; |
| |
| /* Handle the three special cases first. */ |
| if (category == fcInfinity || category == fcNaN) |
| return opInvalidOp; |
| |
| dstPartsCount = partCountForBits(width); |
| |
| if (category == fcZero) { |
| APInt::tcSet(parts, 0, dstPartsCount); |
| // Negative zero can't be represented as an int. |
| *isExact = !sign; |
| return opOK; |
| } |
| |
| src = significandParts(); |
| |
| /* Step 1: place our absolute value, with any fraction truncated, in |
| the destination. */ |
| if (exponent < 0) { |
| /* Our absolute value is less than one; truncate everything. */ |
| APInt::tcSet(parts, 0, dstPartsCount); |
| /* For exponent -1 the integer bit represents .5, look at that. |
| For smaller exponents leftmost truncated bit is 0. */ |
| truncatedBits = semantics->precision -1U - exponent; |
| } else { |
| /* We want the most significant (exponent + 1) bits; the rest are |
| truncated. */ |
| unsigned int bits = exponent + 1U; |
| |
| /* Hopelessly large in magnitude? */ |
| if (bits > width) |
| return opInvalidOp; |
| |
| if (bits < semantics->precision) { |
| /* We truncate (semantics->precision - bits) bits. */ |
| truncatedBits = semantics->precision - bits; |
| APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits); |
| } else { |
| /* We want at least as many bits as are available. */ |
| APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0); |
| APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision); |
| truncatedBits = 0; |
| } |
| } |
| |
| /* Step 2: work out any lost fraction, and increment the absolute |
| value if we would round away from zero. */ |
| if (truncatedBits) { |
| lost_fraction = lostFractionThroughTruncation(src, partCount(), |
| truncatedBits); |
| if (lost_fraction != lfExactlyZero && |
| roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { |
| if (APInt::tcIncrement(parts, dstPartsCount)) |
| return opInvalidOp; /* Overflow. */ |
| } |
| } else { |
| lost_fraction = lfExactlyZero; |
| } |
| |
| /* Step 3: check if we fit in the destination. */ |
| unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1; |
| |
| if (sign) { |
| if (!isSigned) { |
| /* Negative numbers cannot be represented as unsigned. */ |
| if (omsb != 0) |
| return opInvalidOp; |
| } else { |
| /* It takes omsb bits to represent the unsigned integer value. |
| We lose a bit for the sign, but care is needed as the |
| maximally negative integer is a special case. */ |
| if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb) |
| return opInvalidOp; |
| |
| /* This case can happen because of rounding. */ |
| if (omsb > width) |
| return opInvalidOp; |
| } |
| |
| APInt::tcNegate (parts, dstPartsCount); |
| } else { |
| if (omsb >= width + !isSigned) |
| return opInvalidOp; |
| } |
| |
| if (lost_fraction == lfExactlyZero) { |
| *isExact = true; |
| return opOK; |
| } else |
| return opInexact; |
| } |
| |
| /* Same as convertToSignExtendedInteger, except we provide |
| deterministic values in case of an invalid operation exception, |
| namely zero for NaNs and the minimal or maximal value respectively |
| for underflow or overflow. |
| The *isExact output tells whether the result is exact, in the sense |
| that converting it back to the original floating point type produces |
| the original value. This is almost equivalent to result==opOK, |
| except for negative zeroes. |
| */ |
| APFloat::opStatus |
| APFloat::convertToInteger(integerPart *parts, unsigned int width, |
| bool isSigned, |
| roundingMode rounding_mode, bool *isExact) const |
| { |
| opStatus fs; |
| |
| fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, |
| isExact); |
| |
| if (fs == opInvalidOp) { |
| unsigned int bits, dstPartsCount; |
| |
| dstPartsCount = partCountForBits(width); |
| |
| if (category == fcNaN) |
| bits = 0; |
| else if (sign) |
| bits = isSigned; |
| else |
| bits = width - isSigned; |
| |
| APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits); |
| if (sign && isSigned) |
| APInt::tcShiftLeft(parts, dstPartsCount, width - 1); |
| } |
| |
| return fs; |
| } |
| |
| /* Same as convertToInteger(integerPart*, ...), except the result is returned in |
| an APSInt, whose initial bit-width and signed-ness are used to determine the |
| precision of the conversion. |
| */ |
| APFloat::opStatus |
| APFloat::convertToInteger(APSInt &result, |
| roundingMode rounding_mode, bool *isExact) const |
| { |
| unsigned bitWidth = result.getBitWidth(); |
| SmallVector<uint64_t, 4> parts(result.getNumWords()); |
| opStatus status = convertToInteger( |
| parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact); |
| // Keeps the original signed-ness. |
| result = APInt(bitWidth, parts); |
| return status; |
| } |
| |
| /* Convert an unsigned integer SRC to a floating point number, |
| rounding according to ROUNDING_MODE. The sign of the floating |
| point number is not modified. */ |
| APFloat::opStatus |
| APFloat::convertFromUnsignedParts(const integerPart *src, |
| unsigned int srcCount, |
| roundingMode rounding_mode) |
| { |
| unsigned int omsb, precision, dstCount; |
| integerPart *dst; |
| lostFraction lost_fraction; |
| |
| category = fcNormal; |
| omsb = APInt::tcMSB(src, srcCount) + 1; |
| dst = significandParts(); |
| dstCount = partCount(); |
| precision = semantics->precision; |
| |
| /* We want the most significant PRECISION bits of SRC. There may not |
| be that many; extract what we can. */ |
| if (precision <= omsb) { |
| exponent = omsb - 1; |
| lost_fraction = lostFractionThroughTruncation(src, srcCount, |
| omsb - precision); |
| APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); |
| } else { |
| exponent = precision - 1; |
| lost_fraction = lfExactlyZero; |
| APInt::tcExtract(dst, dstCount, src, omsb, 0); |
| } |
| |
| return normalize(rounding_mode, lost_fraction); |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromAPInt(const APInt &Val, |
| bool isSigned, |
| roundingMode rounding_mode) |
| { |
| unsigned int partCount = Val.getNumWords(); |
| APInt api = Val; |
| |
| sign = false; |
| if (isSigned && api.isNegative()) { |
| sign = true; |
| api = -api; |
| } |
| |
| return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); |
| } |
| |
| /* Convert a two's complement integer SRC to a floating point number, |
| rounding according to ROUNDING_MODE. ISSIGNED is true if the |
| integer is signed, in which case it must be sign-extended. */ |
| APFloat::opStatus |
| APFloat::convertFromSignExtendedInteger(const integerPart *src, |
| unsigned int srcCount, |
| bool isSigned, |
| roundingMode rounding_mode) |
| { |
| opStatus status; |
| |
| if (isSigned && |
| APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { |
| integerPart *copy; |
| |
| /* If we're signed and negative negate a copy. */ |
| sign = true; |
| copy = new integerPart[srcCount]; |
| APInt::tcAssign(copy, src, srcCount); |
| APInt::tcNegate(copy, srcCount); |
| status = convertFromUnsignedParts(copy, srcCount, rounding_mode); |
| delete [] copy; |
| } else { |
| sign = false; |
| status = convertFromUnsignedParts(src, srcCount, rounding_mode); |
| } |
| |
| return status; |
| } |
| |
| /* FIXME: should this just take a const APInt reference? */ |
| APFloat::opStatus |
| APFloat::convertFromZeroExtendedInteger(const integerPart *parts, |
| unsigned int width, bool isSigned, |
| roundingMode rounding_mode) |
| { |
| unsigned int partCount = partCountForBits(width); |
| APInt api = APInt(width, makeArrayRef(parts, partCount)); |
| |
| sign = false; |
| if (isSigned && APInt::tcExtractBit(parts, width - 1)) { |
| sign = true; |
| api = -api; |
| } |
| |
| return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode) |
| { |
| lostFraction lost_fraction = lfExactlyZero; |
| integerPart *significand; |
| unsigned int bitPos, partsCount; |
| StringRef::iterator dot, firstSignificantDigit; |
| |
| zeroSignificand(); |
| exponent = 0; |
| category = fcNormal; |
| |
| significand = significandParts(); |
| partsCount = partCount(); |
| bitPos = partsCount * integerPartWidth; |
| |
| /* Skip leading zeroes and any (hexa)decimal point. */ |
| StringRef::iterator begin = s.begin(); |
| StringRef::iterator end = s.end(); |
| StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); |
| firstSignificantDigit = p; |
| |
| for (; p != end;) { |
| integerPart hex_value; |
| |
| if (*p == '.') { |
| assert(dot == end && "String contains multiple dots"); |
| dot = p++; |
| if (p == end) { |
| break; |
| } |
| } |
| |
| hex_value = hexDigitValue(*p); |
| if (hex_value == -1U) { |
| break; |
| } |
| |
| p++; |
| |
| if (p == end) { |
| break; |
| } else { |
| /* Store the number whilst 4-bit nibbles remain. */ |
| if (bitPos) { |
| bitPos -= 4; |
| hex_value <<= bitPos % integerPartWidth; |
| significand[bitPos / integerPartWidth] |= hex_value; |
| } else { |
| lost_fraction = trailingHexadecimalFraction(p, end, hex_value); |
| while (p != end && hexDigitValue(*p) != -1U) |
| p++; |
| break; |
| } |
| } |
| } |
| |
| /* Hex floats require an exponent but not a hexadecimal point. */ |
| assert(p != end && "Hex strings require an exponent"); |
| assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); |
| assert(p != begin && "Significand has no digits"); |
| assert((dot == end || p - begin != 1) && "Significand has no digits"); |
| |
| /* Ignore the exponent if we are zero. */ |
| if (p != firstSignificantDigit) { |
| int expAdjustment; |
| |
| /* Implicit hexadecimal point? */ |
| if (dot == end) |
| dot = p; |
| |
| /* Calculate the exponent adjustment implicit in the number of |
| significant digits. */ |
| expAdjustment = static_cast<int>(dot - firstSignificantDigit); |
| if (expAdjustment < 0) |
| expAdjustment++; |
| expAdjustment = expAdjustment * 4 - 1; |
| |
| /* Adjust for writing the significand starting at the most |
| significant nibble. */ |
| expAdjustment += semantics->precision; |
| expAdjustment -= partsCount * integerPartWidth; |
| |
| /* Adjust for the given exponent. */ |
| exponent = totalExponent(p + 1, end, expAdjustment); |
| } |
| |
| return normalize(rounding_mode, lost_fraction); |
| } |
| |
| APFloat::opStatus |
| APFloat::roundSignificandWithExponent(const integerPart *decSigParts, |
| unsigned sigPartCount, int exp, |
| roundingMode rounding_mode) |
| { |
| unsigned int parts, pow5PartCount; |
| fltSemantics calcSemantics = { 32767, -32767, 0 }; |
| integerPart pow5Parts[maxPowerOfFiveParts]; |
| bool isNearest; |
| |
| isNearest = (rounding_mode == rmNearestTiesToEven || |
| rounding_mode == rmNearestTiesToAway); |
| |
| parts = partCountForBits(semantics->precision + 11); |
| |
| /* Calculate pow(5, abs(exp)). */ |
| pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); |
| |
| for (;; parts *= 2) { |
| opStatus sigStatus, powStatus; |
| unsigned int excessPrecision, truncatedBits; |
| |
| calcSemantics.precision = parts * integerPartWidth - 1; |
| excessPrecision = calcSemantics.precision - semantics->precision; |
| truncatedBits = excessPrecision; |
| |
| APFloat decSig = APFloat::getZero(calcSemantics, sign); |
| APFloat pow5(calcSemantics); |
| |
| sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, |
| rmNearestTiesToEven); |
| powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, |
| rmNearestTiesToEven); |
| /* Add exp, as 10^n = 5^n * 2^n. */ |
| decSig.exponent += exp; |
| |
| lostFraction calcLostFraction; |
| integerPart HUerr, HUdistance; |
| unsigned int powHUerr; |
| |
| if (exp >= 0) { |
| /* multiplySignificand leaves the precision-th bit set to 1. */ |
| calcLostFraction = decSig.multiplySignificand(pow5, NULL); |
| powHUerr = powStatus != opOK; |
| } else { |
| calcLostFraction = decSig.divideSignificand(pow5); |
| /* Denormal numbers have less precision. */ |
| if (decSig.exponent < semantics->minExponent) { |
| excessPrecision += (semantics->minExponent - decSig.exponent); |
| truncatedBits = excessPrecision; |
| if (excessPrecision > calcSemantics.precision) |
| excessPrecision = calcSemantics.precision; |
| } |
| /* Extra half-ulp lost in reciprocal of exponent. */ |
| powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; |
| } |
| |
| /* Both multiplySignificand and divideSignificand return the |
| result with the integer bit set. */ |
| assert(APInt::tcExtractBit |
| (decSig.significandParts(), calcSemantics.precision - 1) == 1); |
| |
| HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, |
| powHUerr); |
| HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), |
| excessPrecision, isNearest); |
| |
| /* Are we guaranteed to round correctly if we truncate? */ |
| if (HUdistance >= HUerr) { |
| APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), |
| calcSemantics.precision - excessPrecision, |
| excessPrecision); |
| /* Take the exponent of decSig. If we tcExtract-ed less bits |
| above we must adjust our exponent to compensate for the |
| implicit right shift. */ |
| exponent = (decSig.exponent + semantics->precision |
| - (calcSemantics.precision - excessPrecision)); |
| calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), |
| decSig.partCount(), |
| truncatedBits); |
| return normalize(rounding_mode, calcLostFraction); |
| } |
| } |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) |
| { |
| decimalInfo D; |
| opStatus fs; |
| |
| /* Scan the text. */ |
| StringRef::iterator p = str.begin(); |
| interpretDecimal(p, str.end(), &D); |
| |
| /* Handle the quick cases. First the case of no significant digits, |
| i.e. zero, and then exponents that are obviously too large or too |
| small. Writing L for log 10 / log 2, a number d.ddddd*10^exp |
| definitely overflows if |
| |
| (exp - 1) * L >= maxExponent |
| |
| and definitely underflows to zero where |
| |
| (exp + 1) * L <= minExponent - precision |
| |
| With integer arithmetic the tightest bounds for L are |
| |
| 93/28 < L < 196/59 [ numerator <= 256 ] |
| 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] |
| */ |
| |
| // Test if we have a zero number allowing for strings with no null terminators |
| // and zero decimals with non-zero exponents. |
| // |
| // We computed firstSigDigit by ignoring all zeros and dots. Thus if |
| // D->firstSigDigit equals str.end(), every digit must be a zero and there can |
| // be at most one dot. On the other hand, if we have a zero with a non-zero |
| // exponent, then we know that D.firstSigDigit will be non-numeric. |
| if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { |
| category = fcZero; |
| fs = opOK; |
| |
| /* Check whether the normalized exponent is high enough to overflow |
| max during the log-rebasing in the max-exponent check below. */ |
| } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { |
| fs = handleOverflow(rounding_mode); |
| |
| /* If it wasn't, then it also wasn't high enough to overflow max |
| during the log-rebasing in the min-exponent check. Check that it |
| won't overflow min in either check, then perform the min-exponent |
| check. */ |
| } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || |
| (D.normalizedExponent + 1) * 28738 <= |
| 8651 * (semantics->minExponent - (int) semantics->precision)) { |
| /* Underflow to zero and round. */ |
| zeroSignificand(); |
| fs = normalize(rounding_mode, lfLessThanHalf); |
| |
| /* We can finally safely perform the max-exponent check. */ |
| } else if ((D.normalizedExponent - 1) * 42039 |
| >= 12655 * semantics->maxExponent) { |
| /* Overflow and round. */ |
| fs = handleOverflow(rounding_mode); |
| } else { |
| integerPart *decSignificand; |
| unsigned int partCount; |
| |
| /* A tight upper bound on number of bits required to hold an |
| N-digit decimal integer is N * 196 / 59. Allocate enough space |
| to hold the full significand, and an extra part required by |
| tcMultiplyPart. */ |
| partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; |
| partCount = partCountForBits(1 + 196 * partCount / 59); |
| decSignificand = new integerPart[partCount + 1]; |
| partCount = 0; |
| |
| /* Convert to binary efficiently - we do almost all multiplication |
| in an integerPart. When this would overflow do we do a single |
| bignum multiplication, and then revert again to multiplication |
| in an integerPart. */ |
| do { |
| integerPart decValue, val, multiplier; |
| |
| val = 0; |
| multiplier = 1; |
| |
| do { |
| if (*p == '.') { |
| p++; |
| if (p == str.end()) { |
| break; |
| } |
| } |
| decValue = decDigitValue(*p++); |
| assert(decValue < 10U && "Invalid character in significand"); |
| multiplier *= 10; |
| val = val * 10 + decValue; |
| /* The maximum number that can be multiplied by ten with any |
| digit added without overflowing an integerPart. */ |
| } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); |
| |
| /* Multiply out the current part. */ |
| APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, |
| partCount, partCount + 1, false); |
| |
| /* If we used another part (likely but not guaranteed), increase |
| the count. */ |
| if (decSignificand[partCount]) |
| partCount++; |
| } while (p <= D.lastSigDigit); |
| |
| category = fcNormal; |
| fs = roundSignificandWithExponent(decSignificand, partCount, |
| D.exponent, rounding_mode); |
| |
| delete [] decSignificand; |
| } |
| |
| return fs; |
| } |
| |
| bool |
| APFloat::convertFromStringSpecials(StringRef str) { |
| if (str.equals("inf") || str.equals("INFINITY")) { |
| makeInf(false); |
| return true; |
| } |
| |
| if (str.equals("-inf") || str.equals("-INFINITY")) { |
| makeInf(true); |
| return true; |
| } |
| |
| if (str.equals("nan") || str.equals("NaN")) { |
| makeNaN(false, false); |
| return true; |
| } |
| |
| if (str.equals("-nan") || str.equals("-NaN")) { |
| makeNaN(false, true); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| APFloat::opStatus |
| APFloat::convertFromString(StringRef str, roundingMode rounding_mode) |
| { |
| assert(!str.empty() && "Invalid string length"); |
| |
| // Handle special cases. |
| if (convertFromStringSpecials(str)) |
| return opOK; |
| |
| /* Handle a leading minus sign. */ |
| StringRef::iterator p = str.begin(); |
| size_t slen = str.size(); |
| sign = *p == '-' ? 1 : 0; |
| if (*p == '-' || *p == '+') { |
| p++; |
| slen--; |
| assert(slen && "String has no digits"); |
| } |
| |
| if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { |
| assert(slen - 2 && "Invalid string"); |
| return convertFromHexadecimalString(StringRef(p + 2, slen - 2), |
| rounding_mode); |
| } |
| |
| return convertFromDecimalString(StringRef(p, slen), rounding_mode); |
| } |
| |
| /* Write out a hexadecimal representation of the floating point value |
| to DST, which must be of sufficient size, in the C99 form |
| [-]0xh.hhhhp[+-]d. Return the number of characters written, |
| excluding the terminating NUL. |
| |
| If UPPERCASE, the output is in upper case, otherwise in lower case. |
| |
| HEXDIGITS digits appear altogether, rounding the value if |
| necessary. If HEXDIGITS is 0, the minimal precision to display the |
| number precisely is used instead. If nothing would appear after |
| the decimal point it is suppressed. |
| |
| The decimal exponent is always printed and has at least one digit. |
| Zero values display an exponent of zero. Infinities and NaNs |
| appear as "infinity" or "nan" respectively. |
| |
| The above rules are as specified by C99. There is ambiguity about |
| what the leading hexadecimal digit should be. This implementation |
| uses whatever is necessary so that the exponent is displayed as |
| stored. This implies the exponent will fall within the IEEE format |
| range, and the leading hexadecimal digit will be 0 (for denormals), |
| 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with |
| any other digits zero). |
| */ |
| unsigned int |
| APFloat::convertToHexString(char *dst, unsigned int hexDigits, |
| bool upperCase, roundingMode rounding_mode) const |
| { |
| char *p; |
| |
| p = dst; |
| if (sign) |
| *dst++ = '-'; |
| |
| switch (category) { |
| case fcInfinity: |
| memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); |
| dst += sizeof infinityL - 1; |
| break; |
| |
| case fcNaN: |
| memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); |
| dst += sizeof NaNU - 1; |
| break; |
| |
| case fcZero: |
| *dst++ = '0'; |
| *dst++ = upperCase ? 'X': 'x'; |
| *dst++ = '0'; |
| if (hexDigits > 1) { |
| *dst++ = '.'; |
| memset (dst, '0', hexDigits - 1); |
| dst += hexDigits - 1; |
| } |
| *dst++ = upperCase ? 'P': 'p'; |
| *dst++ = '0'; |
| break; |
| |
| case fcNormal: |
| dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); |
| break; |
| } |
| |
| *dst = 0; |
| |
| return static_cast<unsigned int>(dst - p); |
| } |
| |
| /* Does the hard work of outputting the correctly rounded hexadecimal |
| form of a normal floating point number with the specified number of |
| hexadecimal digits. If HEXDIGITS is zero the minimum number of |
| digits necessary to print the value precisely is output. */ |
| char * |
| APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, |
| bool upperCase, |
| roundingMode rounding_mode) const |
| { |
| unsigned int count, valueBits, shift, partsCount, outputDigits; |
| const char *hexDigitChars; |
| const integerPart *significand; |
| char *p; |
| bool roundUp; |
| |
| *dst++ = '0'; |
| *dst++ = upperCase ? 'X': 'x'; |
| |
| roundUp = false; |
| hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; |
| |
| significand = significandParts(); |
| partsCount = partCount(); |
| |
| /* +3 because the first digit only uses the single integer bit, so |
| we have 3 virtual zero most-significant-bits. */ |
| valueBits = semantics->precision + 3; |
| shift = integerPartWidth - valueBits % integerPartWidth; |
| |
| /* The natural number of digits required ignoring trailing |
| insignificant zeroes. */ |
| outputDigits = (valueBits - significandLSB () + 3) / 4; |
| |
| /* hexDigits of zero means use the required number for the |
| precision. Otherwise, see if we are truncating. If we are, |
| find out if we need to round away from zero. */ |
| if (hexDigits) { |
| if (hexDigits < outputDigits) { |
| /* We are dropping non-zero bits, so need to check how to round. |
| "bits" is the number of dropped bits. */ |
| unsigned int bits; |
| lostFraction fraction; |
| |
| bits = valueBits - hexDigits * 4; |
| fraction = lostFractionThroughTruncation (significand, partsCount, bits); |
| roundUp = roundAwayFromZero(rounding_mode, fraction, bits); |
| } |
| outputDigits = hexDigits; |
| } |
| |
| /* Write the digits consecutively, and start writing in the location |
| of the hexadecimal point. We move the most significant digit |
| left and add the hexadecimal point later. */ |
| p = ++dst; |
| |
| count = (valueBits + integerPartWidth - 1) / integerPartWidth; |
| |
| while (outputDigits && count) { |
| integerPart part; |
| |
| /* Put the most significant integerPartWidth bits in "part". */ |
| if (--count == partsCount) |
| part = 0; /* An imaginary higher zero part. */ |
| else |
| part = significand[count] << shift; |
| |
| if (count && shift) |
| part |= significand[count - 1] >> (integerPartWidth - shift); |
| |
| /* Convert as much of "part" to hexdigits as we can. */ |
| unsigned int curDigits = integerPartWidth / 4; |
| |
| if (curDigits > outputDigits) |
| curDigits = outputDigits; |
| dst += partAsHex (dst, part, curDigits, hexDigitChars); |
| outputDigits -= curDigits; |
| } |
| |
| if (roundUp) { |
| char *q = dst; |
| |
| /* Note that hexDigitChars has a trailing '0'. */ |
| do { |
| q--; |
| *q = hexDigitChars[hexDigitValue (*q) + 1]; |
| } while (*q == '0'); |
| assert(q >= p); |
| } else { |
| /* Add trailing zeroes. */ |
| memset (dst, '0', outputDigits); |
| dst += outputDigits; |
| } |
| |
| /* Move the most significant digit to before the point, and if there |
| is something after the decimal point add it. This must come |
| after rounding above. */ |
| p[-1] = p[0]; |
| if (dst -1 == p) |
| dst--; |
| else |
| p[0] = '.'; |
| |
| /* Finally output the exponent. */ |
| *dst++ = upperCase ? 'P': 'p'; |
| |
| return writeSignedDecimal (dst, exponent); |
| } |
| |
| hash_code llvm::hash_value(const APFloat &Arg) { |
| if (!Arg.isFiniteNonZero()) |
| return hash_combine((uint8_t)Arg.category, |
| // NaN has no sign, fix it at zero. |
| Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, |
| Arg.semantics->precision); |
| |
| // Normal floats need their exponent and significand hashed. |
| return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, |
| Arg.semantics->precision, Arg.exponent, |
| hash_combine_range( |
| Arg.significandParts(), |
| Arg.significandParts() + Arg.partCount())); |
| } |
| |
| // Conversion from APFloat to/from host float/double. It may eventually be |
| // possible to eliminate these and have everybody deal with APFloats, but that |
| // will take a while. This approach will not easily extend to long double. |
| // Current implementation requires integerPartWidth==64, which is correct at |
| // the moment but could be made more general. |
| |
| // Denormals have exponent minExponent in APFloat, but minExponent-1 in |
| // the actual IEEE respresentations. We compensate for that here. |
| |
| APInt |
| APFloat::convertF80LongDoubleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended); |
| assert(partCount()==2); |
| |
| uint64_t myexponent, mysignificand; |
| |
| if (isFiniteNonZero()) { |
| myexponent = exponent+16383; //bias |
| mysignificand = significandParts()[0]; |
| if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x7fff; |
| mysignificand = 0x8000000000000000ULL; |
| } else { |
| assert(category == fcNaN && "Unknown category"); |
| myexponent = 0x7fff; |
| mysignificand = significandParts()[0]; |
| } |
| |
| uint64_t words[2]; |
| words[0] = mysignificand; |
| words[1] = ((uint64_t)(sign & 1) << 15) | |
| (myexponent & 0x7fffLL); |
| return APInt(80, words); |
| } |
| |
| APInt |
| APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble); |
| assert(partCount()==2); |
| |
| uint64_t words[2]; |
| opStatus fs; |
| bool losesInfo; |
| |
| // Convert number to double. To avoid spurious underflows, we re- |
| // normalize against the "double" minExponent first, and only *then* |
| // truncate the mantissa. The result of that second conversion |
| // may be inexact, but should never underflow. |
| // Declare fltSemantics before APFloat that uses it (and |
| // saves pointer to it) to ensure correct destruction order. |
| fltSemantics extendedSemantics = *semantics; |
| extendedSemantics.minExponent = IEEEdouble.minExponent; |
| APFloat extended(*this); |
| fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK && !losesInfo); |
| (void)fs; |
| |
| APFloat u(extended); |
| fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK || fs == opInexact); |
| (void)fs; |
| words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); |
| |
| // If conversion was exact or resulted in a special case, we're done; |
| // just set the second double to zero. Otherwise, re-convert back to |
| // the extended format and compute the difference. This now should |
| // convert exactly to double. |
| if (u.isFiniteNonZero() && losesInfo) { |
| fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK && !losesInfo); |
| (void)fs; |
| |
| APFloat v(extended); |
| v.subtract(u, rmNearestTiesToEven); |
| fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK && !losesInfo); |
| (void)fs; |
| words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); |
| } else { |
| words[1] = 0; |
| } |
| |
| return APInt(128, words); |
| } |
| |
| APInt |
| APFloat::convertQuadrupleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEquad); |
| assert(partCount()==2); |
| |
| uint64_t myexponent, mysignificand, mysignificand2; |
| |
| if (isFiniteNonZero()) { |
| myexponent = exponent+16383; //bias |
| mysignificand = significandParts()[0]; |
| mysignificand2 = significandParts()[1]; |
| if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = mysignificand2 = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x7fff; |
| mysignificand = mysignificand2 = 0; |
| } else { |
| assert(category == fcNaN && "Unknown category!"); |
| myexponent = 0x7fff; |
| mysignificand = significandParts()[0]; |
| mysignificand2 = significandParts()[1]; |
| } |
| |
| uint64_t words[2]; |
| words[0] = mysignificand; |
| words[1] = ((uint64_t)(sign & 1) << 63) | |
| ((myexponent & 0x7fff) << 48) | |
| (mysignificand2 & 0xffffffffffffLL); |
| |
| return APInt(128, words); |
| } |
| |
| APInt |
| APFloat::convertDoubleAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEdouble); |
| assert(partCount()==1); |
| |
| uint64_t myexponent, mysignificand; |
| |
| if (isFiniteNonZero()) { |
| myexponent = exponent+1023; //bias |
| mysignificand = *significandParts(); |
| if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x7ff; |
| mysignificand = 0; |
| } else { |
| assert(category == fcNaN && "Unknown category!"); |
| myexponent = 0x7ff; |
| mysignificand = *significandParts(); |
| } |
| |
| return APInt(64, ((((uint64_t)(sign & 1) << 63) | |
| ((myexponent & 0x7ff) << 52) | |
| (mysignificand & 0xfffffffffffffLL)))); |
| } |
| |
| APInt |
| APFloat::convertFloatAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEsingle); |
| assert(partCount()==1); |
| |
| uint32_t myexponent, mysignificand; |
| |
| if (isFiniteNonZero()) { |
| myexponent = exponent+127; //bias |
| mysignificand = (uint32_t)*significandParts(); |
| if (myexponent == 1 && !(mysignificand & 0x800000)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0xff; |
| mysignificand = 0; |
| } else { |
| assert(category == fcNaN && "Unknown category!"); |
| myexponent = 0xff; |
| mysignificand = (uint32_t)*significandParts(); |
| } |
| |
| return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | |
| (mysignificand & 0x7fffff))); |
| } |
| |
| APInt |
| APFloat::convertHalfAPFloatToAPInt() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEhalf); |
| assert(partCount()==1); |
| |
| uint32_t myexponent, mysignificand; |
| |
| if (isFiniteNonZero()) { |
| myexponent = exponent+15; //bias |
| mysignificand = (uint32_t)*significandParts(); |
| if (myexponent == 1 && !(mysignificand & 0x400)) |
| myexponent = 0; // denormal |
| } else if (category==fcZero) { |
| myexponent = 0; |
| mysignificand = 0; |
| } else if (category==fcInfinity) { |
| myexponent = 0x1f; |
| mysignificand = 0; |
| } else { |
| assert(category == fcNaN && "Unknown category!"); |
| myexponent = 0x1f; |
| mysignificand = (uint32_t)*significandParts(); |
| } |
| |
| return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | |
| (mysignificand & 0x3ff))); |
| } |
| |
| // This function creates an APInt that is just a bit map of the floating |
| // point constant as it would appear in memory. It is not a conversion, |
| // and treating the result as a normal integer is unlikely to be useful. |
| |
| APInt |
| APFloat::bitcastToAPInt() const |
| { |
| if (semantics == (const llvm::fltSemantics*)&IEEEhalf) |
| return convertHalfAPFloatToAPInt(); |
| |
| if (semantics == (const llvm::fltSemantics*)&IEEEsingle) |
| return convertFloatAPFloatToAPInt(); |
| |
| if (semantics == (const llvm::fltSemantics*)&IEEEdouble) |
| return convertDoubleAPFloatToAPInt(); |
| |
| if (semantics == (const llvm::fltSemantics*)&IEEEquad) |
| return convertQuadrupleAPFloatToAPInt(); |
| |
| if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble) |
| return convertPPCDoubleDoubleAPFloatToAPInt(); |
| |
| assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended && |
| "unknown format!"); |
| return convertF80LongDoubleAPFloatToAPInt(); |
| } |
| |
| float |
| APFloat::convertToFloat() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEsingle && |
| "Float semantics are not IEEEsingle"); |
| APInt api = bitcastToAPInt(); |
| return api.bitsToFloat(); |
| } |
| |
| double |
| APFloat::convertToDouble() const |
| { |
| assert(semantics == (const llvm::fltSemantics*)&IEEEdouble && |
| "Float semantics are not IEEEdouble"); |
| APInt api = bitcastToAPInt(); |
| return api.bitsToDouble(); |
| } |
| |
| /// Integer bit is explicit in this format. Intel hardware (387 and later) |
| /// does not support these bit patterns: |
| /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") |
| /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") |
| /// exponent = 0, integer bit 1 ("pseudodenormal") |
| /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") |
| /// At the moment, the first two are treated as NaNs, the second two as Normal. |
| void |
| APFloat::initFromF80LongDoubleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==80); |
| uint64_t i1 = api.getRawData()[0]; |
| uint64_t i2 = api.getRawData()[1]; |
| uint64_t myexponent = (i2 & 0x7fff); |
| uint64_t mysignificand = i1; |
| |
| initialize(&APFloat::x87DoubleExtended); |
| assert(partCount()==2); |
| |
| sign = static_cast<unsigned int>(i2>>15); |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) { |
| // exponent meaningless |
| category = fcNaN; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = 0; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 16383; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = 0; |
| if (myexponent==0) // denormal |
| exponent = -16382; |
| } |
| } |
| |
| void |
| APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==128); |
| uint64_t i1 = api.getRawData()[0]; |
| uint64_t i2 = api.getRawData()[1]; |
| opStatus fs; |
| bool losesInfo; |
| |
| // Get the first double and convert to our format. |
| initFromDoubleAPInt(APInt(64, i1)); |
| fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK && !losesInfo); |
| (void)fs; |
| |
| // Unless we have a special case, add in second double. |
| if (isFiniteNonZero()) { |
| APFloat v(IEEEdouble, APInt(64, i2)); |
| fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo); |
| assert(fs == opOK && !losesInfo); |
| (void)fs; |
| |
| add(v, rmNearestTiesToEven); |
| } |
| } |
| |
| void |
| APFloat::initFromQuadrupleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==128); |
| uint64_t i1 = api.getRawData()[0]; |
| uint64_t i2 = api.getRawData()[1]; |
| uint64_t myexponent = (i2 >> 48) & 0x7fff; |
| uint64_t mysignificand = i1; |
| uint64_t mysignificand2 = i2 & 0xffffffffffffLL; |
| |
| initialize(&APFloat::IEEEquad); |
| assert(partCount()==2); |
| |
| sign = static_cast<unsigned int>(i2>>63); |
| if (myexponent==0 && |
| (mysignificand==0 && mysignificand2==0)) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x7fff && |
| (mysignificand==0 && mysignificand2==0)) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x7fff && |
| (mysignificand!=0 || mysignificand2 !=0)) { |
| // exponent meaningless |
| category = fcNaN; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = mysignificand2; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 16383; |
| significandParts()[0] = mysignificand; |
| significandParts()[1] = mysignificand2; |
| if (myexponent==0) // denormal |
| exponent = -16382; |
| else |
| significandParts()[1] |= 0x1000000000000LL; // integer bit |
| } |
| } |
| |
| void |
| APFloat::initFromDoubleAPInt(const APInt &api) |
| { |
| assert(api.getBitWidth()==64); |
| uint64_t i = *api.getRawData(); |
| uint64_t myexponent = (i >> 52) & 0x7ff; |
| uint64_t mysignificand = i & 0xfffffffffffffLL; |
| |
| initialize(&APFloat::IEEEdouble); |
| assert(partCount()==1); |
| |
| sign = static_cast<unsigned int>(i>>63); |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x7ff && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x7ff && mysignificand!=0) { |
| // exponent meaningless |
| category = fcNaN; |
| *significandParts() = mysignificand; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 1023; |
| *significandParts() = mysignificand; |
| if (myexponent==0) // denormal |
| exponent = -1022; |
| else |
| *significandParts() |= 0x10000000000000LL; // integer bit |
| } |
| } |
| |
| void |
| APFloat::initFromFloatAPInt(const APInt & api) |
| { |
| assert(api.getBitWidth()==32); |
| uint32_t i = (uint32_t)*api.getRawData(); |
| uint32_t myexponent = (i >> 23) & 0xff; |
| uint32_t mysignificand = i & 0x7fffff; |
| |
| initialize(&APFloat::IEEEsingle); |
| assert(partCount()==1); |
| |
| sign = i >> 31; |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0xff && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0xff && mysignificand!=0) { |
| // sign, exponent, significand meaningless |
| category = fcNaN; |
| *significandParts() = mysignificand; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 127; //bias |
| *significandParts() = mysignificand; |
| if (myexponent==0) // denormal |
| exponent = -126; |
| else |
| *significandParts() |= 0x800000; // integer bit |
| } |
| } |
| |
| void |
| APFloat::initFromHalfAPInt(const APInt & api) |
| { |
| assert(api.getBitWidth()==16); |
| uint32_t i = (uint32_t)*api.getRawData(); |
| uint32_t myexponent = (i >> 10) & 0x1f; |
| uint32_t mysignificand = i & 0x3ff; |
| |
| initialize(&APFloat::IEEEhalf); |
| assert(partCount()==1); |
| |
| sign = i >> 15; |
| if (myexponent==0 && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcZero; |
| } else if (myexponent==0x1f && mysignificand==0) { |
| // exponent, significand meaningless |
| category = fcInfinity; |
| } else if (myexponent==0x1f && mysignificand!=0) { |
| // sign, exponent, significand meaningless |
| category = fcNaN; |
| *significandParts() = mysignificand; |
| } else { |
| category = fcNormal; |
| exponent = myexponent - 15; //bias |
| *significandParts() = mysignificand; |
| if (myexponent==0) // denormal |
| exponent = -14; |
| else |
| *significandParts() |= 0x400; // integer bit |
| } |
| } |
| |
| /// Treat api as containing the bits of a floating point number. Currently |
| /// we infer the floating point type from the size of the APInt. The |
| /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful |
| /// when the size is anything else). |
| void |
| APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api) |
| { |
| if (Sem == &IEEEhalf) |
| return initFromHalfAPInt(api); |
| if (Sem == &IEEEsingle) |
| return initFromFloatAPInt(api); |
| if (Sem == &IEEEdouble) |
| return initFromDoubleAPInt(api); |
| if (Sem == &x87DoubleExtended) |
| return initFromF80LongDoubleAPInt(api); |
| if (Sem == &IEEEquad) |
| return initFromQuadrupleAPInt(api); |
| if (Sem == &PPCDoubleDouble) |
| return initFromPPCDoubleDoubleAPInt(api); |
| |
| llvm_unreachable(0); |
| } |
| |
| APFloat |
| APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) |
| { |
| switch (BitWidth) { |
| case 16: |
| return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth)); |
| case 32: |
| return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth)); |
| case 64: |
| return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth)); |
| case 80: |
| return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth)); |
| case 128: |
| if (isIEEE) |
| return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth)); |
| return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth)); |
| default: |
| llvm_unreachable("Unknown floating bit width"); |
| } |
| } |
| |
| /// Make this number the largest magnitude normal number in the given |
| /// semantics. |
| void APFloat::makeLargest(bool Negative) { |
| // We want (in interchange format): |
| // sign = {Negative} |
| // exponent = 1..10 |
| // significand = 1..1 |
| category = fcNormal; |
| sign = Negative; |
| exponent = semantics->maxExponent; |
| |
| // Use memset to set all but the highest integerPart to all ones. |
| integerPart *significand = significandParts(); |
| unsigned PartCount = partCount(); |
| memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); |
| |
| // Set the high integerPart especially setting all unused top bits for |
| // internal consistency. |
| const unsigned NumUnusedHighBits = |
| PartCount*integerPartWidth - semantics->precision; |
| significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits; |
| } |
| |
| /// Make this number the smallest magnitude denormal number in the given |
| /// semantics. |
| void APFloat::makeSmallest(bool Negative) { |
| // We want (in interchange format): |
| // sign = {Negative} |
| // exponent = 0..0 |
| // significand = 0..01 |
| category = fcNormal; |
| sign = Negative; |
| exponent = semantics->minExponent; |
| APInt::tcSet(significandParts(), 1, partCount()); |
| } |
| |
| |
| APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) { |
| // We want (in interchange format): |
| // sign = {Negative} |
| // exponent = 1..10 |
| // significand = 1..1 |
| APFloat Val(Sem, uninitialized); |
| Val.makeLargest(Negative); |
| return Val; |
| } |
| |
| APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) { |
| // We want (in interchange format): |
| // sign = {Negative} |
| // exponent = 0..0 |
| // significand = 0..01 |
| APFloat Val(Sem, uninitialized); |
| Val.makeSmallest(Negative); |
| return Val; |
| } |
| |
| APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) { |
| APFloat Val(Sem, uninitialized); |
| |
| // We want (in interchange format): |
| // sign = {Negative} |
| // exponent = 0..0 |
| // significand = 10..0 |
| |
| Val.zeroSignificand(); |
| Val.sign = Negative; |
| Val.exponent = Sem.minExponent; |
| Val.significandParts()[partCountForBits(Sem.precision)-1] |= |
| (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth)); |
| |
| return Val; |
| } |
| |
| APFloat::APFloat(const fltSemantics &Sem, const APInt &API) { |
| initFromAPInt(&Sem, API); |
| } |
| |
| APFloat::APFloat(float f) { |
| initFromAPInt(&IEEEsingle, APInt::floatToBits(f)); |
| } |
| |
| APFloat::APFloat(double d) { |
| initFromAPInt(&IEEEdouble, APInt::doubleToBits(d)); |
| } |
| |
| namespace { |
| void append(SmallVectorImpl<char> &Buffer, StringRef Str) { |
| Buffer.append(Str.begin(), Str.end()); |
| } |
| |
| /// Removes data from the given significand until it is no more |
| /// precise than is required for the desired precision. |
| void AdjustToPrecision(APInt &significand, |
| int &exp, unsigned FormatPrecision) { |
| unsigned bits = significand.getActiveBits(); |
| |
| // 196/59 is a very slight overestimate of lg_2(10). |
| unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; |
| |
| if (bits <= bitsRequired) return; |
| |
| unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; |
| if (!tensRemovable) return; |
| |
| exp += tensRemovable; |
| |
| APInt divisor(significand.getBitWidth(), 1); |
| APInt powten(significand.getBitWidth(), 10); |
| while (true) { |
| if (tensRemovable & 1) |
| divisor *= powten; |
| tensRemovable >>= 1; |
| if (!tensRemovable) break; |
| powten *= powten; |
| } |
| |
| significand = significand.udiv(divisor); |
| |
| // Truncate the significand down to its active bit count. |
| significand = significand.trunc(significand.getActiveBits()); |
| } |
| |
| |
| void AdjustToPrecision(SmallVectorImpl<char> &buffer, |
| int &exp, unsigned FormatPrecision) { |
| unsigned N = buffer.size(); |
| if (N <= FormatPrecision) return; |
| |
| // The most significant figures are the last ones in the buffer. |
| unsigned FirstSignificant = N - FormatPrecision; |
| |
| // Round. |
| // FIXME: this probably shouldn't use 'round half up'. |
| |
| // Rounding down is just a truncation, except we also want to drop |
| // trailing zeros from the new result. |
| if (buffer[FirstSignificant - 1] < '5') { |
| while (FirstSignificant < N && buffer[FirstSignificant] == '0') |
| FirstSignificant++; |
| |
| exp += FirstSignificant; |
| buffer.erase(&buffer[0], &buffer[FirstSignificant]); |
| return; |
| } |
| |
| // Rounding up requires a decimal add-with-carry. If we continue |
| // the carry, the newly-introduced zeros will just be truncated. |
| for (unsigned I = FirstSignificant; I != N; ++I) { |
| if (buffer[I] == '9') { |
| FirstSignificant++; |
| } else { |
| buffer[I]++; |
| break; |
| } |
| } |
| |
| // If we carried through, we have exactly one digit of precision. |
| if (FirstSignificant == N) { |
| exp += FirstSignificant; |
| buffer.clear(); |
| buffer.push_back('1'); |
| return; |
| } |
| |
| exp += FirstSignificant; |
| buffer.erase(&buffer[0], &buffer[FirstSignificant]); |
| } |
| } |
| |
| void APFloat::toString(SmallVectorImpl<char> &Str, |
| unsigned FormatPrecision, |
| unsigned FormatMaxPadding) const { |
| switch (category) { |
| case fcInfinity: |
| if (isNegative()) |
| return append(Str, "-Inf"); |
| else |
| return append(Str, "+Inf"); |
| |
| case fcNaN: return append(Str, "NaN"); |
| |
| case fcZero: |
| if (isNegative()) |
| Str.push_back('-'); |
| |
| if (!FormatMaxPadding) |
| append(Str, "0.0E+0"); |
| else |
| Str.push_back('0'); |
| return; |
| |
| case fcNormal: |
| break; |
| } |
| |
| if (isNegative()) |
| Str.push_back('-'); |
| |
| // Decompose the number into an APInt and an exponent. |
| int exp = exponent - ((int) semantics->precision - 1); |
| APInt significand(semantics->precision, |
| makeArrayRef(significandParts(), |
| partCountForBits(semantics->precision))); |
| |
| // Set FormatPrecision if zero. We want to do this before we |
| // truncate trailing zeros, as those are part of the precision. |
| if (!FormatPrecision) { |
| // It's an interesting question whether to use the nominal |
| // precision or the active precision here for denormals. |
| |
| // FormatPrecision = ceil(significandBits / lg_2(10)) |
| FormatPrecision = (semantics->precision * 59 + 195) / 196; |
| } |
| |
| // Ignore trailing binary zeros. |
| int trailingZeros = significand.countTrailingZeros(); |
| exp += trailingZeros; |
| significand = significand.lshr(trailingZeros); |
| |
| // Change the exponent from 2^e to 10^e. |
| if (exp == 0) { |
| // Nothing to do. |
| } else if (exp > 0) { |
| // Just shift left. |
| significand = significand.zext(semantics->precision + exp); |
| significand <<= exp; |
| exp = 0; |
| } else { /* exp < 0 */ |
| int texp = -exp; |
| |
| // We transform this using the identity: |
| // (N)(2^-e) == (N)(5^e)(10^-e) |
| // This means we have to multiply N (the significand) by 5^e. |
| // To avoid overflow, we have to operate on numbers large |
| // enough to store N * 5^e: |
| // log2(N * 5^e) == log2(N) + e * log2(5) |
| // <= semantics->precision + e * 137 / 59 |
| // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) |
| |
| unsigned precision = semantics->precision + (137 * texp + 136) / 59; |
| |
| // Multiply significand by 5^e. |
| // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) |
| significand = significand.zext(precision); |
| APInt five_to_the_i(precision, 5); |
| while (true) { |
| if (texp & 1) significand *= five_to_the_i; |
| |
| texp >>= 1; |
| if (!texp) break; |
| five_to_the_i *= five_to_the_i; |
| } |
| } |
| |
| AdjustToPrecision(significand, exp, FormatPrecision); |
| |
| SmallVector<char, 256> buffer; |
| |
| // Fill the buffer. |
| unsigned precision = significand.getBitWidth(); |
| APInt ten(precision, 10); |
| APInt digit(precision, 0); |
| |
| bool inTrail = true; |
| while (significand != 0) { |
| // digit <- significand % 10 |
| // significand <- significand / 10 |
| APInt::udivrem(significand, ten, significand, digit); |
| |
| unsigned d = digit.getZExtValue(); |
| |
| // Drop trailing zeros. |
| if (inTrail && !d) exp++; |
| else { |
| buffer.push_back((char) ('0' + d)); |
| inTrail = false; |
| } |
| } |
| |
| assert(!buffer.empty() && "no characters in buffer!"); |
| |
| // Drop down to FormatPrecision. |
| // TODO: don't do more precise calculations above than are required. |
| AdjustToPrecision(buffer, exp, FormatPrecision); |
| |
| unsigned NDigits = buffer.size(); |
| |
| // Check whether we should use scientific notation. |
| bool FormatScientific; |
| if (!FormatMaxPadding) |
| FormatScientific = true; |
| else { |
| if (exp >= 0) { |
| // 765e3 --> 765000 |
| // ^^^ |
| // But we shouldn't make the number look more precise than it is. |
| FormatScientific = ((unsigned) exp > FormatMaxPadding || |
| NDigits + (unsigned) exp > FormatPrecision); |
| } else { |
| // Power of the most significant digit. |
| int MSD = exp + (int) (NDigits - 1); |
| if (MSD >= 0) { |
| // 765e-2 == 7.65 |
| FormatScientific = false; |
| } else { |
| // 765e-5 == 0.00765 |
| // ^ ^^ |
| FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; |
| } |
| } |
| } |
| |
| // Scientific formatting is pretty straightforward. |
| if (FormatScientific) { |
| exp += (NDigits - 1); |
| |
| Str.push_back(buffer[NDigits-1]); |
| Str.push_back('.'); |
| if (NDigits == 1) |
| Str.push_back('0'); |
| else |
| for (unsigned I = 1; I != NDigits; ++I) |
| Str.push_back(buffer[NDigits-1-I]); |
| Str.push_back('E'); |
| |
| Str.push_back(exp >= 0 ? '+' : '-'); |
| if (exp < 0) exp = -exp; |
| SmallVector<char, 6> expbuf; |
| do { |
| expbuf.push_back((char) ('0' + (exp % 10))); |
| exp /= 10; |
| } while (exp); |
| for (unsigned I = 0, E = expbuf.size(); I != E; ++I) |
| Str.push_back(expbuf[E-1-I]); |
| return; |
| } |
| |
| // Non-scientific, positive exponents. |
| if (exp >= 0) { |
| for (unsigned I = 0; I != NDigits; ++I) |
| Str.push_back(buffer[NDigits-1-I]); |
| for (unsigned I = 0; I != (unsigned) exp; ++I) |
| Str.push_back('0'); |
| return; |
| } |
| |
| // Non-scientific, negative exponents. |
| |
| // The number of digits to the left of the decimal point. |
| int NWholeDigits = exp + (int) NDigits; |
| |
| unsigned I = 0; |
| if (NWholeDigits > 0) { |
| for (; I != (unsigned) NWholeDigits; ++I) |
| Str.push_back(buffer[NDigits-I-1]); |
| Str.push_back('.'); |
| } else { |
| unsigned NZeros = 1 + (unsigned) -NWholeDigits; |
| |
| Str.push_back('0'); |
| Str.push_back('.'); |
| for (unsigned Z = 1; Z != NZeros; ++Z) |
| Str.push_back('0'); |
| } |
| |
| for (; I != NDigits; ++I) |
| Str.push_back(buffer[NDigits-I-1]); |
| } |
| |
| bool APFloat::getExactInverse(APFloat *inv) const { |
| // Special floats and denormals have no exact inverse. |
| if (!isFiniteNonZero()) |
| return false; |
| |
| // Check that the number is a power of two by making sure that only the |
| // integer bit is set in the significand. |
| if (significandLSB() != semantics->precision - 1) |
| return false; |
| |
| // Get the inverse. |
| APFloat reciprocal(*semantics, 1ULL); |
| if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) |
| return false; |
| |
| // Avoid multiplication with a denormal, it is not safe on all platforms and |
| // may be slower than a normal division. |
| if (reciprocal.isDenormal()) |
| return false; |
| |
| assert(reciprocal.isFiniteNonZero() && |
| reciprocal.significandLSB() == reciprocal.semantics->precision - 1); |
| |
| if (inv) |
| *inv = reciprocal; |
| |
| return true; |
| } |
| |
| bool APFloat::isSignaling() const { |
| if (!isNaN()) |
| return false; |
| |
| // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the |
| // first bit of the trailing significand being 0. |
| return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); |
| } |
| |
| /// IEEE-754R 2008 5.3.1: nextUp/nextDown. |
| /// |
| /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with |
| /// appropriate sign switching before/after the computation. |
| APFloat::opStatus APFloat::next(bool nextDown) { |
| // If we are performing nextDown, swap sign so we have -x. |
| if (nextDown) |
| changeSign(); |
| |
| // Compute nextUp(x) |
| opStatus result = opOK; |
| |
| // Handle each float category separately. |
| switch (category) { |
| case fcInfinity: |
| // nextUp(+inf) = +inf |
| if (!isNegative()) |
| break; |
| // nextUp(-inf) = -getLargest() |
| makeLargest(true); |
| break; |
| case fcNaN: |
| // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. |
| // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not |
| // change the payload. |
| if (isSignaling()) { |
| result = opInvalidOp; |
| // For consistency, propogate the sign of the sNaN to the qNaN. |
| makeNaN(false, isNegative(), 0); |
| } |
| break; |
| case fcZero: |
| // nextUp(pm 0) = +getSmallest() |
| makeSmallest(false); |
| break; |
| case fcNormal: |
| // nextUp(-getSmallest()) = -0 |
| if (isSmallest() && isNegative()) { |
| APInt::tcSet(significandParts(), 0, partCount()); |
| category = fcZero; |
| exponent = 0; |
| break; |
| } |
| |
| // nextUp(getLargest()) == INFINITY |
| if (isLargest() && !isNegative()) { |
| APInt::tcSet(significandParts(), 0, partCount()); |
| category = fcInfinity; |
| exponent = semantics->maxExponent + 1; |
| break; |
| } |
| |
| // nextUp(normal) == normal + inc. |
| if (isNegative()) { |
| // If we are negative, we need to decrement the significand. |
| |
| // We only cross a binade boundary that requires adjusting the exponent |
| // if: |
| // 1. exponent != semantics->minExponent. This implies we are not in the |
| // smallest binade or are dealing with denormals. |
| // 2. Our significand excluding the integral bit is all zeros. |
| bool WillCrossBinadeBoundary = |
| exponent != semantics->minExponent && isSignificandAllZeros(); |
| |
| // Decrement the significand. |
| // |
| // We always do this since: |
| // 1. If we are dealing with a non binade decrement, by definition we |
| // just decrement the significand. |
| // 2. If we are dealing with a normal -> normal binade decrement, since |
| // we have an explicit integral bit the fact that all bits but the |
| // integral bit are zero implies that subtracting one will yield a |
| // significand with 0 integral bit and 1 in all other spots. Thus we |
| // must just adjust the exponent and set the integral bit to 1. |
| // 3. If we are dealing with a normal -> denormal binade decrement, |
| // since we set the integral bit to 0 when we represent denormals, we |
| // just decrement the significand. |
| integerPart *Parts = significandParts(); |
| APInt::tcDecrement(Parts, partCount()); |
| |
| if (WillCrossBinadeBoundary) { |
| // Our result is a normal number. Do the following: |
| // 1. Set the integral bit to 1. |
| // 2. Decrement the exponent. |
| APInt::tcSetBit(Parts, semantics->precision - 1); |
| exponent--; |
| } |
| } else { |
| // If we are positive, we need to increment the significand. |
| |
| // We only cross a binade boundary that requires adjusting the exponent if |
| // the input is not a denormal and all of said input's significand bits |
| // are set. If all of said conditions are true: clear the significand, set |
| // the integral bit to 1, and increment the exponent. If we have a |
| // denormal always increment since moving denormals and the numbers in the |
| // smallest normal binade have the same exponent in our representation. |
| bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); |
| |
| if (WillCrossBinadeBoundary) { |
| integerPart *Parts = significandParts(); |
| APInt::tcSet(Parts, 0, partCount()); |
| APInt::tcSetBit(Parts, semantics->precision - 1); |
| assert(exponent != semantics->maxExponent && |
| "We can not increment an exponent beyond the maxExponent allowed" |
| " by the given floating point semantics."); |
| exponent++; |
| } else { |
| incrementSignificand(); |
| } |
| } |
| break; |
| } |
| |
| // If we are performing nextDown, swap sign so we have -nextUp(-x) |
| if (nextDown) |
| changeSign(); |
| |
| return result; |
| } |
| |
| void |
| APFloat::makeInf(bool Negative) { |
| category = fcInfinity; |
| sign = Negative; |
| exponent = semantics->maxExponent + 1; |
| APInt::tcSet(significandParts(), 0, partCount()); |
| } |
| |
| void |
| APFloat::makeZero(bool Negative) { |
| category = fcZero; |
| sign = Negative; |
| exponent = semantics->minExponent-1; |
| APInt::tcSet(significandParts(), 0, partCount()); |
| } |