| //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for DWARF4 hashing of DIEs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dwarfdebug" |
| |
| #include "DIE.h" |
| #include "DIEHash.h" |
| #include "DwarfCompileUnit.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| /// \brief Grabs the string in whichever attribute is passed in and returns |
| /// a reference to it. |
| static StringRef getDIEStringAttr(DIE *Die, uint16_t Attr) { |
| const SmallVectorImpl<DIEValue *> &Values = Die->getValues(); |
| const DIEAbbrev &Abbrevs = Die->getAbbrev(); |
| |
| // Iterate through all the attributes until we find the one we're |
| // looking for, if we can't find it return an empty string. |
| for (size_t i = 0; i < Values.size(); ++i) { |
| if (Abbrevs.getData()[i].getAttribute() == Attr) { |
| DIEValue *V = Values[i]; |
| assert(isa<DIEString>(V) && "String requested. Not a string."); |
| DIEString *S = cast<DIEString>(V); |
| return S->getString(); |
| } |
| } |
| return StringRef(""); |
| } |
| |
| /// \brief Adds the string in \p Str to the hash. This also hashes |
| /// a trailing NULL with the string. |
| void DIEHash::addString(StringRef Str) { |
| DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); |
| Hash.update(Str); |
| Hash.update(makeArrayRef((uint8_t)'\0')); |
| } |
| |
| // FIXME: The LEB128 routines are copied and only slightly modified out of |
| // LEB128.h. |
| |
| /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. |
| void DIEHash::addULEB128(uint64_t Value) { |
| DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); |
| do { |
| uint8_t Byte = Value & 0x7f; |
| Value >>= 7; |
| if (Value != 0) |
| Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
| Hash.update(Byte); |
| } while (Value != 0); |
| } |
| |
| void DIEHash::addSLEB128(int64_t Value) { |
| DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); |
| bool More; |
| do { |
| uint8_t Byte = Value & 0x7f; |
| Value >>= 7; |
| More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) || |
| ((Value == -1) && ((Byte & 0x40) != 0)))); |
| if (More) |
| Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
| Hash.update(Byte); |
| } while (More); |
| } |
| |
| /// \brief Including \p Parent adds the context of Parent to the hash.. |
| void DIEHash::addParentContext(DIE *Parent) { |
| |
| DEBUG(dbgs() << "Adding parent context to hash...\n"); |
| |
| // [7.27.2] For each surrounding type or namespace beginning with the |
| // outermost such construct... |
| SmallVector<DIE *, 1> Parents; |
| while (Parent->getTag() != dwarf::DW_TAG_compile_unit) { |
| Parents.push_back(Parent); |
| Parent = Parent->getParent(); |
| } |
| |
| // Reverse iterate over our list to go from the outermost construct to the |
| // innermost. |
| for (SmallVectorImpl<DIE *>::reverse_iterator I = Parents.rbegin(), |
| E = Parents.rend(); |
| I != E; ++I) { |
| DIE *Die = *I; |
| |
| // ... Append the letter "C" to the sequence... |
| addULEB128('C'); |
| |
| // ... Followed by the DWARF tag of the construct... |
| addULEB128(Die->getTag()); |
| |
| // ... Then the name, taken from the DW_AT_name attribute. |
| StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); |
| DEBUG(dbgs() << "... adding context: " << Name << "\n"); |
| if (!Name.empty()) |
| addString(Name); |
| } |
| } |
| |
| // Collect all of the attributes for a particular DIE in single structure. |
| void DIEHash::collectAttributes(DIE *Die, DIEAttrs &Attrs) { |
| const SmallVectorImpl<DIEValue *> &Values = Die->getValues(); |
| const DIEAbbrev &Abbrevs = Die->getAbbrev(); |
| |
| #define COLLECT_ATTR(NAME) \ |
| case dwarf::NAME: \ |
| Attrs.NAME.Val = Values[i]; \ |
| Attrs.NAME.Desc = &Abbrevs.getData()[i]; \ |
| break |
| |
| for (size_t i = 0, e = Values.size(); i != e; ++i) { |
| DEBUG(dbgs() << "Attribute: " |
| << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) |
| << " added.\n"); |
| switch (Abbrevs.getData()[i].getAttribute()) { |
| COLLECT_ATTR(DW_AT_name); |
| COLLECT_ATTR(DW_AT_accessibility); |
| COLLECT_ATTR(DW_AT_address_class); |
| COLLECT_ATTR(DW_AT_allocated); |
| COLLECT_ATTR(DW_AT_artificial); |
| COLLECT_ATTR(DW_AT_associated); |
| COLLECT_ATTR(DW_AT_binary_scale); |
| COLLECT_ATTR(DW_AT_bit_offset); |
| COLLECT_ATTR(DW_AT_bit_size); |
| COLLECT_ATTR(DW_AT_bit_stride); |
| COLLECT_ATTR(DW_AT_byte_size); |
| COLLECT_ATTR(DW_AT_byte_stride); |
| COLLECT_ATTR(DW_AT_const_expr); |
| COLLECT_ATTR(DW_AT_const_value); |
| COLLECT_ATTR(DW_AT_containing_type); |
| COLLECT_ATTR(DW_AT_count); |
| COLLECT_ATTR(DW_AT_data_bit_offset); |
| COLLECT_ATTR(DW_AT_data_location); |
| COLLECT_ATTR(DW_AT_data_member_location); |
| COLLECT_ATTR(DW_AT_decimal_scale); |
| COLLECT_ATTR(DW_AT_decimal_sign); |
| COLLECT_ATTR(DW_AT_default_value); |
| COLLECT_ATTR(DW_AT_digit_count); |
| COLLECT_ATTR(DW_AT_discr); |
| COLLECT_ATTR(DW_AT_discr_list); |
| COLLECT_ATTR(DW_AT_discr_value); |
| COLLECT_ATTR(DW_AT_encoding); |
| COLLECT_ATTR(DW_AT_enum_class); |
| COLLECT_ATTR(DW_AT_endianity); |
| COLLECT_ATTR(DW_AT_explicit); |
| COLLECT_ATTR(DW_AT_is_optional); |
| COLLECT_ATTR(DW_AT_location); |
| COLLECT_ATTR(DW_AT_lower_bound); |
| COLLECT_ATTR(DW_AT_mutable); |
| COLLECT_ATTR(DW_AT_ordering); |
| COLLECT_ATTR(DW_AT_picture_string); |
| COLLECT_ATTR(DW_AT_prototyped); |
| COLLECT_ATTR(DW_AT_small); |
| COLLECT_ATTR(DW_AT_segment); |
| COLLECT_ATTR(DW_AT_string_length); |
| COLLECT_ATTR(DW_AT_threads_scaled); |
| COLLECT_ATTR(DW_AT_upper_bound); |
| COLLECT_ATTR(DW_AT_use_location); |
| COLLECT_ATTR(DW_AT_use_UTF8); |
| COLLECT_ATTR(DW_AT_variable_parameter); |
| COLLECT_ATTR(DW_AT_virtuality); |
| COLLECT_ATTR(DW_AT_visibility); |
| COLLECT_ATTR(DW_AT_vtable_elem_location); |
| COLLECT_ATTR(DW_AT_type); |
| default: |
| break; |
| } |
| } |
| } |
| |
| // Hash an individual attribute \param Attr based on the type of attribute and |
| // the form. |
| void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) { |
| const DIEValue *Value = Attr.Val; |
| const DIEAbbrevData *Desc = Attr.Desc; |
| |
| // 7.27 Step 3 |
| // ... An attribute that refers to another type entry T is processed as |
| // follows: |
| if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) { |
| DIE *Entry = EntryAttr->getEntry(); |
| |
| // Step 5 |
| // If the tag in Step 3 is one of ... |
| if (Tag == dwarf::DW_TAG_pointer_type) { |
| // ... and the referenced type (via the DW_AT_type or DW_AT_friend |
| // attribute) ... |
| assert(Desc->getAttribute() == dwarf::DW_AT_type || |
| Desc->getAttribute() == dwarf::DW_AT_friend); |
| // [FIXME] ... has a DW_AT_name attribute, |
| // append the letter 'N' |
| addULEB128('N'); |
| |
| // the DWARF attribute code (DW_AT_type or DW_AT_friend), |
| addULEB128(Desc->getAttribute()); |
| |
| // the context of the tag, |
| if (DIE *Parent = Entry->getParent()) |
| addParentContext(Parent); |
| |
| // the letter 'E', |
| addULEB128('E'); |
| |
| // and the name of the type. |
| addString(getDIEStringAttr(Entry, dwarf::DW_AT_name)); |
| |
| // FIXME: |
| // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, |
| // the context is omitted and the name to be used is the ABI-specific name |
| // of the subprogram (e.g., the mangled linker name). |
| return; |
| } |
| |
| unsigned &DieNumber = Numbering[Entry]; |
| if (DieNumber) { |
| // a) If T is in the list of [previously hashed types], use the letter |
| // 'R' as the marker |
| addULEB128('R'); |
| |
| addULEB128(Desc->getAttribute()); |
| |
| // and use the unsigned LEB128 encoding of [the index of T in the |
| // list] as the attribute value; |
| addULEB128(DieNumber); |
| return; |
| } |
| |
| // otherwise, b) use the letter 'T' as a the marker, ... |
| addULEB128('T'); |
| |
| addULEB128(Desc->getAttribute()); |
| |
| // ... process the type T recursively by performing Steps 2 through 7, and |
| // use the result as the attribute value. |
| DieNumber = Numbering.size(); |
| computeHash(Entry); |
| return; |
| } |
| |
| // Other attribute values use the letter 'A' as the marker, ... |
| addULEB128('A'); |
| |
| addULEB128(Desc->getAttribute()); |
| |
| // ... and the value consists of the form code (encoded as an unsigned LEB128 |
| // value) followed by the encoding of the value according to the form code. To |
| // ensure reproducibility of the signature, the set of forms used in the |
| // signature computation is limited to the following: DW_FORM_sdata, |
| // DW_FORM_flag, DW_FORM_string, and DW_FORM_block. |
| switch (Desc->getForm()) { |
| case dwarf::DW_FORM_string: |
| llvm_unreachable( |
| "Add support for DW_FORM_string if we ever start emitting them again"); |
| case dwarf::DW_FORM_GNU_str_index: |
| case dwarf::DW_FORM_strp: |
| addULEB128(dwarf::DW_FORM_string); |
| addString(cast<DIEString>(Value)->getString()); |
| break; |
| case dwarf::DW_FORM_data1: |
| case dwarf::DW_FORM_data2: |
| case dwarf::DW_FORM_data4: |
| case dwarf::DW_FORM_data8: |
| case dwarf::DW_FORM_udata: |
| addULEB128(dwarf::DW_FORM_sdata); |
| addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue()); |
| break; |
| default: |
| llvm_unreachable("Add support for additional forms"); |
| } |
| } |
| |
| // Go through the attributes from \param Attrs in the order specified in 7.27.4 |
| // and hash them. |
| void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { |
| #define ADD_ATTR(ATTR) \ |
| { \ |
| if (ATTR.Val != 0) \ |
| hashAttribute(ATTR, Tag); \ |
| } |
| |
| ADD_ATTR(Attrs.DW_AT_name); |
| ADD_ATTR(Attrs.DW_AT_accessibility); |
| ADD_ATTR(Attrs.DW_AT_address_class); |
| ADD_ATTR(Attrs.DW_AT_allocated); |
| ADD_ATTR(Attrs.DW_AT_artificial); |
| ADD_ATTR(Attrs.DW_AT_associated); |
| ADD_ATTR(Attrs.DW_AT_binary_scale); |
| ADD_ATTR(Attrs.DW_AT_bit_offset); |
| ADD_ATTR(Attrs.DW_AT_bit_size); |
| ADD_ATTR(Attrs.DW_AT_bit_stride); |
| ADD_ATTR(Attrs.DW_AT_byte_size); |
| ADD_ATTR(Attrs.DW_AT_byte_stride); |
| ADD_ATTR(Attrs.DW_AT_const_expr); |
| ADD_ATTR(Attrs.DW_AT_const_value); |
| ADD_ATTR(Attrs.DW_AT_containing_type); |
| ADD_ATTR(Attrs.DW_AT_count); |
| ADD_ATTR(Attrs.DW_AT_data_bit_offset); |
| ADD_ATTR(Attrs.DW_AT_data_location); |
| ADD_ATTR(Attrs.DW_AT_data_member_location); |
| ADD_ATTR(Attrs.DW_AT_decimal_scale); |
| ADD_ATTR(Attrs.DW_AT_decimal_sign); |
| ADD_ATTR(Attrs.DW_AT_default_value); |
| ADD_ATTR(Attrs.DW_AT_digit_count); |
| ADD_ATTR(Attrs.DW_AT_discr); |
| ADD_ATTR(Attrs.DW_AT_discr_list); |
| ADD_ATTR(Attrs.DW_AT_discr_value); |
| ADD_ATTR(Attrs.DW_AT_encoding); |
| ADD_ATTR(Attrs.DW_AT_enum_class); |
| ADD_ATTR(Attrs.DW_AT_endianity); |
| ADD_ATTR(Attrs.DW_AT_explicit); |
| ADD_ATTR(Attrs.DW_AT_is_optional); |
| ADD_ATTR(Attrs.DW_AT_location); |
| ADD_ATTR(Attrs.DW_AT_lower_bound); |
| ADD_ATTR(Attrs.DW_AT_mutable); |
| ADD_ATTR(Attrs.DW_AT_ordering); |
| ADD_ATTR(Attrs.DW_AT_picture_string); |
| ADD_ATTR(Attrs.DW_AT_prototyped); |
| ADD_ATTR(Attrs.DW_AT_small); |
| ADD_ATTR(Attrs.DW_AT_segment); |
| ADD_ATTR(Attrs.DW_AT_string_length); |
| ADD_ATTR(Attrs.DW_AT_threads_scaled); |
| ADD_ATTR(Attrs.DW_AT_upper_bound); |
| ADD_ATTR(Attrs.DW_AT_use_location); |
| ADD_ATTR(Attrs.DW_AT_use_UTF8); |
| ADD_ATTR(Attrs.DW_AT_variable_parameter); |
| ADD_ATTR(Attrs.DW_AT_virtuality); |
| ADD_ATTR(Attrs.DW_AT_visibility); |
| ADD_ATTR(Attrs.DW_AT_vtable_elem_location); |
| ADD_ATTR(Attrs.DW_AT_type); |
| |
| // FIXME: Add the extended attributes. |
| } |
| |
| // Add all of the attributes for \param Die to the hash. |
| void DIEHash::addAttributes(DIE *Die) { |
| DIEAttrs Attrs = {}; |
| collectAttributes(Die, Attrs); |
| hashAttributes(Attrs, Die->getTag()); |
| } |
| |
| // Compute the hash of a DIE. This is based on the type signature computation |
| // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a |
| // flattened description of the DIE. |
| void DIEHash::computeHash(DIE *Die) { |
| // Append the letter 'D', followed by the DWARF tag of the DIE. |
| addULEB128('D'); |
| addULEB128(Die->getTag()); |
| |
| // Add each of the attributes of the DIE. |
| addAttributes(Die); |
| |
| // Then hash each of the children of the DIE. |
| for (std::vector<DIE *>::const_iterator I = Die->getChildren().begin(), |
| E = Die->getChildren().end(); |
| I != E; ++I) |
| computeHash(*I); |
| |
| // Following the last (or if there are no children), append a zero byte. |
| Hash.update(makeArrayRef((uint8_t)'\0')); |
| } |
| |
| /// This is based on the type signature computation given in section 7.27 of the |
| /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE |
| /// with the exception that we are hashing only the context and the name of the |
| /// type. |
| uint64_t DIEHash::computeDIEODRSignature(DIE *Die) { |
| |
| // Add the contexts to the hash. We won't be computing the ODR hash for |
| // function local types so it's safe to use the generic context hashing |
| // algorithm here. |
| // FIXME: If we figure out how to account for linkage in some way we could |
| // actually do this with a slight modification to the parent hash algorithm. |
| DIE *Parent = Die->getParent(); |
| if (Parent) |
| addParentContext(Parent); |
| |
| // Add the current DIE information. |
| |
| // Add the DWARF tag of the DIE. |
| addULEB128(Die->getTag()); |
| |
| // Add the name of the type to the hash. |
| addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); |
| |
| // Now get the result. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, swap bytes |
| // appropriately. |
| return *reinterpret_cast<support::ulittle64_t *>(Result + 8); |
| } |
| |
| /// This is based on the type signature computation given in section 7.27 of the |
| /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
| /// with the inclusion of the full CU and all top level CU entities. |
| // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. |
| uint64_t DIEHash::computeCUSignature(DIE *Die) { |
| Numbering.clear(); |
| Numbering[Die] = 1; |
| |
| // Hash the DIE. |
| computeHash(Die); |
| |
| // Now return the result. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, swap bytes |
| // appropriately. |
| return *reinterpret_cast<support::ulittle64_t *>(Result + 8); |
| } |
| |
| /// This is based on the type signature computation given in section 7.27 of the |
| /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
| /// with the inclusion of additional forms not specifically called out in the |
| /// standard. |
| uint64_t DIEHash::computeTypeSignature(DIE *Die) { |
| Numbering.clear(); |
| Numbering[Die] = 1; |
| |
| if (DIE *Parent = Die->getParent()) |
| addParentContext(Parent); |
| |
| // Hash the DIE. |
| computeHash(Die); |
| |
| // Now return the result. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, swap bytes |
| // appropriately. |
| return *reinterpret_cast<support::ulittle64_t *>(Result + 8); |
| } |