| //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetInstrInfoImpl class, it just provides default |
| // implementations of various methods. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PostRAHazardRecognizer.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| // commuteInstruction - The default implementation of this method just exchanges |
| // the two operands returned by findCommutedOpIndices. |
| MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, |
| bool NewMI) const { |
| const TargetInstrDesc &TID = MI->getDesc(); |
| bool HasDef = TID.getNumDefs(); |
| if (HasDef && !MI->getOperand(0).isReg()) |
| // No idea how to commute this instruction. Target should implement its own. |
| return 0; |
| unsigned Idx1, Idx2; |
| if (!findCommutedOpIndices(MI, Idx1, Idx2)) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Don't know how to commute: " << *MI; |
| report_fatal_error(Msg.str()); |
| } |
| |
| assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && |
| "This only knows how to commute register operands so far"); |
| unsigned Reg1 = MI->getOperand(Idx1).getReg(); |
| unsigned Reg2 = MI->getOperand(Idx2).getReg(); |
| bool Reg1IsKill = MI->getOperand(Idx1).isKill(); |
| bool Reg2IsKill = MI->getOperand(Idx2).isKill(); |
| bool ChangeReg0 = false; |
| if (HasDef && MI->getOperand(0).getReg() == Reg1) { |
| // Must be two address instruction! |
| assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| if (NewMI) { |
| // Create a new instruction. |
| unsigned Reg0 = HasDef |
| ? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0; |
| bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| if (HasDef) |
| return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) |
| .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg2IsKill)); |
| else |
| return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg2IsKill)); |
| } |
| |
| if (ChangeReg0) |
| MI->getOperand(0).setReg(Reg2); |
| MI->getOperand(Idx2).setReg(Reg1); |
| MI->getOperand(Idx1).setReg(Reg2); |
| MI->getOperand(Idx2).setIsKill(Reg1IsKill); |
| MI->getOperand(Idx1).setIsKill(Reg2IsKill); |
| return MI; |
| } |
| |
| /// findCommutedOpIndices - If specified MI is commutable, return the two |
| /// operand indices that would swap value. Return true if the instruction |
| /// is not in a form which this routine understands. |
| bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if (!TID.isCommutable()) |
| return false; |
| // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this |
| // is not true, then the target must implement this. |
| SrcOpIdx1 = TID.getNumDefs(); |
| SrcOpIdx2 = SrcOpIdx1 + 1; |
| if (!MI->getOperand(SrcOpIdx1).isReg() || |
| !MI->getOperand(SrcOpIdx2).isReg()) |
| // No idea. |
| return false; |
| return true; |
| } |
| |
| |
| bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, |
| const SmallVectorImpl<MachineOperand> &Pred) const { |
| bool MadeChange = false; |
| const TargetInstrDesc &TID = MI->getDesc(); |
| if (!TID.isPredicable()) |
| return false; |
| |
| for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| if (TID.OpInfo[i].isPredicate()) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg()) { |
| MO.setReg(Pred[j].getReg()); |
| MadeChange = true; |
| } else if (MO.isImm()) { |
| MO.setImm(Pred[j].getImm()); |
| MadeChange = true; |
| } else if (MO.isMBB()) { |
| MO.setMBB(Pred[j].getMBB()); |
| MadeChange = true; |
| } |
| ++j; |
| } |
| } |
| return MadeChange; |
| } |
| |
| void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, |
| unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| } |
| |
| bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0, |
| const MachineInstr *MI1) const { |
| return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig, |
| MachineFunction &MF) const { |
| assert(!Orig->getDesc().isNotDuplicable() && |
| "Instruction cannot be duplicated"); |
| return MF.CloneMachineInstr(Orig); |
| } |
| |
| unsigned |
| TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const { |
| unsigned FnSize = 0; |
| for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| const MachineBasicBlock &MBB = *MBBI; |
| for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end(); |
| I != E; ++I) |
| FnSize += GetInstSizeInBytes(I); |
| } |
| return FnSize; |
| } |
| |
| /// foldMemoryOperand - Attempt to fold a load or store of the specified stack |
| /// slot into the specified machine instruction for the specified operand(s). |
| /// If this is possible, a new instruction is returned with the specified |
| /// operand folded, otherwise NULL is returned. The client is responsible for |
| /// removing the old instruction and adding the new one in the instruction |
| /// stream. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FrameIndex) const { |
| unsigned Flags = 0; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (MI->getOperand(Ops[i]).isDef()) |
| Flags |= MachineMemOperand::MOStore; |
| else |
| Flags |= MachineMemOperand::MOLoad; |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); |
| if (!NewMI) return 0; |
| |
| assert((!(Flags & MachineMemOperand::MOStore) || |
| NewMI->getDesc().mayStore()) && |
| "Folded a def to a non-store!"); |
| assert((!(Flags & MachineMemOperand::MOLoad) || |
| NewMI->getDesc().mayLoad()) && |
| "Folded a use to a non-load!"); |
| const MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| assert(MFI.getObjectOffset(FrameIndex) != -1); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex), |
| Flags, /*Offset=*/0, |
| MFI.getObjectSize(FrameIndex), |
| MFI.getObjectAlignment(FrameIndex)); |
| NewMI->addMemOperand(MF, MMO); |
| |
| return NewMI; |
| } |
| |
| /// foldMemoryOperand - Same as the previous version except it allows folding |
| /// of any load and store from / to any address, not just from a specific |
| /// stack slot. |
| MachineInstr* |
| TargetInstrInfo::foldMemoryOperand(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr* LoadMI) const { |
| assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); |
| #endif |
| |
| // Ask the target to do the actual folding. |
| MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); |
| if (!NewMI) return 0; |
| |
| // Copy the memoperands from the load to the folded instruction. |
| NewMI->setMemRefs(LoadMI->memoperands_begin(), |
| LoadMI->memoperands_end()); |
| |
| return NewMI; |
| } |
| |
| bool TargetInstrInfo:: |
| isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, |
| AliasAnalysis *AA) const { |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const TargetMachine &TM = MF.getTarget(); |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| |
| // A load from a fixed stack slot can be rematerialized. This may be |
| // redundant with subsequent checks, but it's target-independent, |
| // simple, and a common case. |
| int FrameIdx = 0; |
| if (TII.isLoadFromStackSlot(MI, FrameIdx) && |
| MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) |
| return true; |
| |
| const TargetInstrDesc &TID = MI->getDesc(); |
| |
| // Avoid instructions obviously unsafe for remat. |
| if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() || |
| TID.mayStore()) |
| return false; |
| |
| // Avoid instructions which load from potentially varying memory. |
| if (TID.mayLoad() && !MI->isInvariantLoad(AA)) |
| return false; |
| |
| // If any of the registers accessed are non-constant, conservatively assume |
| // the instruction is not rematerializable. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // Check for a well-behaved physical register. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!MRI.def_empty(Reg)) |
| return false; |
| BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0); |
| if (AllocatableRegs.test(Reg)) |
| return false; |
| // Check for a def among the register's aliases too. |
| for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) { |
| unsigned AliasReg = *Alias; |
| if (!MRI.def_empty(AliasReg)) |
| return false; |
| if (AllocatableRegs.test(AliasReg)) |
| return false; |
| } |
| } else { |
| // A physreg def. We can't remat it. |
| return false; |
| } |
| continue; |
| } |
| |
| // Only allow one virtual-register def, and that in the first operand. |
| if (MO.isDef() != (i == 0)) |
| return false; |
| |
| // For the def, it should be the only def of that register. |
| if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() || |
| MRI.isLiveIn(Reg))) |
| return false; |
| |
| // Don't allow any virtual-register uses. Rematting an instruction with |
| // virtual register uses would length the live ranges of the uses, which |
| // is not necessarily a good idea, certainly not "trivial". |
| if (MO.isUse()) |
| return false; |
| } |
| |
| // Everything checked out. |
| return true; |
| } |
| |
| // Default implementation of CreateTargetPostRAHazardRecognizer. |
| ScheduleHazardRecognizer *TargetInstrInfoImpl:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData &II) const { |
| return (ScheduleHazardRecognizer *)new PostRAHazardRecognizer(II); |
| } |