blob: adc8903541d2ee3dd520f9b6840549bb04fbd440 [file] [log] [blame]
//===- InstrScheduling.cpp - Generic Instruction Scheduling support -------===//
//
// This file implements the llvm/CodeGen/InstrScheduling.h interface, along with
// generic support routines for instruction scheduling.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h" // FIXME: Remove when AnalysisUsage sets can be symbolic!
#include "llvm/Target/TargetMachine.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
#include "SchedPriorities.h"
#include <ext/hash_set>
#include <algorithm>
#include <iterator>
#include <iostream>
using std::cerr;
using std::vector;
//************************* External Data Types *****************************/
cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
"enable instruction scheduling debugging information",
clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Sched_Disable, "off", "disable instruction scheduling"),
clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
//************************* Internal Data Types *****************************/
class InstrSchedule;
class SchedulingManager;
//----------------------------------------------------------------------
// class InstrGroup:
//
// Represents a group of instructions scheduled to be issued
// in a single cycle.
//----------------------------------------------------------------------
class InstrGroup: public NonCopyable {
public:
inline const SchedGraphNode* operator[](unsigned int slotNum) const {
assert(slotNum < group.size());
return group[slotNum];
}
private:
friend class InstrSchedule;
inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
assert(slotNum < group.size());
group[slotNum] = node;
}
/*ctor*/ InstrGroup(unsigned int nslots)
: group(nslots, NULL) {}
/*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
private:
vector<const SchedGraphNode*> group;
};
//----------------------------------------------------------------------
// class ScheduleIterator:
//
// Iterates over the machine instructions in the for a single basic block.
// The schedule is represented by an InstrSchedule object.
//----------------------------------------------------------------------
template<class _NodeType>
class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
private:
unsigned cycleNum;
unsigned slotNum;
const InstrSchedule& S;
public:
typedef ScheduleIterator<_NodeType> _Self;
/*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
unsigned _cycleNum,
unsigned _slotNum)
: cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
skipToNextInstr();
}
/*ctor*/ inline ScheduleIterator(const _Self& x)
: cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
inline bool operator==(const _Self& x) const {
return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline _NodeType* operator*() const {
assert(cycleNum < S.groups.size());
return (*S.groups[cycleNum])[slotNum];
}
inline _NodeType* operator->() const { return operator*(); }
_Self& operator++(); // Preincrement
inline _Self operator++(int) { // Postincrement
_Self tmp(*this); ++*this; return tmp;
}
static _Self begin(const InstrSchedule& _schedule);
static _Self end( const InstrSchedule& _schedule);
private:
inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
void skipToNextInstr();
};
//----------------------------------------------------------------------
// class InstrSchedule:
//
// Represents the schedule of machine instructions for a single basic block.
//----------------------------------------------------------------------
class InstrSchedule: public NonCopyable {
private:
const unsigned int nslots;
unsigned int numInstr;
vector<InstrGroup*> groups; // indexed by cycle number
vector<cycles_t> startTime; // indexed by node id
public: // iterators
typedef ScheduleIterator<SchedGraphNode> iterator;
typedef ScheduleIterator<const SchedGraphNode> const_iterator;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
public: // constructors and destructor
/*ctor*/ InstrSchedule (unsigned int _nslots,
unsigned int _numNodes);
/*dtor*/ ~InstrSchedule ();
public: // accessor functions to query chosen schedule
const SchedGraphNode* getInstr (unsigned int slotNum,
cycles_t c) const {
const InstrGroup* igroup = this->getIGroup(c);
return (igroup == NULL)? NULL : (*igroup)[slotNum];
}
inline InstrGroup* getIGroup (cycles_t c) {
if ((unsigned)c >= groups.size())
groups.resize(c+1);
if (groups[c] == NULL)
groups[c] = new InstrGroup(nslots);
return groups[c];
}
inline const InstrGroup* getIGroup (cycles_t c) const {
assert((unsigned)c < groups.size());
return groups[c];
}
inline cycles_t getStartTime (unsigned int nodeId) const {
assert(nodeId < startTime.size());
return startTime[nodeId];
}
unsigned int getNumInstructions() const {
return numInstr;
}
inline void scheduleInstr (const SchedGraphNode* node,
unsigned int slotNum,
cycles_t cycle) {
InstrGroup* igroup = this->getIGroup(cycle);
assert((*igroup)[slotNum] == NULL && "Slot already filled?");
igroup->addInstr(node, slotNum);
assert(node->getNodeId() < startTime.size());
startTime[node->getNodeId()] = cycle;
++numInstr;
}
private:
friend class iterator;
friend class const_iterator;
/*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
};
/*ctor*/
InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
: nslots(_nslots),
numInstr(0),
groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
startTime(_numNodes, (cycles_t) -1) // set all to -1
{
}
/*dtor*/
InstrSchedule::~InstrSchedule()
{
for (unsigned c=0, NC=groups.size(); c < NC; c++)
if (groups[c] != NULL)
delete groups[c]; // delete InstrGroup objects
}
template<class _NodeType>
inline
void
ScheduleIterator<_NodeType>::skipToNextInstr()
{
while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
++cycleNum; // skip cycles with no instructions
while (cycleNum < S.groups.size() &&
(*S.groups[cycleNum])[slotNum] == NULL)
{
++slotNum;
if (slotNum == S.nslots)
{
++cycleNum;
slotNum = 0;
while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
++cycleNum; // skip cycles with no instructions
}
}
}
template<class _NodeType>
inline
ScheduleIterator<_NodeType>&
ScheduleIterator<_NodeType>::operator++() // Preincrement
{
++slotNum;
if (slotNum == S.nslots)
{
++cycleNum;
slotNum = 0;
}
skipToNextInstr();
return *this;
}
template<class _NodeType>
ScheduleIterator<_NodeType>
ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
{
return _Self(_schedule, 0, 0);
}
template<class _NodeType>
ScheduleIterator<_NodeType>
ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
{
return _Self(_schedule, _schedule.groups.size(), 0);
}
InstrSchedule::iterator
InstrSchedule::begin()
{
return iterator::begin(*this);
}
InstrSchedule::const_iterator
InstrSchedule::begin() const
{
return const_iterator::begin(*this);
}
InstrSchedule::iterator
InstrSchedule::end()
{
return iterator::end(*this);
}
InstrSchedule::const_iterator
InstrSchedule::end() const
{
return const_iterator::end( *this);
}
//----------------------------------------------------------------------
// class DelaySlotInfo:
//
// Record information about delay slots for a single branch instruction.
// Delay slots are simply indexed by slot number 1 ... numDelaySlots
//----------------------------------------------------------------------
class DelaySlotInfo: public NonCopyable {
private:
const SchedGraphNode* brNode;
unsigned int ndelays;
vector<const SchedGraphNode*> delayNodeVec;
cycles_t delayedNodeCycle;
unsigned int delayedNodeSlotNum;
public:
/*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
unsigned _ndelays)
: brNode(_brNode), ndelays(_ndelays),
delayedNodeCycle(0), delayedNodeSlotNum(0) {}
inline unsigned getNumDelays () {
return ndelays;
}
inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
return delayNodeVec;
}
inline void addDelayNode (const SchedGraphNode* node) {
delayNodeVec.push_back(node);
assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
}
inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
delayedNodeCycle = cycle;
delayedNodeSlotNum = slotNum;
}
unsigned scheduleDelayedNode (SchedulingManager& S);
};
//----------------------------------------------------------------------
// class SchedulingManager:
//
// Represents the schedule of machine instructions for a single basic block.
//----------------------------------------------------------------------
class SchedulingManager: public NonCopyable {
public: // publicly accessible data members
const unsigned int nslots;
const MachineSchedInfo& schedInfo;
SchedPriorities& schedPrio;
InstrSchedule isched;
private:
unsigned int totalInstrCount;
cycles_t curTime;
cycles_t nextEarliestIssueTime; // next cycle we can issue
vector<std::hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
vector<int> numInClass; // indexed by sched class
vector<cycles_t> nextEarliestStartTime; // indexed by opCode
std::hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
// indexed by branch node ptr
public:
SchedulingManager(const TargetMachine& _target, const SchedGraph* graph,
SchedPriorities& schedPrio);
~SchedulingManager() {
for (std::hash_map<const SchedGraphNode*,
DelaySlotInfo*>::iterator I = delaySlotInfoForBranches.begin(),
E = delaySlotInfoForBranches.end(); I != E; ++I)
delete I->second;
}
//----------------------------------------------------------------------
// Simplify access to the machine instruction info
//----------------------------------------------------------------------
inline const MachineInstrInfo& getInstrInfo () const {
return schedInfo.getInstrInfo();
}
//----------------------------------------------------------------------
// Interface for checking and updating the current time
//----------------------------------------------------------------------
inline cycles_t getTime () const {
return curTime;
}
inline cycles_t getEarliestIssueTime() const {
return nextEarliestIssueTime;
}
inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
assert(opCode < (int) nextEarliestStartTime.size());
return nextEarliestStartTime[opCode];
}
// Update current time to specified cycle
inline void updateTime (cycles_t c) {
curTime = c;
schedPrio.updateTime(c);
}
//----------------------------------------------------------------------
// Functions to manage the choices for the current cycle including:
// -- a vector of choices by priority (choiceVec)
// -- vectors of the choices for each instruction slot (choicesForSlot[])
// -- number of choices in each sched class, used to check issue conflicts
// between choices for a single cycle
//----------------------------------------------------------------------
inline unsigned int getNumChoices () const {
return choiceVec.size();
}
inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
return numInClass[sc];
}
inline const SchedGraphNode* getChoice(unsigned int i) const {
// assert(i < choiceVec.size()); don't check here.
return choiceVec[i];
}
inline std::hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
assert(slotNum < nslots);
return choicesForSlot[slotNum];
}
inline void addChoice (const SchedGraphNode* node) {
// Append the instruction to the vector of choices for current cycle.
// Increment numInClass[c] for the sched class to which the instr belongs.
choiceVec.push_back(node);
const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
assert(sc < (int) numInClass.size());
numInClass[sc]++;
}
inline void addChoiceToSlot (unsigned int slotNum,
const SchedGraphNode* node) {
// Add the instruction to the choice set for the specified slot
assert(slotNum < nslots);
choicesForSlot[slotNum].insert(node);
}
inline void resetChoices () {
choiceVec.clear();
for (unsigned int s=0; s < nslots; s++)
choicesForSlot[s].clear();
for (unsigned int c=0; c < numInClass.size(); c++)
numInClass[c] = 0;
}
//----------------------------------------------------------------------
// Code to query and manage the partial instruction schedule so far
//----------------------------------------------------------------------
inline unsigned int getNumScheduled () const {
return isched.getNumInstructions();
}
inline unsigned int getNumUnscheduled() const {
return totalInstrCount - isched.getNumInstructions();
}
inline bool isScheduled (const SchedGraphNode* node) const {
return (isched.getStartTime(node->getNodeId()) >= 0);
}
inline void scheduleInstr (const SchedGraphNode* node,
unsigned int slotNum,
cycles_t cycle)
{
assert(! isScheduled(node) && "Instruction already scheduled?");
// add the instruction to the schedule
isched.scheduleInstr(node, slotNum, cycle);
// update the earliest start times of all nodes that conflict with `node'
// and the next-earliest time anything can issue if `node' causes bubbles
updateEarliestStartTimes(node, cycle);
// remove the instruction from the choice sets for all slots
for (unsigned s=0; s < nslots; s++)
choicesForSlot[s].erase(node);
// and decrement the instr count for the sched class to which it belongs
const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode());
assert(sc < (int) numInClass.size());
numInClass[sc]--;
}
//----------------------------------------------------------------------
// Create and retrieve delay slot info for delayed instructions
//----------------------------------------------------------------------
inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
bool createIfMissing=false)
{
std::hash_map<const SchedGraphNode*, DelaySlotInfo*>::const_iterator
I = delaySlotInfoForBranches.find(bn);
if (I != delaySlotInfoForBranches.end())
return I->second;
if (!createIfMissing) return 0;
DelaySlotInfo *dinfo =
new DelaySlotInfo(bn, getInstrInfo().getNumDelaySlots(bn->getOpCode()));
return delaySlotInfoForBranches[bn] = dinfo;
}
private:
SchedulingManager(); // DISABLED: DO NOT IMPLEMENT
void updateEarliestStartTimes(const SchedGraphNode* node, cycles_t schedTime);
};
/*ctor*/
SchedulingManager::SchedulingManager(const TargetMachine& target,
const SchedGraph* graph,
SchedPriorities& _schedPrio)
: nslots(target.getSchedInfo().getMaxNumIssueTotal()),
schedInfo(target.getSchedInfo()),
schedPrio(_schedPrio),
isched(nslots, graph->getNumNodes()),
totalInstrCount(graph->getNumNodes() - 2),
nextEarliestIssueTime(0),
choicesForSlot(nslots),
numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
(cycles_t) 0) // set all to 0
{
updateTime(0);
// Note that an upper bound on #choices for each slot is = nslots since
// we use this vector to hold a feasible set of instructions, and more
// would be infeasible. Reserve that much memory since it is probably small.
for (unsigned int i=0; i < nslots; i++)
choicesForSlot[i].resize(nslots);
}
void
SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
cycles_t schedTime)
{
if (schedInfo.numBubblesAfter(node->getOpCode()) > 0)
{ // Update next earliest time before which *nothing* can issue.
nextEarliestIssueTime = std::max(nextEarliestIssueTime,
curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode()));
}
const vector<MachineOpCode>*
conflictVec = schedInfo.getConflictList(node->getOpCode());
if (conflictVec != NULL)
for (unsigned i=0; i < conflictVec->size(); i++)
{
MachineOpCode toOp = (*conflictVec)[i];
cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(),
toOp);
assert(toOp < (int) nextEarliestStartTime.size());
if (nextEarliestStartTime[toOp] < est)
nextEarliestStartTime[toOp] = est;
}
}
//************************* Internal Functions *****************************/
static void
AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
{
// find the slot to start from, in the current cycle
unsigned int startSlot = 0;
cycles_t curTime = S.getTime();
assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
// If only one instruction can be issued, do so.
if (maxIssue == 1)
for (unsigned s=startSlot; s < S.nslots; s++)
if (S.getChoicesForSlot(s).size() > 0)
{// found the one instruction
S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
return;
}
// Otherwise, choose from the choices for each slot
//
InstrGroup* igroup = S.isched.getIGroup(S.getTime());
assert(igroup != NULL && "Group creation failed?");
// Find a slot that has only a single choice, and take it.
// If all slots have 0 or multiple choices, pick the first slot with
// choices and use its last instruction (just to avoid shifting the vector).
unsigned numIssued;
for (numIssued = 0; numIssued < maxIssue; numIssued++)
{
int chosenSlot = -1;
for (unsigned s=startSlot; s < S.nslots; s++)
if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
{
chosenSlot = (int) s;
break;
}
if (chosenSlot == -1)
for (unsigned s=startSlot; s < S.nslots; s++)
if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
{
chosenSlot = (int) s;
break;
}
if (chosenSlot != -1)
{ // Insert the chosen instr in the chosen slot and
// erase it from all slots.
const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
S.scheduleInstr(node, chosenSlot, curTime);
}
}
assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
}
//
// For now, just assume we are scheduling within a single basic block.
// Get the machine instruction vector for the basic block and clear it,
// then append instructions in scheduled order.
// Also, re-insert the dummy PHI instructions that were at the beginning
// of the basic block, since they are not part of the schedule.
//
static void
RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
{
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
#ifndef NDEBUG
// Lets make sure we didn't lose any instructions, except possibly
// some NOPs from delay slots. Also, PHIs are not included in the schedule.
unsigned numInstr = 0;
for (MachineCodeForBasicBlock::iterator I=mvec.begin(); I != mvec.end(); ++I)
if (! mii.isNop((*I)->getOpCode()) &&
! mii.isDummyPhiInstr((*I)->getOpCode()))
++numInstr;
assert(S.isched.getNumInstructions() >= numInstr &&
"Lost some non-NOP instructions during scheduling!");
#endif
if (S.isched.getNumInstructions() == 0)
return; // empty basic block!
// First find the dummy instructions at the start of the basic block
MachineCodeForBasicBlock::iterator I = mvec.begin();
for ( ; I != mvec.end(); ++I)
if (! mii.isDummyPhiInstr((*I)->getOpCode()))
break;
// Erase all except the dummy PHI instructions from mvec, and
// pre-allocate create space for the ones we will put back in.
mvec.erase(I, mvec.end());
InstrSchedule::const_iterator NIend = S.isched.end();
for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
}
static void
MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
{
// Check if any successors are now ready that were not already marked
// ready before, and that have not yet been scheduled.
//
for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
if (! (*SI)->isDummyNode()
&& ! S.isScheduled(*SI)
&& ! S.schedPrio.nodeIsReady(*SI))
{// successor not scheduled and not marked ready; check *its* preds.
bool succIsReady = true;
for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
if (! (*P)->isDummyNode()
&& ! S.isScheduled(*P))
{
succIsReady = false;
break;
}
if (succIsReady) // add the successor to the ready list
S.schedPrio.insertReady(*SI);
}
}
// Choose up to `nslots' FEASIBLE instructions and assign each
// instruction to all possible slots that do not violate feasibility.
// FEASIBLE means it should be guaranteed that the set
// of chosen instructions can be issued in a single group.
//
// Return value:
// maxIssue : total number of feasible instructions
// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
//
static unsigned
FindSlotChoices(SchedulingManager& S,
DelaySlotInfo*& getDelaySlotInfo)
{
// initialize result vectors to empty
S.resetChoices();
// find the slot to start from, in the current cycle
unsigned int startSlot = 0;
InstrGroup* igroup = S.isched.getIGroup(S.getTime());
for (int s = S.nslots - 1; s >= 0; s--)
if ((*igroup)[s] != NULL)
{
startSlot = s+1;
break;
}
// Make sure we pick at most one instruction that would break the group.
// Also, if we do pick one, remember which it was.
unsigned int indexForBreakingNode = S.nslots;
unsigned int indexForDelayedInstr = S.nslots;
DelaySlotInfo* delaySlotInfo = NULL;
getDelaySlotInfo = NULL;
// Choose instructions in order of priority.
// Add choices to the choice vector in the SchedulingManager class as
// we choose them so that subsequent choices will be correctly tested
// for feasibility, w.r.t. higher priority choices for the same cycle.
//
while (S.getNumChoices() < S.nslots - startSlot)
{
const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
if (nextNode == NULL)
break; // no more instructions for this cycle
if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0)
{
delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
if (delaySlotInfo != NULL)
{
if (indexForBreakingNode < S.nslots)
// cannot issue a delayed instr in the same cycle as one
// that breaks the issue group or as another delayed instr
nextNode = NULL;
else
indexForDelayedInstr = S.getNumChoices();
}
}
else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode()))
{
if (indexForBreakingNode < S.nslots)
// have a breaking instruction already so throw this one away
nextNode = NULL;
else
indexForBreakingNode = S.getNumChoices();
}
if (nextNode != NULL)
{
S.addChoice(nextNode);
if (S.schedInfo.isSingleIssue(nextNode->getOpCode()))
{
assert(S.getNumChoices() == 1 &&
"Prioritizer returned invalid instr for this cycle!");
break;
}
}
if (indexForDelayedInstr < S.nslots)
break; // leave the rest for delay slots
}
assert(S.getNumChoices() <= S.nslots);
assert(! (indexForDelayedInstr < S.nslots &&
indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
// Assign each chosen instruction to all possible slots for that instr.
// But if only one instruction was chosen, put it only in the first
// feasible slot; no more analysis will be needed.
//
if (indexForDelayedInstr >= S.nslots &&
indexForBreakingNode >= S.nslots)
{ // No instructions that break the issue group or that have delay slots.
// This is the common case, so handle it separately for efficiency.
if (S.getNumChoices() == 1)
{
MachineOpCode opCode = S.getChoice(0)->getOpCode();
unsigned int s;
for (s=startSlot; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
break;
assert(s < S.nslots && "No feasible slot for this opCode?");
S.addChoiceToSlot(s, S.getChoice(0));
}
else
{
for (unsigned i=0; i < S.getNumChoices(); i++)
{
MachineOpCode opCode = S.getChoice(i)->getOpCode();
for (unsigned int s=startSlot; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
S.addChoiceToSlot(s, S.getChoice(i));
}
}
}
else if (indexForDelayedInstr < S.nslots)
{
// There is an instruction that needs delay slots.
// Try to assign that instruction to a higher slot than any other
// instructions in the group, so that its delay slots can go
// right after it.
//
assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
"Instruction with delay slots should be last choice!");
assert(delaySlotInfo != NULL && "No delay slot info for instr?");
const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
MachineOpCode delayOpCode = delayedNode->getOpCode();
unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
unsigned delayedNodeSlot = S.nslots;
int highestSlotUsed;
// Find the last possible slot for the delayed instruction that leaves
// at least `d' slots vacant after it (d = #delay slots)
for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
{
delayedNodeSlot = s;
break;
}
highestSlotUsed = -1;
for (unsigned i=0; i < S.getNumChoices() - 1; i++)
{
// Try to assign every other instruction to a lower numbered
// slot than delayedNodeSlot.
MachineOpCode opCode =S.getChoice(i)->getOpCode();
bool noSlotFound = true;
unsigned int s;
for (s=startSlot; s < delayedNodeSlot; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
S.addChoiceToSlot(s, S.getChoice(i));
noSlotFound = false;
}
// No slot before `delayedNodeSlot' was found for this opCode
// Use a later slot, and allow some delay slots to fall in
// the next cycle.
if (noSlotFound)
for ( ; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
S.addChoiceToSlot(s, S.getChoice(i));
break;
}
assert(s < S.nslots && "No feasible slot for instruction?");
highestSlotUsed = std::max(highestSlotUsed, (int) s);
}
assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
// We will put the delayed node in the first slot after the
// highest slot used. But we just mark that for now, and
// schedule it separately because we want to schedule the delay
// slots for the node at the same time.
cycles_t dcycle = S.getTime();
unsigned int dslot = highestSlotUsed + 1;
if (dslot == S.nslots)
{
dslot = 0;
++dcycle;
}
delaySlotInfo->recordChosenSlot(dcycle, dslot);
getDelaySlotInfo = delaySlotInfo;
}
else
{ // There is an instruction that breaks the issue group.
// For such an instruction, assign to the last possible slot in
// the current group, and then don't assign any other instructions
// to later slots.
assert(indexForBreakingNode < S.nslots);
const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
unsigned breakingSlot = INT_MAX;
unsigned int nslotsToUse = S.nslots;
// Find the last possible slot for this instruction.
for (int s = S.nslots-1; s >= (int) startSlot; s--)
if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s))
{
breakingSlot = s;
break;
}
assert(breakingSlot < S.nslots &&
"No feasible slot for `breakingNode'?");
// Higher priority instructions than the one that breaks the group:
// These can be assigned to all slots, but will be assigned only
// to earlier slots if possible.
for (unsigned i=0;
i < S.getNumChoices() && i < indexForBreakingNode; i++)
{
MachineOpCode opCode =S.getChoice(i)->getOpCode();
// If a higher priority instruction cannot be assigned to
// any earlier slots, don't schedule the breaking instruction.
//
bool foundLowerSlot = false;
nslotsToUse = S.nslots; // May be modified in the loop
for (unsigned int s=startSlot; s < nslotsToUse; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
if (breakingSlot < S.nslots && s < breakingSlot)
{
foundLowerSlot = true;
nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
}
S.addChoiceToSlot(s, S.getChoice(i));
}
if (!foundLowerSlot)
breakingSlot = INT_MAX; // disable breaking instr
}
// Assign the breaking instruction (if any) to a single slot
// Otherwise, just ignore the instruction. It will simply be
// scheduled in a later cycle.
if (breakingSlot < S.nslots)
{
S.addChoiceToSlot(breakingSlot, breakingNode);
nslotsToUse = breakingSlot;
}
else
nslotsToUse = S.nslots;
// For lower priority instructions than the one that breaks the
// group, only assign them to slots lower than the breaking slot.
// Otherwise, just ignore the instruction.
for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
{
MachineOpCode opCode = S.getChoice(i)->getOpCode();
for (unsigned int s=startSlot; s < nslotsToUse; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
S.addChoiceToSlot(s, S.getChoice(i));
}
} // endif (no delay slots and no breaking slots)
return S.getNumChoices();
}
static unsigned
ChooseOneGroup(SchedulingManager& S)
{
assert(S.schedPrio.getNumReady() > 0
&& "Don't get here without ready instructions.");
cycles_t firstCycle = S.getTime();
DelaySlotInfo* getDelaySlotInfo = NULL;
// Choose up to `nslots' feasible instructions and their possible slots.
unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
while (numIssued == 0)
{
S.updateTime(S.getTime()+1);
numIssued = FindSlotChoices(S, getDelaySlotInfo);
}
AssignInstructionsToSlots(S, numIssued);
if (getDelaySlotInfo != NULL)
numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
// Print trace of scheduled instructions before newly ready ones
if (SchedDebugLevel >= Sched_PrintSchedTrace)
{
for (cycles_t c = firstCycle; c <= S.getTime(); c++)
{
cerr << " Cycle " << (long)c << " : Scheduled instructions:\n";
const InstrGroup* igroup = S.isched.getIGroup(c);
for (unsigned int s=0; s < S.nslots; s++)
{
cerr << " ";
if ((*igroup)[s] != NULL)
cerr << * ((*igroup)[s])->getMachineInstr() << "\n";
else
cerr << "<none>\n";
}
}
}
return numIssued;
}
static void
ForwardListSchedule(SchedulingManager& S)
{
unsigned N;
const SchedGraphNode* node;
S.schedPrio.initialize();
while ((N = S.schedPrio.getNumReady()) > 0)
{
cycles_t nextCycle = S.getTime();
// Choose one group of instructions for a cycle, plus any delay slot
// instructions (which may overflow into successive cycles).
// This will advance S.getTime() to the last cycle in which
// instructions are actually issued.
//
unsigned numIssued = ChooseOneGroup(S);
assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
// Notify the priority manager of scheduled instructions and mark
// any successors that may now be ready
//
for (cycles_t c = nextCycle; c <= S.getTime(); c++)
{
const InstrGroup* igroup = S.isched.getIGroup(c);
for (unsigned int s=0; s < S.nslots; s++)
if ((node = (*igroup)[s]) != NULL)
{
S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
MarkSuccessorsReady(S, node);
}
}
// Move to the next the next earliest cycle for which
// an instruction can be issued, or the next earliest in which
// one will be ready, or to the next cycle, whichever is latest.
//
S.updateTime(std::max(S.getTime() + 1,
std::max(S.getEarliestIssueTime(),
S.schedPrio.getEarliestReadyTime())));
}
}
//---------------------------------------------------------------------
// Code for filling delay slots for delayed terminator instructions
// (e.g., BRANCH and RETURN). Delay slots for non-terminator
// instructions (e.g., CALL) are not handled here because they almost
// always can be filled with instructions from the call sequence code
// before a call. That's preferable because we incur many tradeoffs here
// when we cannot find single-cycle instructions that can be reordered.
//----------------------------------------------------------------------
static bool
NodeCanFillDelaySlot(const SchedulingManager& S,
const SchedGraphNode* node,
const SchedGraphNode* brNode,
bool nodeIsPredecessor)
{
assert(! node->isDummyNode());
// don't put a branch in the delay slot of another branch
if (S.getInstrInfo().isBranch(node->getOpCode()))
return false;
// don't put a single-issue instruction in the delay slot of a branch
if (S.schedInfo.isSingleIssue(node->getOpCode()))
return false;
// don't put a load-use dependence in the delay slot of a branch
const MachineInstrInfo& mii = S.getInstrInfo();
for (SchedGraphNode::const_iterator EI = node->beginInEdges();
EI != node->endInEdges(); ++EI)
if (! (*EI)->getSrc()->isDummyNode()
&& mii.isLoad((*EI)->getSrc()->getOpCode())
&& (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
return false;
// for now, don't put an instruction that does not have operand
// interlocks in the delay slot of a branch
if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode()))
return false;
// Finally, if the instruction preceeds the branch, we make sure the
// instruction can be reordered relative to the branch. We simply check
// if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
//
if (nodeIsPredecessor)
{
bool onlyCDEdgeToBranch = true;
for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
OEI != node->endOutEdges(); ++OEI)
if (! (*OEI)->getSink()->isDummyNode()
&& ((*OEI)->getSink() != brNode
|| (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
{
onlyCDEdgeToBranch = false;
break;
}
if (!onlyCDEdgeToBranch)
return false;
}
return true;
}
static void
MarkNodeForDelaySlot(SchedulingManager& S,
SchedGraph* graph,
SchedGraphNode* node,
const SchedGraphNode* brNode,
bool nodeIsPredecessor)
{
if (nodeIsPredecessor)
{ // If node is in the same basic block (i.e., preceeds brNode),
// remove it and all its incident edges from the graph. Make sure we
// add dummy edges for pred/succ nodes that become entry/exit nodes.
graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
}
else
{ // If the node was from a target block, add the node to the graph
// and add a CD edge from brNode to node.
assert(0 && "NOT IMPLEMENTED YET");
}
DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
dinfo->addDelayNode(node);
}
void
FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
SchedGraphNode* brNode,
vector<SchedGraphNode*>& sdelayNodeVec)
{
const MachineInstrInfo& mii = S.getInstrInfo();
unsigned ndelays =
mii.getNumDelaySlots(brNode->getOpCode());
if (ndelays == 0)
return;
sdelayNodeVec.reserve(ndelays);
// Use a separate vector to hold the feasible multi-cycle nodes.
// These will be used if not enough single-cycle nodes are found.
//
vector<SchedGraphNode*> mdelayNodeVec;
for (sg_pred_iterator P = pred_begin(brNode);
P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
if (! (*P)->isDummyNode() &&
! mii.isNop((*P)->getOpCode()) &&
NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
{
if (mii.maxLatency((*P)->getOpCode()) > 1)
mdelayNodeVec.push_back(*P);
else
sdelayNodeVec.push_back(*P);
}
// If not enough single-cycle instructions were found, select the
// lowest-latency multi-cycle instructions and use them.
// Note that this is the most efficient code when only 1 (or even 2)
// values need to be selected.
//
while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
{
unsigned lmin =
mii.maxLatency(mdelayNodeVec[0]->getOpCode());
unsigned minIndex = 0;
for (unsigned i=1; i < mdelayNodeVec.size(); i++)
{
unsigned li =
mii.maxLatency(mdelayNodeVec[i]->getOpCode());
if (lmin >= li)
{
lmin = li;
minIndex = i;
}
}
sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
}
}
// Remove the NOPs currently in delay slots from the graph.
// Mark instructions specified in sdelayNodeVec to replace them.
// If not enough useful instructions were found, mark the NOPs to be used
// for filling delay slots, otherwise, otherwise just discard them.
//
void
ReplaceNopsWithUsefulInstr(SchedulingManager& S,
SchedGraphNode* node,
vector<SchedGraphNode*> sdelayNodeVec,
SchedGraph* graph)
{
vector<SchedGraphNode*> nopNodeVec; // this will hold unused NOPs
const MachineInstrInfo& mii = S.getInstrInfo();
const MachineInstr* brInstr = node->getMachineInstr();
unsigned ndelays= mii.getNumDelaySlots(brInstr->getOpCode());
assert(ndelays > 0 && "Unnecessary call to replace NOPs");
// Remove the NOPs currently in delay slots from the graph.
// If not enough useful instructions were found, use the NOPs to
// fill delay slots, otherwise, just discard them.
//
unsigned int firstDelaySlotIdx = node->getOrigIndexInBB() + 1;
MachineCodeForBasicBlock& bbMvec = node->getBB()->getMachineInstrVec();
assert(bbMvec[firstDelaySlotIdx - 1] == brInstr &&
"Incorrect instr. index in basic block for brInstr");
// First find all useful instructions already in the delay slots
// and USE THEM. We'll throw away the unused alternatives below
//
for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
if (! mii.isNop(bbMvec[i]->getOpCode()))
sdelayNodeVec.insert(sdelayNodeVec.begin(),
graph->getGraphNodeForInstr(bbMvec[i]));
// Then find the NOPs and keep only as many as are needed.
// Put the rest in nopNodeVec to be deleted.
for (unsigned i=firstDelaySlotIdx; i < firstDelaySlotIdx + ndelays; ++i)
if (mii.isNop(bbMvec[i]->getOpCode()))
if (sdelayNodeVec.size() < ndelays)
sdelayNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
else
nopNodeVec.push_back(graph->getGraphNodeForInstr(bbMvec[i]));
assert(sdelayNodeVec.size() >= ndelays);
// If some delay slots were already filled, throw away that many new choices
if (sdelayNodeVec.size() > ndelays)
sdelayNodeVec.resize(ndelays);
// Mark the nodes chosen for delay slots. This removes them from the graph.
for (unsigned i=0; i < sdelayNodeVec.size(); i++)
MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
// And remove the unused NOPs from the graph.
for (unsigned i=0; i < nopNodeVec.size(); i++)
graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
}
// For all delayed instructions, choose instructions to put in the delay
// slots and pull those out of the graph. Mark them for the delay slots
// in the DelaySlotInfo object for that graph node. If no useful work
// is found for a delay slot, use the NOP that is currently in that slot.
//
// We try to fill the delay slots with useful work for all instructions
// EXCEPT CALLS AND RETURNS.
// For CALLs and RETURNs, it is nearly always possible to use one of the
// call sequence instrs and putting anything else in the delay slot could be
// suboptimal. Also, it complicates generating the calling sequence code in
// regalloc.
//
static void
ChooseInstructionsForDelaySlots(SchedulingManager& S,
const BasicBlock *bb,
SchedGraph *graph)
{
const MachineInstrInfo& mii = S.getInstrInfo();
const Instruction *termInstr = (Instruction*)bb->getTerminator();
MachineCodeForInstruction &termMvec=MachineCodeForInstruction::get(termInstr);
vector<SchedGraphNode*> delayNodeVec;
const MachineInstr* brInstr = NULL;
if (termInstr->getOpcode() != Instruction::Ret)
{
// To find instructions that need delay slots without searching the full
// machine code, we assume that the only delayed instructions are CALLs
// or instructions generated for the terminator inst.
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (first < termMvec.size() &&
! mii.isBranch(termMvec[first]->getOpCode()))
{
++first;
}
assert(first < termMvec.size() &&
"No branch instructions for BR? Ok, but weird! Delete assertion.");
brInstr = (first < termMvec.size())? termMvec[first] : NULL;
// Compute a vector of the nodes chosen for delay slots and then
// mark delay slots to replace NOPs with these useful instructions.
//
if (brInstr != NULL)
{
SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
}
}
// Also mark delay slots for other delayed instructions to hold NOPs.
// Simply passing in an empty delayNodeVec will have this effect.
//
delayNodeVec.clear();
const MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
for (unsigned i=0; i < bbMvec.size(); i++)
if (bbMvec[i] != brInstr &&
mii.getNumDelaySlots(bbMvec[i]->getOpCode()) > 0)
{
SchedGraphNode* node = graph->getGraphNodeForInstr(bbMvec[i]);
ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
}
}
//
// Schedule the delayed branch and its delay slots
//
unsigned
DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
{
assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
&& "Slot for branch should be empty");
unsigned int nextSlot = delayedNodeSlotNum;
cycles_t nextTime = delayedNodeCycle;
S.scheduleInstr(brNode, nextSlot, nextTime);
for (unsigned d=0; d < ndelays; d++)
{
++nextSlot;
if (nextSlot == S.nslots)
{
nextSlot = 0;
nextTime++;
}
// Find the first feasible instruction for this delay slot
// Note that we only check for issue restrictions here.
// We do *not* check for flow dependences but rely on pipeline
// interlocks to resolve them. Machines without interlocks
// will require this code to be modified.
for (unsigned i=0; i < delayNodeVec.size(); i++)
{
const SchedGraphNode* dnode = delayNodeVec[i];
if ( ! S.isScheduled(dnode)
&& S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot)
&& instrIsFeasible(S, dnode->getOpCode()))
{
assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode())
&& "Instructions without interlocks not yet supported "
"when filling branch delay slots");
S.scheduleInstr(dnode, nextSlot, nextTime);
break;
}
}
}
// Update current time if delay slots overflowed into later cycles.
// Do this here because we know exactly which cycle is the last cycle
// that contains delay slots. The next loop doesn't compute that.
if (nextTime > S.getTime())
S.updateTime(nextTime);
// Now put any remaining instructions in the unfilled delay slots.
// This could lead to suboptimal performance but needed for correctness.
nextSlot = delayedNodeSlotNum;
nextTime = delayedNodeCycle;
for (unsigned i=0; i < delayNodeVec.size(); i++)
if (! S.isScheduled(delayNodeVec[i]))
{
do { // find the next empty slot
++nextSlot;
if (nextSlot == S.nslots)
{
nextSlot = 0;
nextTime++;
}
} while (S.isched.getInstr(nextSlot, nextTime) != NULL);
S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
break;
}
return 1 + ndelays;
}
// Check if the instruction would conflict with instructions already
// chosen for the current cycle
//
static inline bool
ConflictsWithChoices(const SchedulingManager& S,
MachineOpCode opCode)
{
// Check if the instruction must issue by itself, and some feasible
// choices have already been made for this cycle
if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
return true;
// For each class that opCode belongs to, check if there are too many
// instructions of that class.
//
const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
}
//************************* External Functions *****************************/
//---------------------------------------------------------------------------
// Function: ViolatesMinimumGap
//
// Purpose:
// Check minimum gap requirements relative to instructions scheduled in
// previous cycles.
// Note that we do not need to consider `nextEarliestIssueTime' here because
// that is also captured in the earliest start times for each opcode.
//---------------------------------------------------------------------------
static inline bool
ViolatesMinimumGap(const SchedulingManager& S,
MachineOpCode opCode,
const cycles_t inCycle)
{
return (inCycle < S.getEarliestStartTimeForOp(opCode));
}
//---------------------------------------------------------------------------
// Function: instrIsFeasible
//
// Purpose:
// Check if any issue restrictions would prevent the instruction from
// being issued in the current cycle
//---------------------------------------------------------------------------
bool
instrIsFeasible(const SchedulingManager& S,
MachineOpCode opCode)
{
// skip the instruction if it cannot be issued due to issue restrictions
// caused by previously issued instructions
if (ViolatesMinimumGap(S, opCode, S.getTime()))
return false;
// skip the instruction if it cannot be issued due to issue restrictions
// caused by previously chosen instructions for the current cycle
if (ConflictsWithChoices(S, opCode))
return false;
return true;
}
//---------------------------------------------------------------------------
// Function: ScheduleInstructionsWithSSA
//
// Purpose:
// Entry point for instruction scheduling on SSA form.
// Schedules the machine instructions generated by instruction selection.
// Assumes that register allocation has not been done, i.e., operands
// are still in SSA form.
//---------------------------------------------------------------------------
namespace {
class InstructionSchedulingWithSSA : public FunctionPass {
const TargetMachine &target;
public:
inline InstructionSchedulingWithSSA(const TargetMachine &T) : target(T) {}
// getAnalysisUsage - We use LiveVarInfo...
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(MethodLiveVarInfo::ID);
}
bool runOnFunction(Function *F);
};
} // end anonymous namespace
bool
InstructionSchedulingWithSSA::runOnFunction(Function *M)
{
if (SchedDebugLevel == Sched_Disable)
return false;
SchedGraphSet graphSet(M, target);
if (SchedDebugLevel >= Sched_PrintSchedGraphs)
{
cerr << "\n*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING\n";
graphSet.dump();
}
for (SchedGraphSet::const_iterator GI=graphSet.begin(), GE=graphSet.end();
GI != GE; ++GI)
{
SchedGraph* graph = (*GI);
const vector<const BasicBlock*> &bbvec = graph->getBasicBlocks();
assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
const BasicBlock* bb = bbvec[0];
if (SchedDebugLevel >= Sched_PrintSchedTrace)
cerr << "\n*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
// expensive!
SchedPriorities schedPrio(M, graph,getAnalysis<MethodLiveVarInfo>());
SchedulingManager S(target, graph, schedPrio);
ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
ForwardListSchedule(S); // computes schedule in S
RecordSchedule(bb, S); // records schedule in BB
}
if (SchedDebugLevel >= Sched_PrintMachineCode)
{
cerr << "\n*** Machine instructions after INSTRUCTION SCHEDULING\n";
MachineCodeForMethod::get(M).dump();
}
return false;
}
Pass *createInstructionSchedulingWithSSAPass(const TargetMachine &tgt) {
return new InstructionSchedulingWithSSA(tgt);
}