| //===-- APInt.cpp - Implement APInt class ---------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Sheng Zhou and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a class to represent arbitrary precision integral |
| // constant values. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cstring> |
| #include <cstdlib> |
| using namespace llvm; |
| |
| #if 0 |
| /// lshift - This function shift x[0:len-1] left by shiftAmt bits, and |
| /// store the len least significant words of the result in |
| /// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from |
| /// the most significant digit. |
| static uint64_t lshift(uint64_t dest[], unsigned d_offset, |
| uint64_t x[], unsigned len, unsigned shiftAmt) { |
| unsigned count = APINT_BITS_PER_WORD - shiftAmt; |
| int i = len - 1; |
| uint64_t high_word = x[i], retVal = high_word >> count; |
| ++d_offset; |
| while (--i >= 0) { |
| uint64_t low_word = x[i]; |
| dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count); |
| high_word = low_word; |
| } |
| dest[d_offset+i] = high_word << shiftAmt; |
| return retVal; |
| } |
| #endif |
| |
| APInt::APInt(unsigned numBits, uint64_t val) |
| : BitWidth(numBits) { |
| assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| if (isSingleWord()) |
| VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); |
| else { |
| // Memory allocation and check if successful. |
| assert((pVal = new uint64_t[getNumWords()]) && |
| "APInt memory allocation fails!"); |
| memset(pVal, 0, getNumWords() * 8); |
| pVal[0] = val; |
| } |
| } |
| |
| APInt::APInt(unsigned numBits, unsigned numWords, uint64_t bigVal[]) |
| : BitWidth(numBits) { |
| assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); |
| assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); |
| assert(bigVal && "Null pointer detected!"); |
| if (isSingleWord()) |
| VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth)); |
| else { |
| // Memory allocation and check if successful. |
| assert((pVal = new uint64_t[getNumWords()]) && |
| "APInt memory allocation fails!"); |
| // Calculate the actual length of bigVal[]. |
| unsigned maxN = std::max<unsigned>(numWords, getNumWords()); |
| unsigned minN = std::min<unsigned>(numWords, getNumWords()); |
| memcpy(pVal, bigVal, (minN - 1) * 8); |
| pVal[minN-1] = bigVal[minN-1] & |
| (~uint64_t(0ULL) >> |
| (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD)); |
| if (maxN == getNumWords()) |
| memset(pVal+numWords, 0, (getNumWords() - numWords) * 8); |
| } |
| } |
| |
| /// @brief Create a new APInt by translating the char array represented |
| /// integer value. |
| APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen, |
| uint8_t radix) { |
| fromString(numbits, StrStart, slen, radix); |
| } |
| |
| /// @brief Create a new APInt by translating the string represented |
| /// integer value. |
| APInt::APInt(unsigned numbits, const std::string& Val, uint8_t radix) { |
| assert(!Val.empty() && "String empty?"); |
| fromString(numbits, Val.c_str(), Val.size(), radix); |
| } |
| |
| APInt::APInt(const APInt& APIVal) |
| : BitWidth(APIVal.BitWidth) { |
| if (isSingleWord()) VAL = APIVal.VAL; |
| else { |
| // Memory allocation and check if successful. |
| assert((pVal = new uint64_t[getNumWords()]) && |
| "APInt memory allocation fails!"); |
| memcpy(pVal, APIVal.pVal, getNumWords() * 8); |
| } |
| } |
| |
| APInt::~APInt() { |
| if (!isSingleWord() && pVal) delete[] pVal; |
| } |
| |
| /// @brief Copy assignment operator. Create a new object from the given |
| /// APInt one by initialization. |
| APInt& APInt::operator=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| else { |
| unsigned minN = std::min(getNumWords(), RHS.getNumWords()); |
| memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8); |
| if (getNumWords() != minN) |
| memset(pVal + minN, 0, (getNumWords() - minN) * 8); |
| } |
| return *this; |
| } |
| |
| /// @brief Assignment operator. Assigns a common case integer value to |
| /// the APInt. |
| APInt& APInt::operator=(uint64_t RHS) { |
| if (isSingleWord()) |
| VAL = RHS; |
| else { |
| pVal[0] = RHS; |
| memset(pVal, 0, (getNumWords() - 1) * 8); |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// add_1 - This function adds the integer array x[] by integer y and |
| /// returns the carry. |
| /// @returns the carry of the addition. |
| static uint64_t add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { |
| for (unsigned i = 0; i < len; ++i) { |
| dest[i] = y + x[i]; |
| if (dest[i] < y) |
| y = 1; |
| else { |
| y = 0; |
| break; |
| } |
| } |
| return y; |
| } |
| |
| /// @brief Prefix increment operator. Increments the APInt by one. |
| APInt& APInt::operator++() { |
| if (isSingleWord()) |
| ++VAL; |
| else |
| add_1(pVal, pVal, getNumWords(), 1); |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// sub_1 - This function subtracts the integer array x[] by |
| /// integer y and returns the borrow-out carry. |
| static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) { |
| for (unsigned i = 0; i < len; ++i) { |
| uint64_t X = x[i]; |
| x[i] -= y; |
| if (y > X) |
| y = 1; |
| else { |
| y = 0; |
| break; |
| } |
| } |
| return y; |
| } |
| |
| /// @brief Prefix decrement operator. Decrements the APInt by one. |
| APInt& APInt::operator--() { |
| if (isSingleWord()) --VAL; |
| else |
| sub_1(pVal, getNumWords(), 1); |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// add - This function adds the integer array x[] by integer array |
| /// y[] and returns the carry. |
| static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) { |
| unsigned carry = 0; |
| for (unsigned i = 0; i< len; ++i) { |
| carry += x[i]; |
| dest[i] = carry + y[i]; |
| carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); |
| } |
| return carry; |
| } |
| |
| /// @brief Addition assignment operator. Adds this APInt by the given APInt& |
| /// RHS and assigns the result to this APInt. |
| APInt& APInt::operator+=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| else { |
| if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL); |
| else { |
| if (getNumWords() <= RHS.getNumWords()) |
| add(pVal, pVal, RHS.pVal, getNumWords()); |
| else { |
| uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords()); |
| add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(), |
| getNumWords() - RHS.getNumWords(), carry); |
| } |
| } |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// sub - This function subtracts the integer array x[] by |
| /// integer array y[], and returns the borrow-out carry. |
| static uint64_t sub(uint64_t dest[], uint64_t x[], uint64_t y[], unsigned len) { |
| // Carry indicator. |
| uint64_t cy = 0; |
| |
| for (unsigned i = 0; i < len; ++i) { |
| uint64_t Y = y[i], X = x[i]; |
| Y += cy; |
| |
| cy = Y < cy ? 1 : 0; |
| Y = X - Y; |
| cy += Y > X ? 1 : 0; |
| dest[i] = Y; |
| } |
| return cy; |
| } |
| |
| /// @brief Subtraction assignment operator. Subtracts this APInt by the given |
| /// APInt &RHS and assigns the result to this APInt. |
| APInt& APInt::operator-=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) |
| VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| else { |
| if (RHS.isSingleWord()) |
| sub_1(pVal, getNumWords(), RHS.VAL); |
| else { |
| if (RHS.getNumWords() < getNumWords()) { |
| uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords()); |
| sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), |
| carry); |
| } |
| else |
| sub(pVal, pVal, RHS.pVal, getNumWords()); |
| } |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// mul_1 - This function performs the multiplication operation on a |
| /// large integer (represented as an integer array) and a uint64_t integer. |
| /// @returns the carry of the multiplication. |
| static uint64_t mul_1(uint64_t dest[], uint64_t x[], |
| unsigned len, uint64_t y) { |
| // Split y into high 32-bit part and low 32-bit part. |
| uint64_t ly = y & 0xffffffffULL, hy = y >> 32; |
| uint64_t carry = 0, lx, hx; |
| for (unsigned i = 0; i < len; ++i) { |
| lx = x[i] & 0xffffffffULL; |
| hx = x[i] >> 32; |
| // hasCarry - A flag to indicate if has carry. |
| // hasCarry == 0, no carry |
| // hasCarry == 1, has carry |
| // hasCarry == 2, no carry and the calculation result == 0. |
| uint8_t hasCarry = 0; |
| dest[i] = carry + lx * ly; |
| // Determine if the add above introduces carry. |
| hasCarry = (dest[i] < carry) ? 1 : 0; |
| carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); |
| // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + |
| // (2^32 - 1) + 2^32 = 2^64. |
| hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| |
| carry += (lx * hy) & 0xffffffffULL; |
| dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); |
| carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + |
| (carry >> 32) + ((lx * hy) >> 32) + hx * hy; |
| } |
| |
| return carry; |
| } |
| |
| /// mul - This function multiplies integer array x[] by integer array y[] and |
| /// stores the result into integer array dest[]. |
| /// Note the array dest[]'s size should no less than xlen + ylen. |
| static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, |
| uint64_t y[], unsigned ylen) { |
| dest[xlen] = mul_1(dest, x, xlen, y[0]); |
| |
| for (unsigned i = 1; i < ylen; ++i) { |
| uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; |
| uint64_t carry = 0, lx, hx; |
| for (unsigned j = 0; j < xlen; ++j) { |
| lx = x[j] & 0xffffffffULL; |
| hx = x[j] >> 32; |
| // hasCarry - A flag to indicate if has carry. |
| // hasCarry == 0, no carry |
| // hasCarry == 1, has carry |
| // hasCarry == 2, no carry and the calculation result == 0. |
| uint8_t hasCarry = 0; |
| uint64_t resul = carry + lx * ly; |
| hasCarry = (resul < carry) ? 1 : 0; |
| carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); |
| hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); |
| |
| carry += (lx * hy) & 0xffffffffULL; |
| resul = (carry << 32) | (resul & 0xffffffffULL); |
| dest[i+j] += resul; |
| carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ |
| (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + |
| ((lx * hy) >> 32) + hx * hy; |
| } |
| dest[i+xlen] = carry; |
| } |
| } |
| |
| /// @brief Multiplication assignment operator. Multiplies this APInt by the |
| /// given APInt& RHS and assigns the result to this APInt. |
| APInt& APInt::operator*=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; |
| else { |
| // one-based first non-zero bit position. |
| unsigned first = getActiveBits(); |
| unsigned xlen = !first ? 0 : whichWord(first - 1) + 1; |
| if (!xlen) |
| return *this; |
| else if (RHS.isSingleWord()) |
| mul_1(pVal, pVal, xlen, RHS.VAL); |
| else { |
| first = RHS.getActiveBits(); |
| unsigned ylen = !first ? 0 : whichWord(first - 1) + 1; |
| if (!ylen) { |
| memset(pVal, 0, getNumWords() * 8); |
| return *this; |
| } |
| uint64_t *dest = new uint64_t[xlen+ylen]; |
| assert(dest && "Memory Allocation Failed!"); |
| mul(dest, pVal, xlen, RHS.pVal, ylen); |
| memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ? |
| getNumWords() : xlen + ylen) * 8); |
| delete[] dest; |
| } |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// @brief Bitwise AND assignment operator. Performs bitwise AND operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator&=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| if (RHS.isSingleWord()) VAL &= RHS.VAL; |
| else VAL &= RHS.pVal[0]; |
| } else { |
| if (RHS.isSingleWord()) { |
| memset(pVal, 0, (getNumWords() - 1) * 8); |
| pVal[0] &= RHS.VAL; |
| } else { |
| unsigned minwords = getNumWords() < RHS.getNumWords() ? |
| getNumWords() : RHS.getNumWords(); |
| for (unsigned i = 0; i < minwords; ++i) |
| pVal[i] &= RHS.pVal[i]; |
| if (getNumWords() > minwords) |
| memset(pVal+minwords, 0, (getNumWords() - minwords) * 8); |
| } |
| } |
| return *this; |
| } |
| |
| /// @brief Bitwise OR assignment operator. Performs bitwise OR operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator|=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| if (RHS.isSingleWord()) VAL |= RHS.VAL; |
| else VAL |= RHS.pVal[0]; |
| } else { |
| if (RHS.isSingleWord()) { |
| pVal[0] |= RHS.VAL; |
| } else { |
| unsigned minwords = getNumWords() < RHS.getNumWords() ? |
| getNumWords() : RHS.getNumWords(); |
| for (unsigned i = 0; i < minwords; ++i) |
| pVal[i] |= RHS.pVal[i]; |
| } |
| } |
| clearUnusedBits(); |
| return *this; |
| } |
| |
| /// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on |
| /// this APInt and the given APInt& RHS, assigns the result to this APInt. |
| APInt& APInt::operator^=(const APInt& RHS) { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| VAL ^= RHS.VAL; |
| return *this; |
| } |
| unsigned numWords = getNumWords(); |
| for (unsigned i = 0; i < numWords; ++i) |
| pVal[i] ^= RHS.pVal[i]; |
| return *this; |
| } |
| |
| /// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator&(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(RHS); |
| return API &= *this; |
| } |
| |
| /// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator|(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(RHS); |
| API |= *this; |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| /// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt |
| /// and the given APInt& RHS. |
| APInt APInt::operator^(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(RHS); |
| API ^= *this; |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| |
| /// @brief Logical negation operator. Performs logical negation operation on |
| /// this APInt. |
| bool APInt::operator !() const { |
| if (isSingleWord()) |
| return !VAL; |
| else |
| for (unsigned i = 0; i < getNumWords(); ++i) |
| if (pVal[i]) |
| return false; |
| return true; |
| } |
| |
| /// @brief Multiplication operator. Multiplies this APInt by the given APInt& |
| /// RHS. |
| APInt APInt::operator*(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(RHS); |
| API *= *this; |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| /// @brief Addition operator. Adds this APInt by the given APInt& RHS. |
| APInt APInt::operator+(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(*this); |
| API += RHS; |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| /// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS |
| APInt APInt::operator-(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| APInt API(*this); |
| API -= RHS; |
| return API; |
| } |
| |
| /// @brief Array-indexing support. |
| bool APInt::operator[](unsigned bitPosition) const { |
| return (maskBit(bitPosition) & (isSingleWord() ? |
| VAL : pVal[whichWord(bitPosition)])) != 0; |
| } |
| |
| /// @brief Equality operator. Compare this APInt with the given APInt& RHS |
| /// for the validity of the equality relationship. |
| bool APInt::operator==(const APInt& RHS) const { |
| unsigned n1 = getActiveBits(); |
| unsigned n2 = RHS.getActiveBits(); |
| if (n1 != n2) return false; |
| else if (isSingleWord()) |
| return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| else { |
| if (n1 <= APINT_BITS_PER_WORD) |
| return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]); |
| for (int i = whichWord(n1 - 1); i >= 0; --i) |
| if (pVal[i] != RHS.pVal[i]) return false; |
| } |
| return true; |
| } |
| |
| /// @brief Equality operator. Compare this APInt with the given uint64_t value |
| /// for the validity of the equality relationship. |
| bool APInt::operator==(uint64_t Val) const { |
| if (isSingleWord()) |
| return VAL == Val; |
| else { |
| unsigned n = getActiveBits(); |
| if (n <= APINT_BITS_PER_WORD) |
| return pVal[0] == Val; |
| else |
| return false; |
| } |
| } |
| |
| /// @brief Unsigned less than comparison |
| bool APInt::ult(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| if (isSingleWord()) |
| return VAL < RHS.VAL; |
| else { |
| unsigned n1 = getActiveBits(); |
| unsigned n2 = RHS.getActiveBits(); |
| if (n1 < n2) |
| return true; |
| else if (n2 < n1) |
| return false; |
| else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) |
| return pVal[0] < RHS.pVal[0]; |
| for (int i = whichWord(n1 - 1); i >= 0; --i) { |
| if (pVal[i] > RHS.pVal[i]) return false; |
| else if (pVal[i] < RHS.pVal[i]) return true; |
| } |
| } |
| return false; |
| } |
| |
| /// @brief Signed less than comparison |
| bool APInt::slt(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); |
| if (isSingleWord()) |
| return VAL < RHS.VAL; |
| else { |
| unsigned n1 = getActiveBits(); |
| unsigned n2 = RHS.getActiveBits(); |
| if (n1 < n2) |
| return true; |
| else if (n2 < n1) |
| return false; |
| else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) |
| return pVal[0] < RHS.pVal[0]; |
| for (int i = whichWord(n1 - 1); i >= 0; --i) { |
| if (pVal[i] > RHS.pVal[i]) return false; |
| else if (pVal[i] < RHS.pVal[i]) return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Set the given bit to 1 whose poition is given as "bitPosition". |
| /// @brief Set a given bit to 1. |
| APInt& APInt::set(unsigned bitPosition) { |
| if (isSingleWord()) VAL |= maskBit(bitPosition); |
| else pVal[whichWord(bitPosition)] |= maskBit(bitPosition); |
| return *this; |
| } |
| |
| /// @brief Set every bit to 1. |
| APInt& APInt::set() { |
| if (isSingleWord()) |
| VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth); |
| else { |
| for (unsigned i = 0; i < getNumWords() - 1; ++i) |
| pVal[i] = -1ULL; |
| pVal[getNumWords() - 1] = ~0ULL >> |
| (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD); |
| } |
| return *this; |
| } |
| |
| /// Set the given bit to 0 whose position is given as "bitPosition". |
| /// @brief Set a given bit to 0. |
| APInt& APInt::clear(unsigned bitPosition) { |
| if (isSingleWord()) VAL &= ~maskBit(bitPosition); |
| else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); |
| return *this; |
| } |
| |
| /// @brief Set every bit to 0. |
| APInt& APInt::clear() { |
| if (isSingleWord()) VAL = 0; |
| else |
| memset(pVal, 0, getNumWords() * 8); |
| return *this; |
| } |
| |
| /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on |
| /// this APInt. |
| APInt APInt::operator~() const { |
| APInt API(*this); |
| API.flip(); |
| return API; |
| } |
| |
| /// @brief Toggle every bit to its opposite value. |
| APInt& APInt::flip() { |
| if (isSingleWord()) VAL = (~(VAL << |
| (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth); |
| else { |
| unsigned i = 0; |
| for (; i < getNumWords() - 1; ++i) |
| pVal[i] = ~pVal[i]; |
| unsigned offset = |
| APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1)); |
| pVal[i] = (~(pVal[i] << offset)) >> offset; |
| } |
| return *this; |
| } |
| |
| /// Toggle a given bit to its opposite value whose position is given |
| /// as "bitPosition". |
| /// @brief Toggles a given bit to its opposite value. |
| APInt& APInt::flip(unsigned bitPosition) { |
| assert(bitPosition < BitWidth && "Out of the bit-width range!"); |
| if ((*this)[bitPosition]) clear(bitPosition); |
| else set(bitPosition); |
| return *this; |
| } |
| |
| /// to_string - This function translates the APInt into a string. |
| std::string APInt::toString(uint8_t radix, bool wantSigned) const { |
| assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| "Radix should be 2, 8, 10, or 16!"); |
| static const char *digits[] = { |
| "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" |
| }; |
| std::string result; |
| unsigned bits_used = getActiveBits(); |
| if (isSingleWord()) { |
| char buf[65]; |
| const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : |
| (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); |
| if (format) { |
| if (wantSigned) { |
| int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> |
| (APINT_BITS_PER_WORD-BitWidth); |
| sprintf(buf, format, sextVal); |
| } else |
| sprintf(buf, format, VAL); |
| } else { |
| memset(buf, 0, 65); |
| uint64_t v = VAL; |
| while (bits_used) { |
| unsigned bit = v & 1; |
| bits_used--; |
| buf[bits_used] = digits[bit][0]; |
| v >>=1; |
| } |
| } |
| result = buf; |
| return result; |
| } |
| |
| APInt tmp(*this); |
| APInt divisor(tmp.getBitWidth(), radix); |
| APInt zero(tmp.getBitWidth(), 0); |
| size_t insert_at = 0; |
| if (wantSigned && tmp[BitWidth-1]) { |
| // They want to print the signed version and it is a negative value |
| // Flip the bits and add one to turn it into the equivalent positive |
| // value and put a '-' in the result. |
| tmp.flip(); |
| tmp++; |
| result = "-"; |
| insert_at = 1; |
| } |
| if (tmp == 0) |
| result = "0"; |
| else while (tmp.ne(zero)) { |
| APInt APdigit = APIntOps::urem(tmp,divisor); |
| unsigned digit = APdigit.getValue(); |
| assert(digit < radix && "urem failed"); |
| result.insert(insert_at,digits[digit]); |
| tmp = APIntOps::udiv(tmp, divisor); |
| } |
| |
| return result; |
| } |
| |
| /// getMaxValue - This function returns the largest value |
| /// for an APInt of the specified bit-width and if isSign == true, |
| /// it should be largest signed value, otherwise unsigned value. |
| APInt APInt::getMaxValue(unsigned numBits, bool isSign) { |
| APInt APIVal(numBits, 0); |
| APIVal.set(); |
| if (isSign) APIVal.clear(numBits - 1); |
| return APIVal; |
| } |
| |
| /// getMinValue - This function returns the smallest value for |
| /// an APInt of the given bit-width and if isSign == true, |
| /// it should be smallest signed value, otherwise zero. |
| APInt APInt::getMinValue(unsigned numBits, bool isSign) { |
| APInt APIVal(numBits, 0); |
| if (isSign) APIVal.set(numBits - 1); |
| return APIVal; |
| } |
| |
| /// getAllOnesValue - This function returns an all-ones value for |
| /// an APInt of the specified bit-width. |
| APInt APInt::getAllOnesValue(unsigned numBits) { |
| return getMaxValue(numBits, false); |
| } |
| |
| /// getNullValue - This function creates an '0' value for an |
| /// APInt of the specified bit-width. |
| APInt APInt::getNullValue(unsigned numBits) { |
| return getMinValue(numBits, false); |
| } |
| |
| /// HiBits - This function returns the high "numBits" bits of this APInt. |
| APInt APInt::getHiBits(unsigned numBits) const { |
| return APIntOps::lshr(*this, BitWidth - numBits); |
| } |
| |
| /// LoBits - This function returns the low "numBits" bits of this APInt. |
| APInt APInt::getLoBits(unsigned numBits) const { |
| return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), |
| BitWidth - numBits); |
| } |
| |
| bool APInt::isPowerOf2() const { |
| return (!!*this) && !(*this & (*this - APInt(BitWidth,1))); |
| } |
| |
| /// countLeadingZeros - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countLeadingZeros_{32, 64}. It performs platform optimal form of counting |
| /// the number of zeros from the most significant bit to the first one bit. |
| /// @returns numWord() * 64 if the value is zero. |
| unsigned APInt::countLeadingZeros() const { |
| if (isSingleWord()) |
| return CountLeadingZeros_64(VAL) - (APINT_BITS_PER_WORD - BitWidth); |
| unsigned Count = 0; |
| for (unsigned i = getNumWords(); i > 0u; --i) { |
| unsigned tmp = CountLeadingZeros_64(pVal[i-1]); |
| Count += tmp; |
| if (tmp != APINT_BITS_PER_WORD) |
| if (i == getNumWords()) |
| Count -= (APINT_BITS_PER_WORD - whichBit(BitWidth)); |
| break; |
| } |
| return Count; |
| } |
| |
| /// countTrailingZeros - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countTrailingZeros_{32, 64}. It performs platform optimal form of counting |
| /// the number of zeros from the least significant bit to the first one bit. |
| /// @returns numWord() * 64 if the value is zero. |
| unsigned APInt::countTrailingZeros() const { |
| if (isSingleWord()) |
| return CountTrailingZeros_64(VAL); |
| APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) ); |
| return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros(); |
| } |
| |
| /// countPopulation - This function is a APInt version corresponding to |
| /// llvm/include/llvm/Support/MathExtras.h's function |
| /// countPopulation_{32, 64}. It counts the number of set bits in a value. |
| /// @returns 0 if the value is zero. |
| unsigned APInt::countPopulation() const { |
| if (isSingleWord()) |
| return CountPopulation_64(VAL); |
| unsigned Count = 0; |
| for (unsigned i = 0; i < getNumWords(); ++i) |
| Count += CountPopulation_64(pVal[i]); |
| return Count; |
| } |
| |
| |
| /// byteSwap - This function returns a byte-swapped representation of the |
| /// this APInt. |
| APInt APInt::byteSwap() const { |
| assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); |
| if (BitWidth == 16) |
| return APInt(BitWidth, ByteSwap_16(VAL)); |
| else if (BitWidth == 32) |
| return APInt(BitWidth, ByteSwap_32(VAL)); |
| else if (BitWidth == 48) { |
| uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF); |
| Tmp1 = ByteSwap_32(Tmp1); |
| uint64_t Tmp2 = (VAL >> 16) & 0xFFFF; |
| Tmp2 = ByteSwap_16(Tmp2); |
| return |
| APInt(BitWidth, |
| (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16)); |
| } else if (BitWidth == 64) |
| return APInt(BitWidth, ByteSwap_64(VAL)); |
| else { |
| APInt Result(BitWidth, 0); |
| char *pByte = (char*)Result.pVal; |
| for (unsigned i = 0; i < BitWidth / 8 / 2; ++i) { |
| char Tmp = pByte[i]; |
| pByte[i] = pByte[BitWidth / 8 - 1 - i]; |
| pByte[BitWidth / 8 - i - 1] = Tmp; |
| } |
| return Result; |
| } |
| } |
| |
| /// GreatestCommonDivisor - This function returns the greatest common |
| /// divisor of the two APInt values using Enclid's algorithm. |
| APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, |
| const APInt& API2) { |
| APInt A = API1, B = API2; |
| while (!!B) { |
| APInt T = B; |
| B = APIntOps::urem(A, B); |
| A = T; |
| } |
| return A; |
| } |
| |
| /// DoubleRoundToAPInt - This function convert a double value to |
| /// a APInt value. |
| APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) { |
| union { |
| double D; |
| uint64_t I; |
| } T; |
| T.D = Double; |
| bool isNeg = T.I >> 63; |
| int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; |
| if (exp < 0) |
| return APInt(64ull, 0u); |
| uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52); |
| if (exp < 52) |
| return isNeg ? -APInt(64u, mantissa >> (52 - exp)) : |
| APInt(64u, mantissa >> (52 - exp)); |
| APInt Tmp(exp + 1, mantissa); |
| Tmp = Tmp.shl(exp - 52); |
| return isNeg ? -Tmp : Tmp; |
| } |
| |
| /// RoundToDouble - This function convert this APInt to a double. |
| /// The layout for double is as following (IEEE Standard 754): |
| /// -------------------------------------- |
| /// | Sign Exponent Fraction Bias | |
| /// |-------------------------------------- | |
| /// | 1[63] 11[62-52] 52[51-00] 1023 | |
| /// -------------------------------------- |
| double APInt::roundToDouble(bool isSigned) const { |
| bool isNeg = isSigned ? (*this)[BitWidth-1] : false; |
| APInt Tmp(isNeg ? -(*this) : (*this)); |
| if (Tmp.isSingleWord()) |
| return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL); |
| unsigned n = Tmp.getActiveBits(); |
| if (n <= APINT_BITS_PER_WORD) |
| return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]); |
| // Exponent when normalized to have decimal point directly after |
| // leading one. This is stored excess 1023 in the exponent bit field. |
| uint64_t exp = n - 1; |
| |
| // Gross overflow. |
| assert(exp <= 1023 && "Infinity value!"); |
| |
| // Number of bits in mantissa including the leading one |
| // equals to 53. |
| uint64_t mantissa; |
| if (n % APINT_BITS_PER_WORD >= 53) |
| mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % APINT_BITS_PER_WORD - 53); |
| else |
| mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % APINT_BITS_PER_WORD)) | |
| (Tmp.pVal[whichWord(n - 1) - 1] >> |
| (11 + n % APINT_BITS_PER_WORD)); |
| // The leading bit of mantissa is implicit, so get rid of it. |
| mantissa &= ~(1ULL << 52); |
| uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; |
| exp += 1023; |
| union { |
| double D; |
| uint64_t I; |
| } T; |
| T.I = sign | (exp << 52) | mantissa; |
| return T.D; |
| } |
| |
| // Truncate to new width. |
| void APInt::trunc(unsigned width) { |
| assert(width < BitWidth && "Invalid APInt Truncate request"); |
| } |
| |
| // Sign extend to a new width. |
| void APInt::sext(unsigned width) { |
| assert(width > BitWidth && "Invalid APInt SignExtend request"); |
| } |
| |
| // Zero extend to a new width. |
| void APInt::zext(unsigned width) { |
| assert(width > BitWidth && "Invalid APInt ZeroExtend request"); |
| } |
| |
| /// Arithmetic right-shift this APInt by shiftAmt. |
| /// @brief Arithmetic right-shift function. |
| APInt APInt::ashr(unsigned shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL = |
| (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >> |
| (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) & |
| (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth)); |
| else { |
| if (shiftAmt >= API.BitWidth) { |
| memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, (API.getNumWords()-1) * 8); |
| API.pVal[API.getNumWords() - 1] = |
| ~uint64_t(0UL) >> |
| (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD); |
| } else { |
| unsigned i = 0; |
| for (; i < API.BitWidth - shiftAmt; ++i) |
| if (API[i+shiftAmt]) |
| API.set(i); |
| else |
| API.clear(i); |
| for (; i < API.BitWidth; ++i) |
| if (API[API.BitWidth-1]) |
| API.set(i); |
| else API.clear(i); |
| } |
| } |
| return API; |
| } |
| |
| /// Logical right-shift this APInt by shiftAmt. |
| /// @brief Logical right-shift function. |
| APInt APInt::lshr(unsigned shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL >>= shiftAmt; |
| else { |
| if (shiftAmt >= API.BitWidth) |
| memset(API.pVal, 0, API.getNumWords() * 8); |
| unsigned i = 0; |
| for (i = 0; i < API.BitWidth - shiftAmt; ++i) |
| if (API[i+shiftAmt]) API.set(i); |
| else API.clear(i); |
| for (; i < API.BitWidth; ++i) |
| API.clear(i); |
| } |
| return API; |
| } |
| |
| /// Left-shift this APInt by shiftAmt. |
| /// @brief Left-shift function. |
| APInt APInt::shl(unsigned shiftAmt) const { |
| APInt API(*this); |
| if (API.isSingleWord()) |
| API.VAL <<= shiftAmt; |
| else if (shiftAmt >= API.BitWidth) |
| memset(API.pVal, 0, API.getNumWords() * 8); |
| else { |
| if (unsigned offset = shiftAmt / APINT_BITS_PER_WORD) { |
| for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i) |
| API.pVal[i] = API.pVal[i-offset]; |
| memset(API.pVal, 0, offset * 8); |
| } |
| shiftAmt %= APINT_BITS_PER_WORD; |
| unsigned i; |
| for (i = API.getNumWords() - 1; i > 0; --i) |
| API.pVal[i] = (API.pVal[i] << shiftAmt) | |
| (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt)); |
| API.pVal[i] <<= shiftAmt; |
| } |
| API.clearUnusedBits(); |
| return API; |
| } |
| |
| /// subMul - This function substracts x[len-1:0] * y from |
| /// dest[offset+len-1:offset], and returns the most significant |
| /// word of the product, minus the borrow-out from the subtraction. |
| static unsigned subMul(unsigned dest[], unsigned offset, |
| unsigned x[], unsigned len, unsigned y) { |
| uint64_t yl = (uint64_t) y & 0xffffffffL; |
| unsigned carry = 0; |
| unsigned j = 0; |
| do { |
| uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl; |
| unsigned prod_low = (unsigned) prod; |
| unsigned prod_high = (unsigned) (prod >> 32); |
| prod_low += carry; |
| carry = (prod_low < carry ? 1 : 0) + prod_high; |
| unsigned x_j = dest[offset+j]; |
| prod_low = x_j - prod_low; |
| if (prod_low > x_j) ++carry; |
| dest[offset+j] = prod_low; |
| } while (++j < len); |
| return carry; |
| } |
| |
| /// unitDiv - This function divides N by D, |
| /// and returns (remainder << 32) | quotient. |
| /// Assumes (N >> 32) < D. |
| static uint64_t unitDiv(uint64_t N, unsigned D) { |
| uint64_t q, r; // q: quotient, r: remainder. |
| uint64_t a1 = N >> 32; // a1: high 32-bit part of N. |
| uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N |
| if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { |
| q = N / D; |
| r = N % D; |
| } |
| else { |
| // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d |
| uint64_t c = N - ((uint64_t) D << 31); |
| // Divide (c1*2^32 + c0) by d |
| q = c / D; |
| r = c % D; |
| // Add 2^31 to quotient |
| q += 1 << 31; |
| } |
| |
| return (r << 32) | (q & 0xFFFFFFFFl); |
| } |
| |
| /// div - This is basically Knuth's formulation of the classical algorithm. |
| /// Correspondance with Knuth's notation: |
| /// Knuth's u[0:m+n] == zds[nx:0]. |
| /// Knuth's v[1:n] == y[ny-1:0] |
| /// Knuth's n == ny. |
| /// Knuth's m == nx-ny. |
| /// Our nx == Knuth's m+n. |
| /// Could be re-implemented using gmp's mpn_divrem: |
| /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). |
| static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { |
| unsigned j = nx; |
| do { // loop over digits of quotient |
| // Knuth's j == our nx-j. |
| // Knuth's u[j:j+n] == our zds[j:j-ny]. |
| unsigned qhat; // treated as unsigned |
| if (zds[j] == y[ny-1]) |
| qhat = -1U; // 0xffffffff |
| else { |
| uint64_t w = (((uint64_t)(zds[j])) << 32) + |
| ((uint64_t)zds[j-1] & 0xffffffffL); |
| qhat = (unsigned) unitDiv(w, y[ny-1]); |
| } |
| if (qhat) { |
| unsigned borrow = subMul(zds, j - ny, y, ny, qhat); |
| unsigned save = zds[j]; |
| uint64_t num = ((uint64_t)save&0xffffffffL) - |
| ((uint64_t)borrow&0xffffffffL); |
| while (num) { |
| qhat--; |
| uint64_t carry = 0; |
| for (unsigned i = 0; i < ny; i++) { |
| carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) |
| + ((uint64_t) y[i] & 0xffffffffL); |
| zds[j-ny+i] = (unsigned) carry; |
| carry >>= 32; |
| } |
| zds[j] += carry; |
| num = carry - 1; |
| } |
| } |
| zds[j] = qhat; |
| } while (--j >= ny); |
| } |
| |
| /// Unsigned divide this APInt by APInt RHS. |
| /// @brief Unsigned division function for APInt. |
| APInt APInt::udiv(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| |
| // First, deal with the easy case |
| if (isSingleWord()) { |
| assert(RHS.VAL != 0 && "Divide by zero?"); |
| return APInt(BitWidth, VAL / RHS.VAL); |
| } |
| |
| // Make a temporary to hold the result |
| APInt Result(*this); |
| |
| // Get some facts about the LHS and RHS number of bits and words |
| unsigned rhsBits = RHS.getActiveBits(); |
| unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| assert(rhsWords && "Divided by zero???"); |
| unsigned lhsBits = Result.getActiveBits(); |
| unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); |
| |
| // Deal with some degenerate cases |
| if (!lhsWords) |
| return Result; // 0 / X == 0 |
| else if (lhsWords < rhsWords || Result.ult(RHS)) |
| // X / Y with X < Y == 0 |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| else if (Result == RHS) { |
| // X / X == 1 |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| Result.pVal[0] = 1; |
| } else if (lhsWords == 1) |
| // All high words are zero, just use native divide |
| Result.pVal[0] /= RHS.pVal[0]; |
| else { |
| // Compute it the hard way .. |
| APInt X(BitWidth, 0); |
| APInt Y(BitWidth, 0); |
| unsigned nshift = |
| (APINT_BITS_PER_WORD - 1) - ((rhsBits - 1) % APINT_BITS_PER_WORD ); |
| if (nshift) { |
| Y = APIntOps::shl(RHS, nshift); |
| X = APIntOps::shl(Result, nshift); |
| ++lhsWords; |
| } |
| div((unsigned*)X.pVal, lhsWords * 2 - 1, |
| (unsigned*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| memcpy(Result.pVal, X.pVal + rhsWords, (lhsWords - rhsWords) * 8); |
| } |
| return Result; |
| } |
| |
| /// Unsigned remainder operation on APInt. |
| /// @brief Function for unsigned remainder operation. |
| APInt APInt::urem(const APInt& RHS) const { |
| assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| if (isSingleWord()) { |
| assert(RHS.VAL != 0 && "Remainder by zero?"); |
| return APInt(BitWidth, VAL % RHS.VAL); |
| } |
| |
| // Make a temporary to hold the result |
| APInt Result(*this); |
| |
| // Get some facts about the RHS |
| unsigned rhsBits = RHS.getActiveBits(); |
| unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); |
| assert(rhsWords && "Performing remainder operation by zero ???"); |
| |
| // Get some facts about the LHS |
| unsigned lhsBits = Result.getActiveBits(); |
| unsigned lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1); |
| |
| // Check the degenerate cases |
| if (lhsWords == 0) |
| // 0 % Y == 0 |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| else if (lhsWords < rhsWords || Result.ult(RHS)) |
| // X % Y == X iff X < Y |
| return Result; |
| else if (Result == RHS) |
| // X % X == 0; |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| else if (lhsWords == 1) |
| // All high words are zero, just use native remainder |
| Result.pVal[0] %= RHS.pVal[0]; |
| else { |
| // Do it the hard way |
| APInt X((lhsWords+1)*APINT_BITS_PER_WORD, 0); |
| APInt Y(rhsWords*APINT_BITS_PER_WORD, 0); |
| unsigned nshift = |
| (APINT_BITS_PER_WORD - 1) - (rhsBits - 1) % APINT_BITS_PER_WORD; |
| if (nshift) { |
| APIntOps::shl(Y, nshift); |
| APIntOps::shl(X, nshift); |
| } |
| div((unsigned*)X.pVal, rhsWords*2-1, |
| (unsigned*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); |
| memset(Result.pVal, 0, Result.getNumWords() * 8); |
| for (unsigned i = 0; i < rhsWords-1; ++i) |
| Result.pVal[i] = (X.pVal[i] >> nshift) | |
| (X.pVal[i+1] << (APINT_BITS_PER_WORD - nshift)); |
| Result.pVal[rhsWords-1] = X.pVal[rhsWords-1] >> nshift; |
| } |
| return Result; |
| } |
| |
| /// @brief Converts a char array into an integer. |
| void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen, |
| uint8_t radix) { |
| assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && |
| "Radix should be 2, 8, 10, or 16!"); |
| assert(StrStart && "String is null?"); |
| unsigned size = 0; |
| // If the radix is a power of 2, read the input |
| // from most significant to least significant. |
| if ((radix & (radix - 1)) == 0) { |
| unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; |
| uint64_t resDigit = 0; |
| BitWidth = slen * bits_per_digit; |
| if (getNumWords() > 1) |
| assert((pVal = new uint64_t[getNumWords()]) && |
| "APInt memory allocation fails!"); |
| for (int i = slen - 1; i >= 0; --i) { |
| uint64_t digit = StrStart[i] - '0'; |
| resDigit |= digit << nextBitPos; |
| nextBitPos += bits_per_digit; |
| if (nextBitPos >= APINT_BITS_PER_WORD) { |
| if (isSingleWord()) { |
| VAL = resDigit; |
| break; |
| } |
| pVal[size++] = resDigit; |
| nextBitPos -= APINT_BITS_PER_WORD; |
| resDigit = digit >> (bits_per_digit - nextBitPos); |
| } |
| } |
| if (!isSingleWord() && size <= getNumWords()) |
| pVal[size] = resDigit; |
| } else { // General case. The radix is not a power of 2. |
| // For 10-radix, the max value of 64-bit integer is 18446744073709551615, |
| // and its digits number is 20. |
| const unsigned chars_per_word = 20; |
| if (slen < chars_per_word || |
| (slen == chars_per_word && // In case the value <= 2^64 - 1 |
| strcmp(StrStart, "18446744073709551615") <= 0)) { |
| BitWidth = APINT_BITS_PER_WORD; |
| VAL = strtoull(StrStart, 0, 10); |
| } else { // In case the value > 2^64 - 1 |
| BitWidth = (slen / chars_per_word + 1) * APINT_BITS_PER_WORD; |
| assert((pVal = new uint64_t[getNumWords()]) && |
| "APInt memory allocation fails!"); |
| memset(pVal, 0, getNumWords() * 8); |
| unsigned str_pos = 0; |
| while (str_pos < slen) { |
| unsigned chunk = slen - str_pos; |
| if (chunk > chars_per_word - 1) |
| chunk = chars_per_word - 1; |
| uint64_t resDigit = StrStart[str_pos++] - '0'; |
| uint64_t big_base = radix; |
| while (--chunk > 0) { |
| resDigit = resDigit * radix + StrStart[str_pos++] - '0'; |
| big_base *= radix; |
| } |
| |
| uint64_t carry; |
| if (!size) |
| carry = resDigit; |
| else { |
| carry = mul_1(pVal, pVal, size, big_base); |
| carry += add_1(pVal, pVal, size, resDigit); |
| } |
| |
| if (carry) pVal[size++] = carry; |
| } |
| } |
| } |
| } |
| |