| //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===// | 
 | //  | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | //  | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a value numbering pass that value numbers load and call | 
 | // instructions.  To do this, it finds lexically identical load instructions, | 
 | // and uses alias analysis to determine which loads are guaranteed to produce | 
 | // the same value.  To value number call instructions, it looks for calls to | 
 | // functions that do not write to memory which do not have intervening | 
 | // instructions that clobber the memory that is read from. | 
 | // | 
 | // This pass builds off of another value numbering pass to implement value | 
 | // numbering for non-load and non-call instructions.  It uses Alias Analysis so | 
 | // that it can disambiguate the load instructions.  The more powerful these base | 
 | // analyses are, the more powerful the resultant value numbering will be. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/LoadValueNumbering.h" | 
 | #include "llvm/Constant.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Type.h" | 
 | #include "llvm/Analysis/ValueNumbering.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include <set> | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   // FIXME: This should not be a FunctionPass. | 
 |   struct LoadVN : public FunctionPass, public ValueNumbering { | 
 |      | 
 |     /// Pass Implementation stuff.  This doesn't do any analysis. | 
 |     /// | 
 |     bool runOnFunction(Function &) { return false; } | 
 |      | 
 |     /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering | 
 |     /// and Alias Analysis. | 
 |     /// | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
 |      | 
 |     /// getEqualNumberNodes - Return nodes with the same value number as the | 
 |     /// specified Value.  This fills in the argument vector with any equal | 
 |     /// values. | 
 |     /// | 
 |     virtual void getEqualNumberNodes(Value *V1, | 
 |                                      std::vector<Value*> &RetVals) const; | 
 |  | 
 |     /// deleteValue - This method should be called whenever an LLVM Value is | 
 |     /// deleted from the program, for example when an instruction is found to be | 
 |     /// redundant and is eliminated. | 
 |     /// | 
 |     virtual void deleteValue(Value *V) { | 
 |       getAnalysis<AliasAnalysis>().deleteValue(V); | 
 |     } | 
 |      | 
 |     /// copyValue - This method should be used whenever a preexisting value in | 
 |     /// the program is copied or cloned, introducing a new value.  Note that | 
 |     /// analysis implementations should tolerate clients that use this method to | 
 |     /// introduce the same value multiple times: if the analysis already knows | 
 |     /// about a value, it should ignore the request. | 
 |     /// | 
 |     virtual void copyValue(Value *From, Value *To) { | 
 |       getAnalysis<AliasAnalysis>().copyValue(From, To); | 
 |     } | 
 |  | 
 |     /// getCallEqualNumberNodes - Given a call instruction, find other calls | 
 |     /// that have the same value number. | 
 |     void getCallEqualNumberNodes(CallInst *CI, | 
 |                                  std::vector<Value*> &RetVals) const; | 
 |   }; | 
 |  | 
 |   // Register this pass... | 
 |   RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering"); | 
 |  | 
 |   // Declare that we implement the ValueNumbering interface | 
 |   RegisterAnalysisGroup<ValueNumbering, LoadVN> Y; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); } | 
 |  | 
 |  | 
 | /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering and | 
 | /// Alias Analysis. | 
 | /// | 
 | void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<AliasAnalysis>(); | 
 |   AU.addRequired<ValueNumbering>(); | 
 |   AU.addRequired<DominatorSet>(); | 
 |   AU.addRequired<TargetData>(); | 
 | } | 
 |  | 
 | static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom, | 
 |                                 Value *Ptr, unsigned Size, AliasAnalysis &AA, | 
 |                                 std::set<BasicBlock*> &Visited, | 
 |                                 std::map<BasicBlock*, bool> &TransparentBlocks){ | 
 |   // If we have already checked out this path, or if we reached our destination, | 
 |   // stop searching, returning success. | 
 |   if (CurBlock == Dom || !Visited.insert(CurBlock).second) | 
 |     return true; | 
 |    | 
 |   // Check whether this block is known transparent or not. | 
 |   std::map<BasicBlock*, bool>::iterator TBI = | 
 |     TransparentBlocks.lower_bound(CurBlock); | 
 |  | 
 |   if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) { | 
 |     // If this basic block can modify the memory location, then the path is not | 
 |     // transparent! | 
 |     if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) { | 
 |       TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false)); | 
 |       return false; | 
 |     } | 
 |     TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true)); | 
 |   } else if (!TBI->second) | 
 |     // This block is known non-transparent, so that path can't be either. | 
 |     return false; | 
 |    | 
 |   // The current block is known to be transparent.  The entire path is | 
 |   // transparent if all of the predecessors paths to the parent is also | 
 |   // transparent to the memory location. | 
 |   for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock); | 
 |        PI != E; ++PI) | 
 |     if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited, | 
 |                              TransparentBlocks)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// getCallEqualNumberNodes - Given a call instruction, find other calls that | 
 | /// have the same value number. | 
 | void LoadVN::getCallEqualNumberNodes(CallInst *CI, | 
 |                                      std::vector<Value*> &RetVals) const { | 
 |   Function *CF = CI->getCalledFunction(); | 
 |   if (CF == 0) return;  // Indirect call. | 
 |   AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); | 
 |   if (!AA.onlyReadsMemory(CF)) return;  // Nothing we can do. | 
 |  | 
 |   // Scan all of the arguments of the function, looking for one that is not | 
 |   // global.  In particular, we would prefer to have an argument or instruction | 
 |   // operand to chase the def-use chains of. | 
 |   Value *Op = CF; | 
 |   for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) | 
 |     if (isa<Argument>(CI->getOperand(i)) || | 
 |         isa<Instruction>(CI->getOperand(i))) { | 
 |       Op = CI->getOperand(i); | 
 |       break; | 
 |     } | 
 |  | 
 |   // Identify all lexically identical calls in this function. | 
 |   std::vector<CallInst*> IdenticalCalls; | 
 |  | 
 |   Function *CIFunc = CI->getParent()->getParent(); | 
 |   for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E; | 
 |        ++UI) | 
 |     if (CallInst *C = dyn_cast<CallInst>(*UI)) | 
 |       if (C->getNumOperands() == CI->getNumOperands() && | 
 |           C->getOperand(0) == CI->getOperand(0) && | 
 |           C->getParent()->getParent() == CIFunc && C != CI) { | 
 |         bool AllOperandsEqual = true; | 
 |         for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) | 
 |           if (C->getOperand(i) != CI->getOperand(i)) { | 
 |             AllOperandsEqual = false; | 
 |             break; | 
 |           } | 
 |  | 
 |         if (AllOperandsEqual) | 
 |           IdenticalCalls.push_back(C); | 
 |       } | 
 |    | 
 |   if (IdenticalCalls.empty()) return; | 
 |  | 
 |   // Eliminate duplicates, which could occur if we chose a value that is passed | 
 |   // into a call site multiple times. | 
 |   std::sort(IdenticalCalls.begin(), IdenticalCalls.end()); | 
 |   IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()), | 
 |                        IdenticalCalls.end()); | 
 |  | 
 |   // If the call reads memory, we must make sure that there are no stores | 
 |   // between the calls in question. | 
 |   // | 
 |   // FIXME: This should use mod/ref information.  What we really care about it | 
 |   // whether an intervening instruction could modify memory that is read, not | 
 |   // ANY memory. | 
 |   // | 
 |   if (!AA.doesNotAccessMemory(CF)) { | 
 |     DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); | 
 |     BasicBlock *CIBB = CI->getParent(); | 
 |     for (unsigned i = 0; i != IdenticalCalls.size(); ++i) { | 
 |       CallInst *C = IdenticalCalls[i]; | 
 |       bool CantEqual = false; | 
 |  | 
 |       if (DomSetInfo.dominates(CIBB, C->getParent())) { | 
 |         // FIXME: we currently only handle the case where both calls are in the | 
 |         // same basic block. | 
 |         if (CIBB != C->getParent()) { | 
 |           CantEqual = true; | 
 |         } else { | 
 |           Instruction *First = CI, *Second = C; | 
 |           if (!DomSetInfo.dominates(CI, C)) | 
 |             std::swap(First, Second); | 
 |            | 
 |           // Scan the instructions between the calls, checking for stores or | 
 |           // calls to dangerous functions. | 
 |           BasicBlock::iterator I = First; | 
 |           for (++First; I != BasicBlock::iterator(Second); ++I) { | 
 |             if (isa<StoreInst>(I)) { | 
 |               // FIXME: We could use mod/ref information to make this much | 
 |               // better! | 
 |               CantEqual = true; | 
 |               break; | 
 |             } else if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
 |               if (CI->getCalledFunction() == 0 || | 
 |                   !AA.onlyReadsMemory(CI->getCalledFunction())) { | 
 |                 CantEqual = true; | 
 |                 break; | 
 |               } | 
 |             } else if (I->mayWriteToMemory()) { | 
 |               CantEqual = true; | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |       } else if (DomSetInfo.dominates(C->getParent(), CIBB)) { | 
 |         // FIXME: We could implement this, but we don't for now. | 
 |         CantEqual = true; | 
 |       } else { | 
 |         // FIXME: if one doesn't dominate the other, we can't tell yet. | 
 |         CantEqual = true; | 
 |       } | 
 |  | 
 |  | 
 |       if (CantEqual) { | 
 |         // This call does not produce the same value as the one in the query. | 
 |         std::swap(IdenticalCalls[i--], IdenticalCalls.back()); | 
 |         IdenticalCalls.pop_back(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Any calls that are identical and not destroyed will produce equal values! | 
 |   for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i) | 
 |     RetVals.push_back(IdenticalCalls[i]); | 
 | } | 
 |  | 
 | // getEqualNumberNodes - Return nodes with the same value number as the | 
 | // specified Value.  This fills in the argument vector with any equal values. | 
 | // | 
 | void LoadVN::getEqualNumberNodes(Value *V, | 
 |                                  std::vector<Value*> &RetVals) const { | 
 |   // If the alias analysis has any must alias information to share with us, we | 
 |   // can definitely use it. | 
 |   if (isa<PointerType>(V->getType())) | 
 |     getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals); | 
 |  | 
 |   if (!isa<LoadInst>(V)) { | 
 |     if (CallInst *CI = dyn_cast<CallInst>(V)) | 
 |       getCallEqualNumberNodes(CI, RetVals); | 
 |  | 
 |     // Not a load instruction?  Just chain to the base value numbering | 
 |     // implementation to satisfy the request... | 
 |     assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this && | 
 |            "getAnalysis() returned this!"); | 
 |  | 
 |     return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); | 
 |   } | 
 |  | 
 |   // Volatile loads cannot be replaced with the value of other loads. | 
 |   LoadInst *LI = cast<LoadInst>(V); | 
 |   if (LI->isVolatile()) | 
 |     return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals); | 
 |    | 
 |   // If we have a load instruction, find all of the load and store instructions | 
 |   // that use the same source operand.  We implement this recursively, because | 
 |   // there could be a load of a load of a load that are all identical.  We are | 
 |   // guaranteed that this cannot be an infinite recursion because load | 
 |   // instructions would have to pass through a PHI node in order for there to be | 
 |   // a cycle.  The PHI node would be handled by the else case here, breaking the | 
 |   // infinite recursion. | 
 |   // | 
 |   std::vector<Value*> PointerSources; | 
 |   getEqualNumberNodes(LI->getOperand(0), PointerSources); | 
 |   PointerSources.push_back(LI->getOperand(0)); | 
 |    | 
 |   BasicBlock *LoadBB = LI->getParent(); | 
 |   Function *F = LoadBB->getParent(); | 
 |    | 
 |   // Now that we know the set of equivalent source pointers for the load | 
 |   // instruction, look to see if there are any load or store candidates that are | 
 |   // identical. | 
 |   // | 
 |   std::map<BasicBlock*, std::vector<LoadInst*> >  CandidateLoads; | 
 |   std::map<BasicBlock*, std::vector<StoreInst*> > CandidateStores; | 
 |   std::set<AllocationInst*> Allocations; | 
 |    | 
 |   while (!PointerSources.empty()) { | 
 |     Value *Source = PointerSources.back(); | 
 |     PointerSources.pop_back();                // Get a source pointer... | 
 |  | 
 |     if (AllocationInst *AI = dyn_cast<AllocationInst>(Source)) | 
 |       Allocations.insert(AI); | 
 |      | 
 |     for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end(); | 
 |          UI != UE; ++UI) | 
 |       if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source? | 
 |         if (Cand->getParent()->getParent() == F &&   // In the same function? | 
 |             Cand != LI && !Cand->isVolatile())       // Not LI itself? | 
 |           CandidateLoads[Cand->getParent()].push_back(Cand);     // Got one... | 
 |       } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) { | 
 |         if (Cand->getParent()->getParent() == F && !Cand->isVolatile() && | 
 |             Cand->getOperand(1) == Source)  // It's a store THROUGH the ptr... | 
 |           CandidateStores[Cand->getParent()].push_back(Cand); | 
 |       } | 
 |   } | 
 |    | 
 |   // Get alias analysis & dominators. | 
 |   AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); | 
 |   DominatorSet &DomSetInfo = getAnalysis<DominatorSet>(); | 
 |   Value *LoadPtr = LI->getOperand(0); | 
 |   // Find out how many bytes of memory are loaded by the load instruction... | 
 |   unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType()); | 
 |  | 
 |   // Find all of the candidate loads and stores that are in the same block as | 
 |   // the defining instruction. | 
 |   std::set<Instruction*> Instrs; | 
 |   Instrs.insert(CandidateLoads[LoadBB].begin(), CandidateLoads[LoadBB].end()); | 
 |   CandidateLoads.erase(LoadBB); | 
 |   Instrs.insert(CandidateStores[LoadBB].begin(), CandidateStores[LoadBB].end()); | 
 |   CandidateStores.erase(LoadBB); | 
 |  | 
 |   // Figure out if the load is invalidated from the entry of the block it is in | 
 |   // until the actual instruction.  This scans the block backwards from LI.  If | 
 |   // we see any candidate load or store instructions, then we know that the | 
 |   // candidates have the same value # as LI. | 
 |   bool LoadInvalidatedInBBBefore = false; | 
 |   for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) { | 
 |     --I; | 
 |     // If this instruction is a candidate load before LI, we know there are no | 
 |     // invalidating instructions between it and LI, so they have the same value | 
 |     // number. | 
 |     if (isa<LoadInst>(I) && Instrs.count(I)) { | 
 |       RetVals.push_back(I); | 
 |       Instrs.erase(I); | 
 |     } else if (AllocationInst *AI = dyn_cast<AllocationInst>(I)) { | 
 |       // If we run into an allocation of the value being loaded, then the | 
 |       // contenxt are not initialized.  We can return any value, so we will | 
 |       // return a zero. | 
 |       if (Allocations.count(AI)) { | 
 |         LoadInvalidatedInBBBefore = true; | 
 |         RetVals.push_back(Constant::getNullValue(LI->getType())); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
 |       // If the invalidating instruction is a store, and its in our candidate | 
 |       // set, then we can do store-load forwarding: the load has the same value | 
 |       // # as the stored value. | 
 |       if (isa<StoreInst>(I) && Instrs.count(I)) { | 
 |         Instrs.erase(I); | 
 |         RetVals.push_back(I->getOperand(0)); | 
 |       } | 
 |  | 
 |       LoadInvalidatedInBBBefore = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Figure out if the load is invalidated between the load and the exit of the | 
 |   // block it is defined in.  While we are scanning the current basic block, if | 
 |   // we see any candidate loads, then we know they have the same value # as LI. | 
 |   // | 
 |   bool LoadInvalidatedInBBAfter = false; | 
 |   for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) { | 
 |     // If this instruction is a load, then this instruction returns the same | 
 |     // value as LI. | 
 |     if (isa<LoadInst>(I) && Instrs.count(I)) { | 
 |       RetVals.push_back(I); | 
 |       Instrs.erase(I); | 
 |     } | 
 |  | 
 |     if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
 |       LoadInvalidatedInBBAfter = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If there is anything left in the Instrs set, it could not possibly equal | 
 |   // LI. | 
 |   Instrs.clear(); | 
 |  | 
 |   // TransparentBlocks - For each basic block the load/store is alive across, | 
 |   // figure out if the pointer is invalidated or not.  If it is invalidated, the | 
 |   // boolean is set to false, if it's not it is set to true.  If we don't know | 
 |   // yet, the entry is not in the map. | 
 |   std::map<BasicBlock*, bool> TransparentBlocks; | 
 |  | 
 |   // Loop over all of the basic blocks that also load the value.  If the value | 
 |   // is live across the CFG from the source to destination blocks, and if the | 
 |   // value is not invalidated in either the source or destination blocks, add it | 
 |   // to the equivalence sets. | 
 |   for (std::map<BasicBlock*, std::vector<LoadInst*> >::iterator | 
 |          I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) { | 
 |     bool CantEqual = false; | 
 |  | 
 |     // Right now we only can handle cases where one load dominates the other. | 
 |     // FIXME: generalize this! | 
 |     BasicBlock *BB1 = I->first, *BB2 = LoadBB; | 
 |     if (DomSetInfo.dominates(BB1, BB2)) { | 
 |       // The other load dominates LI.  If the loaded value is killed entering | 
 |       // the LoadBB block, we know the load is not live. | 
 |       if (LoadInvalidatedInBBBefore) | 
 |         CantEqual = true; | 
 |     } else if (DomSetInfo.dominates(BB2, BB1)) { | 
 |       std::swap(BB1, BB2);          // Canonicalize | 
 |       // LI dominates the other load.  If the loaded value is killed exiting | 
 |       // the LoadBB block, we know the load is not live. | 
 |       if (LoadInvalidatedInBBAfter) | 
 |         CantEqual = true; | 
 |     } else { | 
 |       // None of these loads can VN the same. | 
 |       CantEqual = true; | 
 |     } | 
 |  | 
 |     if (!CantEqual) { | 
 |       // Ok, at this point, we know that BB1 dominates BB2, and that there is | 
 |       // nothing in the LI block that kills the loaded value.  Check to see if | 
 |       // the value is live across the CFG. | 
 |       std::set<BasicBlock*> Visited; | 
 |       for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI) | 
 |         if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA, | 
 |                                  Visited, TransparentBlocks)) { | 
 |           // None of these loads can VN the same. | 
 |           CantEqual = true; | 
 |           break; | 
 |         } | 
 |     } | 
 |  | 
 |     // If the loads can equal so far, scan the basic block that contains the | 
 |     // loads under consideration to see if they are invalidated in the block. | 
 |     // For any loads that are not invalidated, add them to the equivalence | 
 |     // set! | 
 |     if (!CantEqual) { | 
 |       Instrs.insert(I->second.begin(), I->second.end()); | 
 |       if (BB1 == LoadBB) { | 
 |         // If LI dominates the block in question, check to see if any of the | 
 |         // loads in this block are invalidated before they are reached. | 
 |         for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) { | 
 |           if (isa<LoadInst>(BBI) && Instrs.count(BBI)) { | 
 |             // The load is in the set! | 
 |             RetVals.push_back(BBI); | 
 |             Instrs.erase(BBI); | 
 |             if (Instrs.empty()) break; | 
 |           } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) | 
 |                              & AliasAnalysis::Mod) { | 
 |             // If there is a modifying instruction, nothing below it will value | 
 |             // # the same. | 
 |             break; | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // If the block dominates LI, make sure that the loads in the block are | 
 |         // not invalidated before the block ends. | 
 |         BasicBlock::iterator BBI = I->first->end(); | 
 |         while (1) { | 
 |           --BBI; | 
 |           if (isa<LoadInst>(BBI) && Instrs.count(BBI)) { | 
 |             // The load is in the set! | 
 |             RetVals.push_back(BBI); | 
 |             Instrs.erase(BBI); | 
 |             if (Instrs.empty()) break; | 
 |           } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) | 
 |                              & AliasAnalysis::Mod) { | 
 |             // If there is a modifying instruction, nothing above it will value | 
 |             // # the same. | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       Instrs.clear(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle candidate stores.  If the loaded location is clobbered on entrance | 
 |   // to the LoadBB, no store outside of the LoadBB can value number equal, so | 
 |   // quick exit. | 
 |   if (LoadInvalidatedInBBBefore) | 
 |     return; | 
 |  | 
 |   for (std::map<BasicBlock*, std::vector<StoreInst*> >::iterator | 
 |          I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I) | 
 |     if (DomSetInfo.dominates(I->first, LoadBB)) { | 
 |       // Check to see if the path from the store to the load is transparent | 
 |       // w.r.t. the memory location. | 
 |       bool CantEqual = false; | 
 |       std::set<BasicBlock*> Visited; | 
 |       for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); | 
 |            PI != E; ++PI) | 
 |         if (!isPathTransparentTo(*PI, I->first, LoadPtr, LoadSize, AA, | 
 |                                  Visited, TransparentBlocks)) { | 
 |           // None of these stores can VN the same. | 
 |           CantEqual = true; | 
 |           break; | 
 |         } | 
 |       Visited.clear(); | 
 |       if (!CantEqual) { | 
 |         // Okay, the path from the store block to the load block is clear, and | 
 |         // we know that there are no invalidating instructions from the start | 
 |         // of the load block to the load itself.  Now we just scan the store | 
 |         // block. | 
 |  | 
 |         BasicBlock::iterator BBI = I->first->end(); | 
 |         while (1) { | 
 |           assert(BBI != I->first->begin() && | 
 |                  "There is a store in this block of the pointer, but the store" | 
 |                  " doesn't mod the address being stored to??  Must be a bug in" | 
 |                  " the alias analysis implementation!"); | 
 |           --BBI; | 
 |           if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) { | 
 |             // If the invalidating instruction is one of the candidates, | 
 |             // then it provides the value the load loads. | 
 |             if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) | 
 |               if (std::find(I->second.begin(), I->second.end(), SI) != | 
 |                   I->second.end()) | 
 |                 RetVals.push_back(SI->getOperand(0)); | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 | } |