It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
new file mode 100644
index 0000000..281f774
--- /dev/null
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -0,0 +1,1374 @@
+//===-- Execution.cpp - Implement code to simulate the program ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file contains the actual instruction interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "interpreter"
+#include "Interpreter.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
+static Interpreter *TheEE = 0;
+
+//===----------------------------------------------------------------------===//
+//                     Various Helper Functions
+//===----------------------------------------------------------------------===//
+
+static inline uint64_t doSignExtension(uint64_t Val, const IntegerType* ITy) {
+  // Determine if the value is signed or not
+  bool isSigned = (Val & (1 << (ITy->getBitWidth()-1))) != 0;
+  // If its signed, extend the sign bits
+  if (isSigned)
+    Val |= ~ITy->getBitMask();
+  return Val;
+}
+
+static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
+  SF.Values[V] = Val;
+}
+
+void Interpreter::initializeExecutionEngine() {
+  TheEE = this;
+}
+
+//===----------------------------------------------------------------------===//
+//                    Binary Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
+   case Type::TY##TyID: \
+     Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
+     break
+
+#define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
+   case Type::IntegerTyID: { \
+     Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
+     break; \
+   }
+
+
+static void executeAddInst(GenericValue &Dest, GenericValue Src1, 
+                           GenericValue Src2, const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_BINOP1(+, Ty);
+    IMPLEMENT_BINARY_OPERATOR(+, Float);
+    IMPLEMENT_BINARY_OPERATOR(+, Double);
+  default:
+    cerr << "Unhandled type for Add instruction: " << *Ty << "\n";
+    abort();
+  }
+}
+
+static void executeSubInst(GenericValue &Dest, GenericValue Src1, 
+                           GenericValue Src2, const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_BINOP1(-, Ty);
+    IMPLEMENT_BINARY_OPERATOR(-, Float);
+    IMPLEMENT_BINARY_OPERATOR(-, Double);
+  default:
+    cerr << "Unhandled type for Sub instruction: " << *Ty << "\n";
+    abort();
+  }
+}
+
+static void executeMulInst(GenericValue &Dest, GenericValue Src1, 
+                           GenericValue Src2, const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_BINOP1(*, Ty);
+    IMPLEMENT_BINARY_OPERATOR(*, Float);
+    IMPLEMENT_BINARY_OPERATOR(*, Double);
+  default:
+    cerr << "Unhandled type for Mul instruction: " << *Ty << "\n";
+    abort();
+  }
+}
+
+static void executeFDivInst(GenericValue &Dest, GenericValue Src1, 
+                            GenericValue Src2, const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_BINARY_OPERATOR(/, Float);
+    IMPLEMENT_BINARY_OPERATOR(/, Double);
+  default:
+    cerr << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+    abort();
+  }
+}
+
+static void executeFRemInst(GenericValue &Dest, GenericValue Src1, 
+                            GenericValue Src2, const Type *Ty) {
+  switch (Ty->getTypeID()) {
+  case Type::FloatTyID:
+    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
+    break;
+  case Type::DoubleTyID:
+    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
+    break;
+  default:
+    cerr << "Unhandled type for Rem instruction: " << *Ty << "\n";
+    abort();
+  }
+}
+
+#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
+   case Type::IntegerTyID:  \
+      Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
+      break;
+
+// Handle pointers specially because they must be compared with only as much
+// width as the host has.  We _do not_ want to be comparing 64 bit values when
+// running on a 32-bit target, otherwise the upper 32 bits might mess up
+// comparisons if they contain garbage.
+#define IMPLEMENT_POINTER_ICMP(OP) \
+   case Type::PointerTyID: \
+      Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
+                            (void*)(intptr_t)Src2.PointerVal); \
+      break;
+
+static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(eq,Ty);
+    IMPLEMENT_POINTER_ICMP(==);
+  default:
+    cerr << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(ne,Ty);
+    IMPLEMENT_POINTER_ICMP(!=);
+  default:
+    cerr << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(ult,Ty);
+    IMPLEMENT_POINTER_ICMP(<);
+  default:
+    cerr << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(slt,Ty);
+    IMPLEMENT_POINTER_ICMP(<);
+  default:
+    cerr << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(ugt,Ty);
+    IMPLEMENT_POINTER_ICMP(>);
+  default:
+    cerr << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(sgt,Ty);
+    IMPLEMENT_POINTER_ICMP(>);
+  default:
+    cerr << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(ule,Ty);
+    IMPLEMENT_POINTER_ICMP(<=);
+  default:
+    cerr << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(sle,Ty);
+    IMPLEMENT_POINTER_ICMP(<=);
+  default:
+    cerr << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(uge,Ty);
+    IMPLEMENT_POINTER_ICMP(>=);
+  default:
+    cerr << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
+                                    const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_INTEGER_ICMP(sge,Ty);
+    IMPLEMENT_POINTER_ICMP(>=);
+  default:
+    cerr << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+void Interpreter::visitICmpInst(ICmpInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  const Type *Ty    = I.getOperand(0)->getType();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue R;   // Result
+  
+  switch (I.getPredicate()) {
+  case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
+  case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
+  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
+  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
+  default:
+    cerr << "Don't know how to handle this ICmp predicate!\n-->" << I;
+    abort();
+  }
+ 
+  SetValue(&I, R, SF);
+}
+
+#define IMPLEMENT_FCMP(OP, TY) \
+   case Type::TY##TyID: \
+     Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
+     break
+
+static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(==, Float);
+    IMPLEMENT_FCMP(==, Double);
+  default:
+    cerr << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(!=, Float);
+    IMPLEMENT_FCMP(!=, Double);
+
+  default:
+    cerr << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(<=, Float);
+    IMPLEMENT_FCMP(<=, Double);
+  default:
+    cerr << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(>=, Float);
+    IMPLEMENT_FCMP(>=, Double);
+  default:
+    cerr << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(<, Float);
+    IMPLEMENT_FCMP(<, Double);
+  default:
+    cerr << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
+                                     const Type *Ty) {
+  GenericValue Dest;
+  switch (Ty->getTypeID()) {
+    IMPLEMENT_FCMP(>, Float);
+    IMPLEMENT_FCMP(>, Double);
+  default:
+    cerr << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+    abort();
+  }
+  return Dest;
+}
+
+#define IMPLEMENT_UNORDERED(TY, X,Y) \
+   if (TY == Type::FloatTy) \
+     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+       Dest.IntVal = APInt(1,true); \
+       return Dest; \
+     } \
+   else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+     Dest.IntVal = APInt(1,true); \
+     return Dest; \
+   }
+
+
+static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_OEQ(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_ONE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_OLE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_OGE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
+                                   const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_OLT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
+                                     const Type *Ty) {
+  GenericValue Dest;
+  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+  return executeFCMP_OGT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
+                                     const Type *Ty) {
+  GenericValue Dest;
+  if (Ty == Type::FloatTy)
+    Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && 
+                           Src2.FloatVal == Src2.FloatVal));
+  else
+    Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && 
+                           Src2.DoubleVal == Src2.DoubleVal));
+  return Dest;
+}
+
+static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
+                                     const Type *Ty) {
+  GenericValue Dest;
+  if (Ty == Type::FloatTy)
+    Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || 
+                           Src2.FloatVal != Src2.FloatVal));
+  else
+    Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || 
+                           Src2.DoubleVal != Src2.DoubleVal));
+  return Dest;
+}
+
+void Interpreter::visitFCmpInst(FCmpInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  const Type *Ty    = I.getOperand(0)->getType();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue R;   // Result
+  
+  switch (I.getPredicate()) {
+  case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
+  case FCmpInst::FCMP_TRUE:  R.IntVal = APInt(1,true); break;
+  case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
+  case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
+  default:
+    cerr << "Don't know how to handle this FCmp predicate!\n-->" << I;
+    abort();
+  }
+ 
+  SetValue(&I, R, SF);
+}
+
+static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, 
+                                   GenericValue Src2, const Type *Ty) {
+  GenericValue Result;
+  switch (predicate) {
+  case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
+  case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
+  case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
+  case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
+  case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
+  case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
+  case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
+  case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
+  case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
+  case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
+  case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
+  case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
+  case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
+  case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
+  case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
+  case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
+  case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
+  case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
+  case FCmpInst::FCMP_FALSE: { 
+    GenericValue Result;
+    Result.IntVal = APInt(1, false);
+    return Result;
+  }
+  case FCmpInst::FCMP_TRUE: {
+    GenericValue Result;
+    Result.IntVal = APInt(1, true);
+    return Result;
+  }
+  default:
+    cerr << "Unhandled Cmp predicate\n";
+    abort();
+  }
+}
+
+void Interpreter::visitBinaryOperator(BinaryOperator &I) {
+  ExecutionContext &SF = ECStack.back();
+  const Type *Ty    = I.getOperand(0)->getType();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue R;   // Result
+
+  switch (I.getOpcode()) {
+  case Instruction::Add:   executeAddInst  (R, Src1, Src2, Ty); break;
+  case Instruction::Sub:   executeSubInst  (R, Src1, Src2, Ty); break;
+  case Instruction::Mul:   executeMulInst  (R, Src1, Src2, Ty); break;
+  case Instruction::FDiv:  executeFDivInst (R, Src1, Src2, Ty); break;
+  case Instruction::FRem:  executeFRemInst (R, Src1, Src2, Ty); break;
+  case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+  case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+  case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+  case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+  case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
+  case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
+  case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+  default:
+    cerr << "Don't know how to handle this binary operator!\n-->" << I;
+    abort();
+  }
+
+  SetValue(&I, R, SF);
+}
+
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+                                      GenericValue Src3) {
+  return Src1.IntVal == 0 ? Src3 : Src2;
+}
+
+void Interpreter::visitSelectInst(SelectInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+  GenericValue R = executeSelectInst(Src1, Src2, Src3);
+  SetValue(&I, R, SF);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                     Terminator Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::exitCalled(GenericValue GV) {
+  // runAtExitHandlers() assumes there are no stack frames, but
+  // if exit() was called, then it had a stack frame. Blow away
+  // the stack before interpreting atexit handlers.
+  ECStack.clear ();
+  runAtExitHandlers ();
+  exit (GV.IntVal.zextOrTrunc(32).getZExtValue());
+}
+
+/// Pop the last stack frame off of ECStack and then copy the result
+/// back into the result variable if we are not returning void. The
+/// result variable may be the ExitValue, or the Value of the calling
+/// CallInst if there was a previous stack frame. This method may
+/// invalidate any ECStack iterators you have. This method also takes
+/// care of switching to the normal destination BB, if we are returning
+/// from an invoke.
+///
+void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
+                                                  GenericValue Result) {
+  // Pop the current stack frame.
+  ECStack.pop_back();
+
+  if (ECStack.empty()) {  // Finished main.  Put result into exit code...
+    if (RetTy && RetTy->isInteger()) {          // Nonvoid return type?
+      ExitValue = Result;   // Capture the exit value of the program
+    } else {
+      memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+    }
+  } else {
+    // If we have a previous stack frame, and we have a previous call,
+    // fill in the return value...
+    ExecutionContext &CallingSF = ECStack.back();
+    if (Instruction *I = CallingSF.Caller.getInstruction()) {
+      if (CallingSF.Caller.getType() != Type::VoidTy)      // Save result...
+        SetValue(I, Result, CallingSF);
+      if (InvokeInst *II = dyn_cast<InvokeInst> (I))
+        SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
+      CallingSF.Caller = CallSite();          // We returned from the call...
+    }
+  }
+}
+
+void Interpreter::visitReturnInst(ReturnInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  const Type *RetTy = Type::VoidTy;
+  GenericValue Result;
+
+  // Save away the return value... (if we are not 'ret void')
+  if (I.getNumOperands()) {
+    RetTy  = I.getReturnValue()->getType();
+    Result = getOperandValue(I.getReturnValue(), SF);
+  }
+
+  popStackAndReturnValueToCaller(RetTy, Result);
+}
+
+void Interpreter::visitUnwindInst(UnwindInst &I) {
+  // Unwind stack
+  Instruction *Inst;
+  do {
+    ECStack.pop_back ();
+    if (ECStack.empty ())
+      abort ();
+    Inst = ECStack.back ().Caller.getInstruction ();
+  } while (!(Inst && isa<InvokeInst> (Inst)));
+
+  // Return from invoke
+  ExecutionContext &InvokingSF = ECStack.back ();
+  InvokingSF.Caller = CallSite ();
+
+  // Go to exceptional destination BB of invoke instruction
+  SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
+}
+
+void Interpreter::visitUnreachableInst(UnreachableInst &I) {
+  cerr << "ERROR: Program executed an 'unreachable' instruction!\n";
+  abort();
+}
+
+void Interpreter::visitBranchInst(BranchInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  BasicBlock *Dest;
+
+  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
+  if (!I.isUnconditional()) {
+    Value *Cond = I.getCondition();
+    if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
+      Dest = I.getSuccessor(1);
+  }
+  SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitSwitchInst(SwitchInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
+  const Type *ElTy = I.getOperand(0)->getType();
+
+  // Check to see if any of the cases match...
+  BasicBlock *Dest = 0;
+  for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
+    if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy)
+        .IntVal != 0) {
+      Dest = cast<BasicBlock>(I.getOperand(i+1));
+      break;
+    }
+
+  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
+  SwitchToNewBasicBlock(Dest, SF);
+}
+
+// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
+// This function handles the actual updating of block and instruction iterators
+// as well as execution of all of the PHI nodes in the destination block.
+//
+// This method does this because all of the PHI nodes must be executed
+// atomically, reading their inputs before any of the results are updated.  Not
+// doing this can cause problems if the PHI nodes depend on other PHI nodes for
+// their inputs.  If the input PHI node is updated before it is read, incorrect
+// results can happen.  Thus we use a two phase approach.
+//
+void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
+  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
+  SF.CurBB   = Dest;                  // Update CurBB to branch destination
+  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
+
+  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
+
+  // Loop over all of the PHI nodes in the current block, reading their inputs.
+  std::vector<GenericValue> ResultValues;
+
+  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
+    // Search for the value corresponding to this previous bb...
+    int i = PN->getBasicBlockIndex(PrevBB);
+    assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
+    Value *IncomingValue = PN->getIncomingValue(i);
+
+    // Save the incoming value for this PHI node...
+    ResultValues.push_back(getOperandValue(IncomingValue, SF));
+  }
+
+  // Now loop over all of the PHI nodes setting their values...
+  SF.CurInst = SF.CurBB->begin();
+  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
+    PHINode *PN = cast<PHINode>(SF.CurInst);
+    SetValue(PN, ResultValues[i], SF);
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//                     Memory Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitAllocationInst(AllocationInst &I) {
+  ExecutionContext &SF = ECStack.back();
+
+  const Type *Ty = I.getType()->getElementType();  // Type to be allocated
+
+  // Get the number of elements being allocated by the array...
+  unsigned NumElements = 
+    getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
+
+  unsigned TypeSize = (size_t)TD.getTypeSize(Ty);
+
+  unsigned MemToAlloc = NumElements * TypeSize;
+
+  // Allocate enough memory to hold the type...
+  void *Memory = malloc(MemToAlloc);
+
+  DOUT << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " 
+       << NumElements << " (Total: " << MemToAlloc << ") at "
+       << uintptr_t(Memory) << '\n';
+
+  GenericValue Result = PTOGV(Memory);
+  assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
+  SetValue(&I, Result, SF);
+
+  if (I.getOpcode() == Instruction::Alloca)
+    ECStack.back().Allocas.add(Memory);
+}
+
+void Interpreter::visitFreeInst(FreeInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
+  GenericValue Value = getOperandValue(I.getOperand(0), SF);
+  // TODO: Check to make sure memory is allocated
+  free(GVTOP(Value));   // Free memory
+}
+
+// getElementOffset - The workhorse for getelementptr.
+//
+GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
+                                              gep_type_iterator E,
+                                              ExecutionContext &SF) {
+  assert(isa<PointerType>(Ptr->getType()) &&
+         "Cannot getElementOffset of a nonpointer type!");
+
+  uint64_t Total = 0;
+
+  for (; I != E; ++I) {
+    if (const StructType *STy = dyn_cast<StructType>(*I)) {
+      const StructLayout *SLO = TD.getStructLayout(STy);
+
+      const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
+      unsigned Index = unsigned(CPU->getZExtValue());
+
+      Total += SLO->getElementOffset(Index);
+    } else {
+      const SequentialType *ST = cast<SequentialType>(*I);
+      // Get the index number for the array... which must be long type...
+      GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
+
+      int64_t Idx;
+      unsigned BitWidth = 
+        cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
+      if (BitWidth == 32)
+        Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
+      else if (BitWidth == 64)
+        Idx = (int64_t)IdxGV.IntVal.getZExtValue();
+      else 
+        assert(0 && "Invalid index type for getelementptr");
+      Total += TD.getTypeSize(ST->getElementType())*Idx;
+    }
+  }
+
+  GenericValue Result;
+  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
+  DOUT << "GEP Index " << Total << " bytes.\n";
+  return Result;
+}
+
+void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
+                                   gep_type_begin(I), gep_type_end(I), SF), SF);
+}
+
+void Interpreter::visitLoadInst(LoadInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
+  GenericValue Result;
+  LoadValueFromMemory(Result, Ptr, I.getType());
+  SetValue(&I, Result, SF);
+}
+
+void Interpreter::visitStoreInst(StoreInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue Val = getOperandValue(I.getOperand(0), SF);
+  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
+                     I.getOperand(0)->getType());
+}
+
+//===----------------------------------------------------------------------===//
+//                 Miscellaneous Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitCallSite(CallSite CS) {
+  ExecutionContext &SF = ECStack.back();
+
+  // Check to see if this is an intrinsic function call...
+  Function *F = CS.getCalledFunction();
+  if (F && F->isDeclaration ())
+    switch (F->getIntrinsicID()) {
+    case Intrinsic::not_intrinsic:
+      break;
+    case Intrinsic::vastart: { // va_start
+      GenericValue ArgIndex;
+      ArgIndex.UIntPairVal.first = ECStack.size() - 1;
+      ArgIndex.UIntPairVal.second = 0;
+      SetValue(CS.getInstruction(), ArgIndex, SF);
+      return;
+    }
+    case Intrinsic::vaend:    // va_end is a noop for the interpreter
+      return;
+    case Intrinsic::vacopy:   // va_copy: dest = src
+      SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
+      return;
+    default:
+      // If it is an unknown intrinsic function, use the intrinsic lowering
+      // class to transform it into hopefully tasty LLVM code.
+      //
+      BasicBlock::iterator me(CS.getInstruction());
+      BasicBlock *Parent = CS.getInstruction()->getParent();
+      bool atBegin(Parent->begin() == me);
+      if (!atBegin)
+        --me;
+      IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
+
+      // Restore the CurInst pointer to the first instruction newly inserted, if
+      // any.
+      if (atBegin) {
+        SF.CurInst = Parent->begin();
+      } else {
+        SF.CurInst = me;
+        ++SF.CurInst;
+      }
+      return;
+    }
+
+
+  SF.Caller = CS;
+  std::vector<GenericValue> ArgVals;
+  const unsigned NumArgs = SF.Caller.arg_size();
+  ArgVals.reserve(NumArgs);
+  uint16_t pNum = 1;
+  for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
+         e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
+    Value *V = *i;
+    ArgVals.push_back(getOperandValue(V, SF));
+    if (F) {
+     // Promote all integral types whose size is < sizeof(i32) into i32.  
+     // We do this by zero or sign extending the value as appropriate 
+     // according to the parameter attributes
+      const Type *Ty = V->getType();
+      if (Ty->isInteger() && (ArgVals.back().IntVal.getBitWidth() < 32))
+        if (const ParamAttrsList *PA = F->getParamAttrs())
+          if (PA->paramHasAttr(pNum, ParamAttr::ZExt))
+            ArgVals.back().IntVal = ArgVals.back().IntVal.zext(32);
+          else if (PA->paramHasAttr(pNum, ParamAttr::SExt))
+            ArgVals.back().IntVal = ArgVals.back().IntVal.sext(32);
+     }
+  }
+
+  // To handle indirect calls, we must get the pointer value from the argument
+  // and treat it as a function pointer.
+  GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
+  callFunction((Function*)GVTOP(SRC), ArgVals);
+}
+
+void Interpreter::visitShl(BinaryOperator &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue Dest;
+  Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
+  SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitLShr(BinaryOperator &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue Dest;
+  Dest.IntVal =  Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
+  SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitAShr(BinaryOperator &I) {
+  ExecutionContext &SF = ECStack.back();
+  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+  GenericValue Dest; 
+  Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
+  SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy,
+                                           ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  const IntegerType *DITy = cast<IntegerType>(DstTy);
+  const IntegerType *SITy = cast<IntegerType>(SrcTy);
+  unsigned DBitWidth = DITy->getBitWidth();
+  unsigned SBitWidth = SITy->getBitWidth();
+  assert(SBitWidth > DBitWidth && "Invalid truncate");
+  Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+  return Dest;
+}
+
+GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy,
+                                          ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  const IntegerType *DITy = cast<IntegerType>(DstTy);
+  const IntegerType *SITy = cast<IntegerType>(SrcTy);
+  unsigned DBitWidth = DITy->getBitWidth();
+  unsigned SBitWidth = SITy->getBitWidth();
+  assert(SBitWidth < DBitWidth && "Invalid sign extend");
+  Dest.IntVal = Src.IntVal.sext(DBitWidth);
+  return Dest;
+}
+
+GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy,
+                                          ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  const IntegerType *DITy = cast<IntegerType>(DstTy);
+  const IntegerType *SITy = cast<IntegerType>(SrcTy);
+  unsigned DBitWidth = DITy->getBitWidth();
+  unsigned SBitWidth = SITy->getBitWidth();
+  assert(SBitWidth < DBitWidth && "Invalid sign extend");
+  Dest.IntVal = Src.IntVal.zext(DBitWidth);
+  return Dest;
+}
+
+GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy,
+                                             ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(SrcTy == Type::DoubleTy && DstTy == Type::FloatTy &&
+         "Invalid FPTrunc instruction");
+  Dest.FloatVal = (float) Src.DoubleVal;
+  return Dest;
+}
+
+GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy,
+                                           ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(SrcTy == Type::FloatTy && DstTy == Type::DoubleTy &&
+         "Invalid FPTrunc instruction");
+  Dest.DoubleVal = (double) Src.FloatVal;
+  return Dest;
+}
+
+GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy,
+                                            ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(SrcTy->isFloatingPoint() && "Invalid FPToUI instruction");
+
+  if (SrcTy->getTypeID() == Type::FloatTyID)
+    Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+  else
+    Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+  return Dest;
+}
+
+GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy,
+                                            ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(SrcTy->isFloatingPoint() && "Invalid FPToSI instruction");
+
+  if (SrcTy->getTypeID() == Type::FloatTyID)
+    Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+  else
+    Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+  return Dest;
+}
+
+GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy,
+                                            ExecutionContext &SF) {
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
+
+  if (DstTy->getTypeID() == Type::FloatTyID)
+    Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+  else
+    Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+  return Dest;
+}
+
+GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
+                                            ExecutionContext &SF) {
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
+
+  if (DstTy->getTypeID() == Type::FloatTyID)
+    Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+  else
+    Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+  return Dest;
+
+}
+
+GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy,
+                                              ExecutionContext &SF) {
+  const Type *SrcTy = SrcVal->getType();
+  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(isa<PointerType>(SrcTy) && "Invalid PtrToInt instruction");
+
+  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
+  return Dest;
+}
+
+GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy,
+                                              ExecutionContext &SF) {
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  assert(isa<PointerType>(DstTy) && "Invalid PtrToInt instruction");
+
+  uint32_t PtrSize = TD.getPointerSizeInBits();
+  if (PtrSize != Src.IntVal.getBitWidth())
+    Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
+
+  Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
+  return Dest;
+}
+
+GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy,
+                                             ExecutionContext &SF) {
+  
+  const Type *SrcTy = SrcVal->getType();
+  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+  if (isa<PointerType>(DstTy)) {
+    assert(isa<PointerType>(SrcTy) && "Invalid BitCast");
+    Dest.PointerVal = Src.PointerVal;
+  } else if (DstTy->isInteger()) {
+    if (SrcTy == Type::FloatTy) {
+      Dest.IntVal.zext(sizeof(Src.FloatVal) * 8);
+      Dest.IntVal.floatToBits(Src.FloatVal);
+    } else if (SrcTy == Type::DoubleTy) {
+      Dest.IntVal.zext(sizeof(Src.DoubleVal) * 8);
+      Dest.IntVal.doubleToBits(Src.DoubleVal);
+    } else if (SrcTy->isInteger()) {
+      Dest.IntVal = Src.IntVal;
+    } else 
+      assert(0 && "Invalid BitCast");
+  } else if (DstTy == Type::FloatTy) {
+    if (SrcTy->isInteger())
+      Dest.FloatVal = Src.IntVal.bitsToFloat();
+    else
+      Dest.FloatVal = Src.FloatVal;
+  } else if (DstTy == Type::DoubleTy) {
+    if (SrcTy->isInteger())
+      Dest.DoubleVal = Src.IntVal.bitsToDouble();
+    else
+      Dest.DoubleVal = Src.DoubleVal;
+  } else
+    assert(0 && "Invalid Bitcast");
+
+  return Dest;
+}
+
+void Interpreter::visitTruncInst(TruncInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSExtInst(SExtInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitZExtInst(ZExtInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPTruncInst(FPTruncInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPExtInst(FPExtInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitUIToFPInst(UIToFPInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSIToFPInst(SIToFPInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToUIInst(FPToUIInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToSIInst(FPToSIInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitBitCastInst(BitCastInst &I) {
+  ExecutionContext &SF = ECStack.back();
+  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+#define IMPLEMENT_VAARG(TY) \
+   case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
+
+void Interpreter::visitVAArgInst(VAArgInst &I) {
+  ExecutionContext &SF = ECStack.back();
+
+  // Get the incoming valist parameter.  LLI treats the valist as a
+  // (ec-stack-depth var-arg-index) pair.
+  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
+  GenericValue Dest;
+  GenericValue Src = ECStack[VAList.UIntPairVal.first]
+                      .VarArgs[VAList.UIntPairVal.second];
+  const Type *Ty = I.getType();
+  switch (Ty->getTypeID()) {
+    case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
+    IMPLEMENT_VAARG(Pointer);
+    IMPLEMENT_VAARG(Float);
+    IMPLEMENT_VAARG(Double);
+  default:
+    cerr << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+    abort();
+  }
+
+  // Set the Value of this Instruction.
+  SetValue(&I, Dest, SF);
+
+  // Move the pointer to the next vararg.
+  ++VAList.UIntPairVal.second;
+}
+
+GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
+                                                ExecutionContext &SF) {
+  switch (CE->getOpcode()) {
+  case Instruction::Trunc:   
+      return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::ZExt:
+      return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::SExt:
+      return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::FPTrunc:
+      return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::FPExt:
+      return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::UIToFP:
+      return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::SIToFP:
+      return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::FPToUI:
+      return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::FPToSI:
+      return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::PtrToInt:
+      return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::IntToPtr:
+      return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::BitCast:
+      return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
+  case Instruction::GetElementPtr:
+    return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
+                               gep_type_end(CE), SF);
+  case Instruction::FCmp:
+  case Instruction::ICmp:
+    return executeCmpInst(CE->getPredicate(),
+                          getOperandValue(CE->getOperand(0), SF),
+                          getOperandValue(CE->getOperand(1), SF),
+                          CE->getOperand(0)->getType());
+  case Instruction::Select:
+    return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
+                             getOperandValue(CE->getOperand(1), SF),
+                             getOperandValue(CE->getOperand(2), SF));
+  default :
+    break;
+  }
+
+  // The cases below here require a GenericValue parameter for the result
+  // so we initialize one, compute it and then return it.
+  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
+  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
+  GenericValue Dest;
+  const Type * Ty = CE->getOperand(0)->getType();
+  switch (CE->getOpcode()) {
+  case Instruction::Add:  executeAddInst (Dest, Op0, Op1, Ty); break;
+  case Instruction::Sub:  executeSubInst (Dest, Op0, Op1, Ty); break;
+  case Instruction::Mul:  executeMulInst (Dest, Op0, Op1, Ty); break;
+  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
+  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
+  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
+  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
+  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
+  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
+  case Instruction::And:  Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break;
+  case Instruction::Or:   Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break;
+  case Instruction::Xor:  Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break;
+  case Instruction::Shl:  
+    Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
+    break;
+  case Instruction::LShr: 
+    Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
+    break;
+  case Instruction::AShr: 
+    Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
+    break;
+  default:
+    cerr << "Unhandled ConstantExpr: " << *CE << "\n";
+    abort();
+    return GenericValue();
+  }
+  return Dest;
+}
+
+GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    return getConstantExprValue(CE, SF);
+  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
+    return getConstantValue(CPV);
+  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    return PTOGV(getPointerToGlobal(GV));
+  } else {
+    return SF.Values[V];
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//                        Dispatch and Execution Code
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// callFunction - Execute the specified function...
+//
+void Interpreter::callFunction(Function *F,
+                               const std::vector<GenericValue> &ArgVals) {
+  assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
+          ECStack.back().Caller.arg_size() == ArgVals.size()) &&
+         "Incorrect number of arguments passed into function call!");
+  // Make a new stack frame... and fill it in.
+  ECStack.push_back(ExecutionContext());
+  ExecutionContext &StackFrame = ECStack.back();
+  StackFrame.CurFunction = F;
+
+  // Special handling for external functions.
+  if (F->isDeclaration()) {
+    GenericValue Result = callExternalFunction (F, ArgVals);
+    // Simulate a 'ret' instruction of the appropriate type.
+    popStackAndReturnValueToCaller (F->getReturnType (), Result);
+    return;
+  }
+
+  // Get pointers to first LLVM BB & Instruction in function.
+  StackFrame.CurBB     = F->begin();
+  StackFrame.CurInst   = StackFrame.CurBB->begin();
+
+  // Run through the function arguments and initialize their values...
+  assert((ArgVals.size() == F->arg_size() ||
+         (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
+         "Invalid number of values passed to function invocation!");
+
+  // Handle non-varargs arguments...
+  unsigned i = 0;
+  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 
+       AI != E; ++AI, ++i)
+    SetValue(AI, ArgVals[i], StackFrame);
+
+  // Handle varargs arguments...
+  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
+}
+
+static void PrintGenericValue(const GenericValue &Val, const Type* Ty) {
+  switch (Ty->getTypeID()) {
+    default: assert(0 && "Invalid GenericValue Type");
+    case Type::VoidTyID:    DOUT << "void"; break;
+    case Type::FloatTyID:   DOUT << "float " << Val.FloatVal; break;
+    case Type::DoubleTyID:  DOUT << "double " << Val.DoubleVal; break;
+    case Type::PointerTyID: DOUT << "void* " << intptr_t(Val.PointerVal); break;
+    case Type::IntegerTyID: 
+      DOUT << "i" << Val.IntVal.getBitWidth() << " " << Val.IntVal.toString(10)
+           << " (0x" << Val.IntVal.toString(16) << ")\n";
+      break;
+  }
+}
+
+void Interpreter::run() {
+  while (!ECStack.empty()) {
+    // Interpret a single instruction & increment the "PC".
+    ExecutionContext &SF = ECStack.back();  // Current stack frame
+    Instruction &I = *SF.CurInst++;         // Increment before execute
+
+    // Track the number of dynamic instructions executed.
+    ++NumDynamicInsts;
+
+    DOUT << "About to interpret: " << I;
+    visit(I);   // Dispatch to one of the visit* methods...
+#ifndef NDEBUG
+    if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && 
+        I.getType() != Type::VoidTy) {
+      DOUT << "  --> ";
+      PrintGenericValue(SF.Values[&I], I.getType());
+    }
+#endif
+  }
+}