It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
new file mode 100644
index 0000000..086dca8
--- /dev/null
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -0,0 +1,1226 @@
+//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Bitcode/BitstreamWriter.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+/// These are manifest constants used by the bitcode writer. They do not need to
+/// be kept in sync with the reader, but need to be consistent within this file.
+enum {
+ CurVersion = 0,
+
+ // VALUE_SYMTAB_BLOCK abbrev id's.
+ VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ VST_ENTRY_7_ABBREV,
+ VST_ENTRY_6_ABBREV,
+ VST_BBENTRY_6_ABBREV,
+
+ // CONSTANTS_BLOCK abbrev id's.
+ CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ CONSTANTS_INTEGER_ABBREV,
+ CONSTANTS_CE_CAST_Abbrev,
+ CONSTANTS_NULL_Abbrev,
+
+ // FUNCTION_BLOCK abbrev id's.
+ FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_CAST_ABBREV,
+ FUNCTION_INST_RET_VOID_ABBREV,
+ FUNCTION_INST_RET_VAL_ABBREV,
+ FUNCTION_INST_UNREACHABLE_ABBREV
+};
+
+
+static unsigned GetEncodedCastOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown cast instruction!");
+ case Instruction::Trunc : return bitc::CAST_TRUNC;
+ case Instruction::ZExt : return bitc::CAST_ZEXT;
+ case Instruction::SExt : return bitc::CAST_SEXT;
+ case Instruction::FPToUI : return bitc::CAST_FPTOUI;
+ case Instruction::FPToSI : return bitc::CAST_FPTOSI;
+ case Instruction::UIToFP : return bitc::CAST_UITOFP;
+ case Instruction::SIToFP : return bitc::CAST_SITOFP;
+ case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
+ case Instruction::FPExt : return bitc::CAST_FPEXT;
+ case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
+ case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
+ case Instruction::BitCast : return bitc::CAST_BITCAST;
+ }
+}
+
+static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown binary instruction!");
+ case Instruction::Add: return bitc::BINOP_ADD;
+ case Instruction::Sub: return bitc::BINOP_SUB;
+ case Instruction::Mul: return bitc::BINOP_MUL;
+ case Instruction::UDiv: return bitc::BINOP_UDIV;
+ case Instruction::FDiv:
+ case Instruction::SDiv: return bitc::BINOP_SDIV;
+ case Instruction::URem: return bitc::BINOP_UREM;
+ case Instruction::FRem:
+ case Instruction::SRem: return bitc::BINOP_SREM;
+ case Instruction::Shl: return bitc::BINOP_SHL;
+ case Instruction::LShr: return bitc::BINOP_LSHR;
+ case Instruction::AShr: return bitc::BINOP_ASHR;
+ case Instruction::And: return bitc::BINOP_AND;
+ case Instruction::Or: return bitc::BINOP_OR;
+ case Instruction::Xor: return bitc::BINOP_XOR;
+ }
+}
+
+
+
+static void WriteStringRecord(unsigned Code, const std::string &Str,
+ unsigned AbbrevToUse, BitstreamWriter &Stream) {
+ SmallVector<unsigned, 64> Vals;
+
+ // Code: [strchar x N]
+ for (unsigned i = 0, e = Str.size(); i != e; ++i)
+ Vals.push_back(Str[i]);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+// Emit information about parameter attributes.
+static void WriteParamAttrTable(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs();
+ if (Attrs.empty()) return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+ const ParamAttrsList *A = Attrs[i];
+ for (unsigned op = 0, e = A->size(); op != e; ++op) {
+ Record.push_back(A->getParamIndex(op));
+ Record.push_back(A->getParamAttrsAtIndex(op));
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+ Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
+ SmallVector<uint64_t, 64> TypeVals;
+
+ // Abbrev for TYPE_CODE_POINTER.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_FUNCTION.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getParamAttrs().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_STRUCT.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for TYPE_CODE_ARRAY.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Emit an entry count so the reader can reserve space.
+ TypeVals.push_back(TypeList.size());
+ Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+ TypeVals.clear();
+
+ // Loop over all of the types, emitting each in turn.
+ for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
+ const Type *T = TypeList[i].first;
+ int AbbrevToUse = 0;
+ unsigned Code = 0;
+
+ switch (T->getTypeID()) {
+ default: assert(0 && "Unknown type!");
+ case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
+ case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
+ case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
+ case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
+ case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
+ case Type::IntegerTyID:
+ // INTEGER: [width]
+ Code = bitc::TYPE_CODE_INTEGER;
+ TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+ break;
+ case Type::PointerTyID:
+ // POINTER: [pointee type]
+ Code = bitc::TYPE_CODE_POINTER;
+ TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType()));
+ AbbrevToUse = PtrAbbrev;
+ break;
+
+ case Type::FunctionTyID: {
+ const FunctionType *FT = cast<FunctionType>(T);
+ // FUNCTION: [isvararg, attrid, retty, paramty x N]
+ Code = bitc::TYPE_CODE_FUNCTION;
+ TypeVals.push_back(FT->isVarArg());
+ TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs()));
+ TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
+ TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
+ AbbrevToUse = FunctionAbbrev;
+ break;
+ }
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(T);
+ // STRUCT: [ispacked, eltty x N]
+ Code = bitc::TYPE_CODE_STRUCT;
+ TypeVals.push_back(ST->isPacked());
+ // Output all of the element types.
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end(); I != E; ++I)
+ TypeVals.push_back(VE.getTypeID(*I));
+ AbbrevToUse = StructAbbrev;
+ break;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(T);
+ // ARRAY: [numelts, eltty]
+ Code = bitc::TYPE_CODE_ARRAY;
+ TypeVals.push_back(AT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(AT->getElementType()));
+ AbbrevToUse = ArrayAbbrev;
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(T);
+ // VECTOR [numelts, eltty]
+ Code = bitc::TYPE_CODE_VECTOR;
+ TypeVals.push_back(VT->getNumElements());
+ TypeVals.push_back(VE.getTypeID(VT->getElementType()));
+ break;
+ }
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+ TypeVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static unsigned getEncodedLinkage(const GlobalValue *GV) {
+ switch (GV->getLinkage()) {
+ default: assert(0 && "Invalid linkage!");
+ case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
+ case GlobalValue::ExternalLinkage: return 0;
+ case GlobalValue::WeakLinkage: return 1;
+ case GlobalValue::AppendingLinkage: return 2;
+ case GlobalValue::InternalLinkage: return 3;
+ case GlobalValue::LinkOnceLinkage: return 4;
+ case GlobalValue::DLLImportLinkage: return 5;
+ case GlobalValue::DLLExportLinkage: return 6;
+ case GlobalValue::ExternalWeakLinkage: return 7;
+ }
+}
+
+static unsigned getEncodedVisibility(const GlobalValue *GV) {
+ switch (GV->getVisibility()) {
+ default: assert(0 && "Invalid visibility!");
+ case GlobalValue::DefaultVisibility: return 0;
+ case GlobalValue::HiddenVisibility: return 1;
+ case GlobalValue::ProtectedVisibility: return 2;
+ }
+}
+
+// Emit top-level description of module, including target triple, inline asm,
+// descriptors for global variables, and function prototype info.
+static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ // Emit the list of dependent libraries for the Module.
+ for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
+ WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
+
+ // Emit various pieces of data attached to a module.
+ if (!M->getTargetTriple().empty())
+ WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
+ 0/*TODO*/, Stream);
+ if (!M->getDataLayout().empty())
+ WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
+ 0/*TODO*/, Stream);
+ if (!M->getModuleInlineAsm().empty())
+ WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
+ 0/*TODO*/, Stream);
+
+ // Emit information about sections, computing how many there are. Also
+ // compute the maximum alignment value.
+ std::map<std::string, unsigned> SectionMap;
+ unsigned MaxAlignment = 0;
+ unsigned MaxGlobalType = 0;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
+ MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
+
+ if (!GV->hasSection()) continue;
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[GV->getSection()];
+ if (Entry != 0) continue;
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ MaxAlignment = std::max(MaxAlignment, F->getAlignment());
+ if (!F->hasSection()) continue;
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[F->getSection()];
+ if (Entry != 0) continue;
+ WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
+ 0/*TODO*/, Stream);
+ Entry = SectionMap.size();
+ }
+
+ // Emit abbrev for globals, now that we know # sections and max alignment.
+ unsigned SimpleGVarAbbrev = 0;
+ if (!M->global_empty()) {
+ // Add an abbrev for common globals with no visibility or thread localness.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxGlobalType+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage.
+ if (MaxAlignment == 0) // Alignment.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else {
+ unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxEncAlignment+1)));
+ }
+ if (SectionMap.empty()) // Section.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(SectionMap.size()+1)));
+ // Don't bother emitting vis + thread local.
+ SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ // Emit the global variable information.
+ SmallVector<unsigned, 64> Vals;
+ for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
+ GV != E; ++GV) {
+ unsigned AbbrevToUse = 0;
+
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal]
+ Vals.push_back(VE.getTypeID(GV->getType()));
+ Vals.push_back(GV->isConstant());
+ Vals.push_back(GV->isDeclaration() ? 0 :
+ (VE.getValueID(GV->getInitializer()) + 1));
+ Vals.push_back(getEncodedLinkage(GV));
+ Vals.push_back(Log2_32(GV->getAlignment())+1);
+ Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
+ if (GV->isThreadLocal() ||
+ GV->getVisibility() != GlobalValue::DefaultVisibility) {
+ Vals.push_back(getEncodedVisibility(GV));
+ Vals.push_back(GV->isThreadLocal());
+ } else {
+ AbbrevToUse = SimpleGVarAbbrev;
+ }
+
+ Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the function proto information.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+ // FUNCTION: [type, callingconv, isproto, linkage, alignment, section,
+ // visibility]
+ Vals.push_back(VE.getTypeID(F->getType()));
+ Vals.push_back(F->getCallingConv());
+ Vals.push_back(F->isDeclaration());
+ Vals.push_back(getEncodedLinkage(F));
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(F->getFunctionType()->getParamAttrs()));
+
+ Vals.push_back(Log2_32(F->getAlignment())+1);
+ Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
+ Vals.push_back(getEncodedVisibility(F));
+
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+
+ // Emit the alias information.
+ for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
+ AI != E; ++AI) {
+ Vals.push_back(VE.getTypeID(AI->getType()));
+ Vals.push_back(VE.getValueID(AI->getAliasee()));
+ Vals.push_back(getEncodedLinkage(AI));
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+}
+
+
+static void WriteConstants(unsigned FirstVal, unsigned LastVal,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream, bool isGlobal) {
+ if (FirstVal == LastVal) return;
+
+ Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+ unsigned AggregateAbbrev = 0;
+ unsigned String8Abbrev = 0;
+ unsigned CString7Abbrev = 0;
+ unsigned CString6Abbrev = 0;
+ // If this is a constant pool for the module, emit module-specific abbrevs.
+ if (isGlobal) {
+ // Abbrev for CST_CODE_AGGREGATE.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
+ AggregateAbbrev = Stream.EmitAbbrev(Abbv);
+
+ // Abbrev for CST_CODE_STRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ String8Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ CString7Abbrev = Stream.EmitAbbrev(Abbv);
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ CString6Abbrev = Stream.EmitAbbrev(Abbv);
+ }
+
+ SmallVector<uint64_t, 64> Record;
+
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+ const Type *LastTy = 0;
+ for (unsigned i = FirstVal; i != LastVal; ++i) {
+ const Value *V = Vals[i].first;
+ // If we need to switch types, do so now.
+ if (V->getType() != LastTy) {
+ LastTy = V->getType();
+ Record.push_back(VE.getTypeID(LastTy));
+ Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+ CONSTANTS_SETTYPE_ABBREV);
+ Record.clear();
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Record.push_back(unsigned(IA->hasSideEffects()));
+
+ // Add the asm string.
+ const std::string &AsmStr = IA->getAsmString();
+ Record.push_back(AsmStr.size());
+ for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
+ Record.push_back(AsmStr[i]);
+
+ // Add the constraint string.
+ const std::string &ConstraintStr = IA->getConstraintString();
+ Record.push_back(ConstraintStr.size());
+ for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
+ Record.push_back(ConstraintStr[i]);
+ Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+ Record.clear();
+ continue;
+ }
+ const Constant *C = cast<Constant>(V);
+ unsigned Code = -1U;
+ unsigned AbbrevToUse = 0;
+ if (C->isNullValue()) {
+ Code = bitc::CST_CODE_NULL;
+ } else if (isa<UndefValue>(C)) {
+ Code = bitc::CST_CODE_UNDEF;
+ } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+ if (IV->getBitWidth() <= 64) {
+ int64_t V = IV->getSExtValue();
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ Code = bitc::CST_CODE_INTEGER;
+ AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+ } else { // Wide integers, > 64 bits in size.
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NWords = IV->getValue().getActiveWords();
+ const uint64_t *RawWords = IV->getValue().getRawData();
+ for (unsigned i = 0; i != NWords; ++i) {
+ int64_t V = RawWords[i];
+ if (V >= 0)
+ Record.push_back(V << 1);
+ else
+ Record.push_back((-V << 1) | 1);
+ }
+ Code = bitc::CST_CODE_WIDE_INTEGER;
+ }
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Code = bitc::CST_CODE_FLOAT;
+ if (CFP->getType() == Type::FloatTy) {
+ Record.push_back(FloatToBits((float)CFP->getValue()));
+ } else {
+ assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!");
+ Record.push_back(DoubleToBits((double)CFP->getValue()));
+ }
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Emit constant strings specially.
+ unsigned NumOps = C->getNumOperands();
+ // If this is a null-terminated string, use the denser CSTRING encoding.
+ if (C->getOperand(NumOps-1)->isNullValue()) {
+ Code = bitc::CST_CODE_CSTRING;
+ --NumOps; // Don't encode the null, which isn't allowed by char6.
+ } else {
+ Code = bitc::CST_CODE_STRING;
+ AbbrevToUse = String8Abbrev;
+ }
+ bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+ bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
+ Record.push_back(V);
+ isCStr7 &= (V & 128) == 0;
+ if (isCStrChar6)
+ isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+ }
+
+ if (isCStrChar6)
+ AbbrevToUse = CString6Abbrev;
+ else if (isCStr7)
+ AbbrevToUse = CString7Abbrev;
+ } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
+ isa<ConstantVector>(V)) {
+ Code = bitc::CST_CODE_AGGREGATE;
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ AbbrevToUse = AggregateAbbrev;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ switch (CE->getOpcode()) {
+ default:
+ if (Instruction::isCast(CE->getOpcode())) {
+ Code = bitc::CST_CODE_CE_CAST;
+ Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+ } else {
+ assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+ Code = bitc::CST_CODE_CE_BINOP;
+ Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ }
+ break;
+ case Instruction::GetElementPtr:
+ Code = bitc::CST_CODE_CE_GEP;
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+ Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ }
+ break;
+ case Instruction::Select:
+ Code = bitc::CST_CODE_CE_SELECT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::CST_CODE_CE_EXTRACTELT;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::CST_CODE_CE_INSERTELT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::CST_CODE_CE_CMP;
+ Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(CE->getPredicate());
+ break;
+ }
+ } else {
+ assert(0 && "Unknown constant!");
+ }
+ Stream.EmitRecord(Code, Record, AbbrevToUse);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+static void WriteModuleConstants(const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+ // Find the first constant to emit, which is the first non-globalvalue value.
+ // We know globalvalues have been emitted by WriteModuleInfo.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (!isa<GlobalValue>(Vals[i].first)) {
+ WriteConstants(i, Vals.size(), VE, Stream, true);
+ return;
+ }
+ }
+}
+
+/// PushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references. However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals. If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID.
+static bool PushValueAndType(Value *V, unsigned InstID,
+ SmallVector<unsigned, 64> &Vals,
+ ValueEnumerator &VE) {
+ unsigned ValID = VE.getValueID(V);
+ Vals.push_back(ValID);
+ if (ValID >= InstID) {
+ Vals.push_back(VE.getTypeID(V->getType()));
+ return true;
+ }
+ return false;
+}
+
+/// WriteInstruction - Emit an instruction to the specified stream.
+static void WriteInstruction(const Instruction &I, unsigned InstID,
+ ValueEnumerator &VE, BitstreamWriter &Stream,
+ SmallVector<unsigned, 64> &Vals) {
+ unsigned Code = 0;
+ unsigned AbbrevToUse = 0;
+ switch (I.getOpcode()) {
+ default:
+ if (Instruction::isCast(I.getOpcode())) {
+ Code = bitc::FUNC_CODE_INST_CAST;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
+ } else {
+ assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+ Code = bitc::FUNC_CODE_INST_BINOP;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
+ }
+ break;
+
+ case Instruction::GetElementPtr:
+ Code = bitc::FUNC_CODE_INST_GEP;
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE);
+ break;
+ case Instruction::Select:
+ Code = bitc::FUNC_CODE_INST_SELECT;
+ PushValueAndType(I.getOperand(1), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ Vals.push_back(VE.getValueID(I.getOperand(0)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::FUNC_CODE_INST_INSERTELT;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::FUNC_CODE_INST_CMP;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(cast<CmpInst>(I).getPredicate());
+ break;
+
+ case Instruction::Ret:
+ Code = bitc::FUNC_CODE_INST_RET;
+ if (!I.getNumOperands())
+ AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
+ else if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
+ AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
+ break;
+ case Instruction::Br:
+ Code = bitc::FUNC_CODE_INST_BR;
+ Vals.push_back(VE.getValueID(I.getOperand(0)));
+ if (cast<BranchInst>(I).isConditional()) {
+ Vals.push_back(VE.getValueID(I.getOperand(1)));
+ Vals.push_back(VE.getValueID(I.getOperand(2)));
+ }
+ break;
+ case Instruction::Switch:
+ Code = bitc::FUNC_CODE_INST_SWITCH;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+ case Instruction::Invoke: {
+ const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ Code = bitc::FUNC_CODE_INST_INVOKE;
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
+
+ Vals.push_back(cast<InvokeInst>(I).getCallingConv());
+ Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest
+ Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
+ }
+ break;
+ }
+ case Instruction::Unwind:
+ Code = bitc::FUNC_CODE_INST_UNWIND;
+ break;
+ case Instruction::Unreachable:
+ Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+ AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
+ break;
+
+ case Instruction::PHI:
+ Code = bitc::FUNC_CODE_INST_PHI;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+
+ case Instruction::Malloc:
+ Code = bitc::FUNC_CODE_INST_MALLOC;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Free:
+ Code = bitc::FUNC_CODE_INST_FREE;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE);
+ break;
+
+ case Instruction::Alloca:
+ Code = bitc::FUNC_CODE_INST_ALLOCA;
+ Vals.push_back(VE.getTypeID(I.getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
+ break;
+
+ case Instruction::Load:
+ Code = bitc::FUNC_CODE_INST_LOAD;
+ if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
+ AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
+
+ Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
+ Vals.push_back(cast<LoadInst>(I).isVolatile());
+ break;
+ case Instruction::Store:
+ Code = bitc::FUNC_CODE_INST_STORE;
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val.
+ Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr.
+ Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
+ Vals.push_back(cast<StoreInst>(I).isVolatile());
+ break;
+ case Instruction::Call: {
+ const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
+ const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+
+ Code = bitc::FUNC_CODE_INST_CALL;
+
+ // Note: we emit the param attr ID number for the function type of this
+ // function. In the future, we intend for attrs to be properties of
+ // functions, instead of on the type. This is to support this future work.
+ Vals.push_back(VE.getParamAttrID(FTy->getParamAttrs()));
+
+ Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) |
+ unsigned(cast<CallInst>(I).isTailCall()));
+ PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
+ for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
+ i != e; ++i)
+ PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
+ }
+ break;
+ }
+ case Instruction::VAArg:
+ Code = bitc::FUNC_CODE_INST_VAARG;
+ Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
+ Vals.push_back(VE.getTypeID(I.getType())); // restype.
+ break;
+ }
+
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+ Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+static void WriteValueSymbolTable(const ValueSymbolTable &VST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (VST.empty()) return;
+ Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+ // FIXME: Set up the abbrev, we know how many values there are!
+ // FIXME: We know if the type names can use 7-bit ascii.
+ SmallVector<unsigned, 64> NameVals;
+
+ for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
+ SI != SE; ++SI) {
+
+ const ValueName &Name = *SI;
+
+ // Figure out the encoding to use for the name.
+ bool is7Bit = true;
+ bool isChar6 = true;
+ for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
+ C != E; ++C) {
+ if (isChar6)
+ isChar6 = BitCodeAbbrevOp::isChar6(*C);
+ if ((unsigned char)*C & 128) {
+ is7Bit = false;
+ break; // don't bother scanning the rest.
+ }
+ }
+
+ unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+ // VST_ENTRY: [valueid, namechar x N]
+ // VST_BBENTRY: [bbid, namechar x N]
+ unsigned Code;
+ if (isa<BasicBlock>(SI->getValue())) {
+ Code = bitc::VST_CODE_BBENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_BBENTRY_6_ABBREV;
+ } else {
+ Code = bitc::VST_CODE_ENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_ENTRY_6_ABBREV;
+ else if (is7Bit)
+ AbbrevToUse = VST_ENTRY_7_ABBREV;
+ }
+
+ NameVals.push_back(VE.getValueID(SI->getValue()));
+ for (const char *P = Name.getKeyData(),
+ *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
+ NameVals.push_back((unsigned char)*P);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+ NameVals.clear();
+ }
+ Stream.ExitBlock();
+}
+
+/// WriteFunction - Emit a function body to the module stream.
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+ VE.incorporateFunction(F);
+
+ SmallVector<unsigned, 64> Vals;
+
+ // Emit the number of basic blocks, so the reader can create them ahead of
+ // time.
+ Vals.push_back(VE.getBasicBlocks().size());
+ Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+ Vals.clear();
+
+ // If there are function-local constants, emit them now.
+ unsigned CstStart, CstEnd;
+ VE.getFunctionConstantRange(CstStart, CstEnd);
+ WriteConstants(CstStart, CstEnd, VE, Stream, false);
+
+ // Keep a running idea of what the instruction ID is.
+ unsigned InstID = CstEnd;
+
+ // Finally, emit all the instructions, in order.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
+ I != E; ++I) {
+ WriteInstruction(*I, InstID, VE, Stream, Vals);
+ if (I->getType() != Type::VoidTy)
+ ++InstID;
+ }
+
+ // Emit names for all the instructions etc.
+ WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
+
+ VE.purgeFunction();
+ Stream.ExitBlock();
+}
+
+/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
+static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+ if (TST.empty()) return;
+
+ Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
+
+ // 7-bit fixed width VST_CODE_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
+
+ SmallVector<unsigned, 64> NameVals;
+
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI) {
+ // TST_ENTRY: [typeid, namechar x N]
+ NameVals.push_back(VE.getTypeID(TI->second));
+
+ const std::string &Str = TI->first;
+ bool is7Bit = true;
+ for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+ NameVals.push_back((unsigned char)Str[i]);
+ if (Str[i] & 128)
+ is7Bit = false;
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
+ NameVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
+ // We only want to emit block info records for blocks that have multiple
+ // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
+ // blocks can defined their abbrevs inline.
+ Stream.EnterBlockInfoBlock(2);
+
+ { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_8_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // 7-bit fixed width VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_7_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_ENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_ENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_BBENTRY strings.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ Abbv) != VST_BBENTRY_6_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+
+
+ { // SETTYPE abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_SETTYPE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INTEGER abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_INTEGER_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // CE_CAST abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_CE_CAST_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // NULL abbrev for CONSTANTS_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
+ Abbv) != CONSTANTS_NULL_Abbrev)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ // FIXME: This should only use space for first class types!
+
+ { // INST_LOAD abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_LOAD_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_BINOP_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_CAST abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ Log2_32_Ceil(VE.getTypes().size()+1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_CAST_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+ { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+ BitCodeAbbrev *Abbv = new BitCodeAbbrev();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
+ Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
+ assert(0 && "Unexpected abbrev ordering!");
+ }
+
+ Stream.ExitBlock();
+}
+
+
+/// WriteModule - Emit the specified module to the bitstream.
+static void WriteModule(const Module *M, BitstreamWriter &Stream) {
+ Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+ // Emit the version number if it is non-zero.
+ if (CurVersion) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(CurVersion);
+ Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
+ }
+
+ // Analyze the module, enumerating globals, functions, etc.
+ ValueEnumerator VE(M);
+
+ // Emit blockinfo, which defines the standard abbreviations etc.
+ WriteBlockInfo(VE, Stream);
+
+ // Emit information about parameter attributes.
+ WriteParamAttrTable(VE, Stream);
+
+ // Emit information describing all of the types in the module.
+ WriteTypeTable(VE, Stream);
+
+ // Emit top-level description of module, including target triple, inline asm,
+ // descriptors for global variables, and function prototype info.
+ WriteModuleInfo(M, VE, Stream);
+
+ // Emit constants.
+ WriteModuleConstants(VE, Stream);
+
+ // If we have any aggregate values in the value table, purge them - these can
+ // only be used to initialize global variables. Doing so makes the value
+ // namespace smaller for code in functions.
+ int NumNonAggregates = VE.PurgeAggregateValues();
+ if (NumNonAggregates != -1) {
+ SmallVector<unsigned, 1> Vals;
+ Vals.push_back(NumNonAggregates);
+ Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
+ }
+
+ // Emit function bodies.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ if (!I->isDeclaration())
+ WriteFunction(*I, VE, Stream);
+
+ // Emit the type symbol table information.
+ WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
+
+ // Emit names for globals/functions etc.
+ WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
+
+ Stream.ExitBlock();
+}
+
+
+/// WriteBitcodeToFile - Write the specified module to the specified output
+/// stream.
+void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
+ std::vector<unsigned char> Buffer;
+ BitstreamWriter Stream(Buffer);
+
+ Buffer.reserve(256*1024);
+
+ // Emit the file header.
+ Stream.Emit((unsigned)'B', 8);
+ Stream.Emit((unsigned)'C', 8);
+ Stream.Emit(0x0, 4);
+ Stream.Emit(0xC, 4);
+ Stream.Emit(0xE, 4);
+ Stream.Emit(0xD, 4);
+
+ // Emit the module.
+ WriteModule(M, Stream);
+
+ // Write the generated bitstream to "Out".
+ Out.write((char*)&Buffer.front(), Buffer.size());
+
+ // Make sure it hits disk now.
+ Out.flush();
+}
diff --git a/lib/Bitcode/Writer/BitcodeWriterPass.cpp b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
new file mode 100644
index 0000000..7412311
--- /dev/null
+++ b/lib/Bitcode/Writer/BitcodeWriterPass.cpp
@@ -0,0 +1,43 @@
+//===--- Bitcode/Writer/BitcodeWriterPass.cpp - Bitcode Writer ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// BitcodeWriterPass implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/ReaderWriter.h"
+#include "llvm/Pass.h"
+using namespace llvm;
+
+namespace {
+ class WriteBitcodePass : public ModulePass {
+ std::ostream *Out; // ostream to print on
+ public:
+ static char ID; // Pass identifcation, replacement for typeid
+ WriteBitcodePass() : ModulePass((intptr_t) &ID), Out(0) { }
+ WriteBitcodePass(std::ostream &o) : ModulePass((intptr_t) &ID), Out(&o) {}
+
+ bool runOnModule(Module &M) {
+ if (Out)
+ WriteBitcodeToFile(&M, *Out);
+ return false;
+ }
+ };
+}
+
+char WriteBitcodePass::ID = 0;
+static RegisterPass<WriteBitcodePass> X("emitbitcode", "Bitcode Writer");
+
+/// CreateBitcodeWriterPass - Create and return a pass that writes the module
+/// to the specified ostream.
+ModulePass *llvm::CreateBitcodeWriterPass(std::ostream &Str) {
+ return new WriteBitcodePass(Str);
+}
+
+
diff --git a/lib/Bitcode/Writer/Makefile b/lib/Bitcode/Writer/Makefile
new file mode 100644
index 0000000..c87387a
--- /dev/null
+++ b/lib/Bitcode/Writer/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Bitcode/Reader/Makefile -------------------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file was developed by Chris Lattner and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMBitWriter
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp
new file mode 100644
index 0000000..6b3885e
--- /dev/null
+++ b/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -0,0 +1,320 @@
+//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ValueEnumerator.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include <algorithm>
+using namespace llvm;
+
+static bool isFirstClassType(const std::pair<const llvm::Type*,
+ unsigned int> &P) {
+ return P.first->isFirstClassType();
+}
+
+static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
+ return isa<IntegerType>(V.first->getType());
+}
+
+static bool CompareByFrequency(const std::pair<const llvm::Type*,
+ unsigned int> &P1,
+ const std::pair<const llvm::Type*,
+ unsigned int> &P2) {
+ return P1.second > P2.second;
+}
+
+/// ValueEnumerator - Enumerate module-level information.
+ValueEnumerator::ValueEnumerator(const Module *M) {
+ // Enumerate the global variables.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ EnumerateValue(I);
+
+ // Enumerate the functions.
+ for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+ EnumerateValue(I);
+
+ // Enumerate the aliases.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ // Remember what is the cutoff between globalvalue's and other constants.
+ unsigned FirstConstant = Values.size();
+
+ // Enumerate the global variable initializers.
+ for (Module::const_global_iterator I = M->global_begin(),
+ E = M->global_end(); I != E; ++I)
+ if (I->hasInitializer())
+ EnumerateValue(I->getInitializer());
+
+ // Enumerate the aliasees.
+ for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
+ I != E; ++I)
+ EnumerateValue(I->getAliasee());
+
+ // Enumerate types used by the type symbol table.
+ EnumerateTypeSymbolTable(M->getTypeSymbolTable());
+
+ // Insert constants that are named at module level into the slot pool so that
+ // the module symbol table can refer to them...
+ EnumerateValueSymbolTable(M->getValueSymbolTable());
+
+ // Enumerate types used by function bodies and argument lists.
+ for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
+
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ EnumerateType(I->getType());
+
+ for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI)
+ EnumerateOperandType(*OI);
+ EnumerateType(I->getType());
+ }
+ }
+
+ // Optimize constant ordering.
+ OptimizeConstants(FirstConstant, Values.size());
+
+ // Sort the type table by frequency so that most commonly used types are early
+ // in the table (have low bit-width).
+ std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
+
+ // Partition the Type ID's so that the first-class types occur before the
+ // aggregate types. This allows the aggregate types to be dropped from the
+ // type table after parsing the global variable initializers.
+ std::partition(Types.begin(), Types.end(), isFirstClassType);
+
+ // Now that we rearranged the type table, rebuild TypeMap.
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ TypeMap[Types[i].first] = i+1;
+}
+
+// Optimize constant ordering.
+struct CstSortPredicate {
+ ValueEnumerator &VE;
+ CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
+ bool operator()(const std::pair<const Value*, unsigned> &LHS,
+ const std::pair<const Value*, unsigned> &RHS) {
+ // Sort by plane.
+ if (LHS.first->getType() != RHS.first->getType())
+ return VE.getTypeID(LHS.first->getType()) <
+ VE.getTypeID(RHS.first->getType());
+ // Then by frequency.
+ return LHS.second > RHS.second;
+ }
+};
+
+/// OptimizeConstants - Reorder constant pool for denser encoding.
+void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
+ if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
+
+ CstSortPredicate P(*this);
+ std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
+
+ // Ensure that integer constants are at the start of the constant pool. This
+ // is important so that GEP structure indices come before gep constant exprs.
+ std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
+ isIntegerValue);
+
+ // Rebuild the modified portion of ValueMap.
+ for (; CstStart != CstEnd; ++CstStart)
+ ValueMap[Values[CstStart].first] = CstStart+1;
+}
+
+
+/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
+/// table.
+void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ TI != TE; ++TI)
+ EnumerateType(TI->second);
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ VI != VE; ++VI)
+ EnumerateValue(VI->getValue());
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+ assert(V->getType() != Type::VoidTy && "Can't insert void values!");
+
+ // Check to see if it's already in!
+ unsigned &ValueID = ValueMap[V];
+ if (ValueID) {
+ // Increment use count.
+ Values[ValueID-1].second++;
+ return;
+ }
+
+ // Enumerate the type of this value.
+ EnumerateType(V->getType());
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<GlobalValue>(C)) {
+ // Initializers for globals are handled explicitly elsewhere.
+ } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
+ // Do not enumerate the initializers for an array of simple characters.
+ // The initializers just polute the value table, and we emit the strings
+ // specially.
+ } else if (C->getNumOperands()) {
+ // If a constant has operands, enumerate them. This makes sure that if a
+ // constant has uses (for example an array of const ints), that they are
+ // inserted also.
+
+ // We prefer to enumerate them with values before we enumerate the user
+ // itself. This makes it more likely that we can avoid forward references
+ // in the reader. We know that there can be no cycles in the constants
+ // graph that don't go through a global variable.
+ for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
+ I != E; ++I)
+ EnumerateValue(*I);
+
+ // Finally, add the value. Doing this could make the ValueID reference be
+ // dangling, don't reuse it.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueMap[V] = Values.size();
+ return;
+ }
+ }
+
+ // Add the value.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueID = Values.size();
+}
+
+
+void ValueEnumerator::EnumerateType(const Type *Ty) {
+ unsigned &TypeID = TypeMap[Ty];
+
+ if (TypeID) {
+ // If we've already seen this type, just increase its occurrence count.
+ Types[TypeID-1].second++;
+ return;
+ }
+
+ // First time we saw this type, add it.
+ Types.push_back(std::make_pair(Ty, 1U));
+ TypeID = Types.size();
+
+ // Enumerate subtypes.
+ for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
+ I != E; ++I)
+ EnumerateType(*I);
+
+ // If this is a function type, enumerate the param attrs.
+ if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty))
+ EnumerateParamAttrs(FTy->getParamAttrs());
+}
+
+// Enumerate the types for the specified value. If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+ EnumerateType(V->getType());
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ // If this constant is already enumerated, ignore it, we know its type must
+ // be enumerated.
+ if (ValueMap.count(V)) return;
+
+ // This constant may have operands, make sure to enumerate the types in
+ // them.
+ for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
+ EnumerateOperandType(C->getOperand(i));
+ }
+}
+
+void ValueEnumerator::EnumerateParamAttrs(const ParamAttrsList *PAL) {
+ if (PAL == 0) return; // null is always 0.
+ // Do a lookup.
+ unsigned &Entry = ParamAttrMap[PAL];
+ if (Entry == 0) {
+ // Never saw this before, add it.
+ ParamAttrs.push_back(PAL);
+ Entry = ParamAttrs.size();
+ }
+}
+
+
+/// PurgeAggregateValues - If there are any aggregate values at the end of the
+/// value list, remove them and return the count of the remaining values. If
+/// there are none, return -1.
+int ValueEnumerator::PurgeAggregateValues() {
+ // If there are no aggregate values at the end of the list, return -1.
+ if (Values.empty() || Values.back().first->getType()->isFirstClassType())
+ return -1;
+
+ // Otherwise, remove aggregate values...
+ while (!Values.empty() && !Values.back().first->getType()->isFirstClassType())
+ Values.pop_back();
+
+ // ... and return the new size.
+ return Values.size();
+}
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+ NumModuleValues = Values.size();
+
+ // Adding function arguments to the value table.
+ for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I)
+ EnumerateValue(I);
+
+ FirstFuncConstantID = Values.size();
+
+ // Add all function-level constants to the value table.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ OI != E; ++OI) {
+ if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
+ isa<InlineAsm>(*OI))
+ EnumerateValue(*OI);
+ }
+ BasicBlocks.push_back(BB);
+ ValueMap[BB] = BasicBlocks.size();
+ }
+
+ // Optimize the constant layout.
+ OptimizeConstants(FirstFuncConstantID, Values.size());
+
+ FirstInstID = Values.size();
+
+ // Add all of the instructions.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
+ if (I->getType() != Type::VoidTy)
+ EnumerateValue(I);
+ }
+ }
+}
+
+void ValueEnumerator::purgeFunction() {
+ /// Remove purged values from the ValueMap.
+ for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+ ValueMap.erase(Values[i].first);
+ for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
+ ValueMap.erase(BasicBlocks[i]);
+
+ Values.resize(NumModuleValues);
+ BasicBlocks.clear();
+}
+
diff --git a/lib/Bitcode/Writer/ValueEnumerator.h b/lib/Bitcode/Writer/ValueEnumerator.h
new file mode 100644
index 0000000..e255411
--- /dev/null
+++ b/lib/Bitcode/Writer/ValueEnumerator.h
@@ -0,0 +1,126 @@
+//===-- Bitcode/Writer/ValueEnumerator.h - Number values --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class gives values and types Unique ID's.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef VALUE_ENUMERATOR_H
+#define VALUE_ENUMERATOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include <vector>
+
+namespace llvm {
+
+class Type;
+class Value;
+class BasicBlock;
+class Function;
+class Module;
+class ParamAttrsList;
+class TypeSymbolTable;
+class ValueSymbolTable;
+
+class ValueEnumerator {
+public:
+ // For each type, we remember its Type* and occurrence frequency.
+ typedef std::vector<std::pair<const Type*, unsigned> > TypeList;
+
+ // For each value, we remember its Value* and occurrence frequency.
+ typedef std::vector<std::pair<const Value*, unsigned> > ValueList;
+private:
+ typedef DenseMap<const Type*, unsigned> TypeMapType;
+ TypeMapType TypeMap;
+ TypeList Types;
+
+ typedef DenseMap<const Value*, unsigned> ValueMapType;
+ ValueMapType ValueMap;
+ ValueList Values;
+
+ typedef DenseMap<const ParamAttrsList*, unsigned> ParamAttrMapType;
+ ParamAttrMapType ParamAttrMap;
+ std::vector<const ParamAttrsList*> ParamAttrs;
+
+ /// BasicBlocks - This contains all the basic blocks for the currently
+ /// incorporated function. Their reverse mapping is stored in ValueMap.
+ std::vector<const BasicBlock*> BasicBlocks;
+
+ /// When a function is incorporated, this is the size of the Values list
+ /// before incorporation.
+ unsigned NumModuleValues;
+ unsigned FirstFuncConstantID;
+ unsigned FirstInstID;
+
+ ValueEnumerator(const ValueEnumerator &); // DO NOT IMPLEMENT
+ void operator=(const ValueEnumerator &); // DO NOT IMPLEMENT
+public:
+ ValueEnumerator(const Module *M);
+
+ unsigned getValueID(const Value *V) const {
+ ValueMapType::const_iterator I = ValueMap.find(V);
+ assert(I != ValueMap.end() && "Value not in slotcalculator!");
+ return I->second-1;
+ }
+
+ unsigned getTypeID(const Type *T) const {
+ TypeMapType::const_iterator I = TypeMap.find(T);
+ assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
+ return I->second-1;
+ }
+
+ unsigned getParamAttrID(const ParamAttrsList *PAL) const {
+ if (PAL == 0) return 0; // Null maps to zero.
+ ParamAttrMapType::const_iterator I = ParamAttrMap.find(PAL);
+ assert(I != ParamAttrMap.end() && "ParamAttr not in ValueEnumerator!");
+ return I->second;
+ }
+
+ /// getFunctionConstantRange - Return the range of values that corresponds to
+ /// function-local constants.
+ void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
+ Start = FirstFuncConstantID;
+ End = FirstInstID;
+ }
+
+ const ValueList &getValues() const { return Values; }
+ const TypeList &getTypes() const { return Types; }
+ const std::vector<const BasicBlock*> &getBasicBlocks() const {
+ return BasicBlocks;
+ }
+ const std::vector<const ParamAttrsList*> &getParamAttrs() const {
+ return ParamAttrs;
+ }
+
+ /// PurgeAggregateValues - If there are any aggregate values at the end of the
+ /// value list, remove them and return the count of the remaining values. If
+ /// there are none, return -1.
+ int PurgeAggregateValues();
+
+ /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
+ /// use these two methods to get its data into the ValueEnumerator!
+ ///
+ void incorporateFunction(const Function &F);
+ void purgeFunction();
+
+private:
+ void OptimizeConstants(unsigned CstStart, unsigned CstEnd);
+
+ void EnumerateValue(const Value *V);
+ void EnumerateType(const Type *T);
+ void EnumerateOperandType(const Value *V);
+ void EnumerateParamAttrs(const ParamAttrsList *PAL);
+
+ void EnumerateTypeSymbolTable(const TypeSymbolTable &ST);
+ void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+};
+
+} // End llvm namespace
+
+#endif