blob: 304f16717ba1889fc886d7bd46bd35f72a120807 [file] [log] [blame]
//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements basic block placement transformations using the CFG
// structure and branch probability estimates.
//
// The pass strives to preserve the structure of the CFG (that is, retain
// a topological ordering of basic blocks) in the absense of a *strong* signal
// to the contrary from probabilities. However, within the CFG structure, it
// attempts to choose an ordering which favors placing more likely sequences of
// blocks adjacent to each other.
//
// The algorithm works from the inner-most loop within a function outward, and
// at each stage walks through the basic blocks, trying to coalesce them into
// sequential chains where allowed by the CFG (or demanded by heavy
// probabilities). Finally, it walks the blocks in topological order, and the
// first time it reaches a chain of basic blocks, it schedules them in the
// function in-order.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-placement2"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumCondBranches, "Number of conditional branches");
STATISTIC(NumUncondBranches, "Number of uncondittional branches");
STATISTIC(CondBranchTakenFreq,
"Potential frequency of taking conditional branches");
STATISTIC(UncondBranchTakenFreq,
"Potential frequency of taking unconditional branches");
namespace {
/// \brief A structure for storing a weighted edge.
///
/// This stores an edge and its weight, computed as the product of the
/// frequency that the starting block is entered with the probability of
/// a particular exit block.
struct WeightedEdge {
BlockFrequency EdgeFrequency;
MachineBasicBlock *From, *To;
bool operator<(const WeightedEdge &RHS) const {
return EdgeFrequency < RHS.EdgeFrequency;
}
};
}
namespace {
class BlockChain;
/// \brief Type for our function-wide basic block -> block chain mapping.
typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
}
namespace {
/// \brief A chain of blocks which will be laid out contiguously.
///
/// This is the datastructure representing a chain of consecutive blocks that
/// are profitable to layout together in order to maximize fallthrough
/// probabilities. We also can use a block chain to represent a sequence of
/// basic blocks which have some external (correctness) requirement for
/// sequential layout.
///
/// Eventually, the block chains will form a directed graph over the function.
/// We provide an SCC-supporting-iterator in order to quicky build and walk the
/// SCCs of block chains within a function.
///
/// The block chains also have support for calculating and caching probability
/// information related to the chain itself versus other chains. This is used
/// for ranking during the final layout of block chains.
class BlockChain {
/// \brief The sequence of blocks belonging to this chain.
///
/// This is the sequence of blocks for a particular chain. These will be laid
/// out in-order within the function.
SmallVector<MachineBasicBlock *, 4> Blocks;
/// \brief A handle to the function-wide basic block to block chain mapping.
///
/// This is retained in each block chain to simplify the computation of child
/// block chains for SCC-formation and iteration. We store the edges to child
/// basic blocks, and map them back to their associated chains using this
/// structure.
BlockToChainMapType &BlockToChain;
public:
/// \brief Construct a new BlockChain.
///
/// This builds a new block chain representing a single basic block in the
/// function. It also registers itself as the chain that block participates
/// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
: Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
assert(BB && "Cannot create a chain with a null basic block");
BlockToChain[BB] = this;
}
/// \brief Iterator over blocks within the chain.
typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator iterator;
/// \brief Beginning of blocks within the chain.
iterator begin() const { return Blocks.begin(); }
/// \brief End of blocks within the chain.
iterator end() const { return Blocks.end(); }
/// \brief Merge a block chain into this one.
///
/// This routine merges a block chain into this one. It takes care of forming
/// a contiguous sequence of basic blocks, updating the edge list, and
/// updating the block -> chain mapping. It does not free or tear down the
/// old chain, but the old chain's block list is no longer valid.
void merge(MachineBasicBlock *BB, BlockChain *Chain) {
assert(BB);
assert(!Blocks.empty());
// Fast path in case we don't have a chain already.
if (!Chain) {
assert(!BlockToChain[BB]);
Blocks.push_back(BB);
BlockToChain[BB] = this;
return;
}
assert(BB == *Chain->begin());
assert(Chain->begin() != Chain->end());
// Update the incoming blocks to point to this chain, and add them to the
// chain structure.
for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
BI != BE; ++BI) {
Blocks.push_back(*BI);
assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
BlockToChain[*BI] = this;
}
}
/// \brief Count of predecessors within the loop currently being processed.
///
/// This count is updated at each loop we process to represent the number of
/// in-loop predecessors of this chain.
unsigned LoopPredecessors;
};
}
namespace {
class MachineBlockPlacement : public MachineFunctionPass {
/// \brief A typedef for a block filter set.
typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
/// \brief A handle to the branch probability pass.
const MachineBranchProbabilityInfo *MBPI;
/// \brief A handle to the function-wide block frequency pass.
const MachineBlockFrequencyInfo *MBFI;
/// \brief A handle to the loop info.
const MachineLoopInfo *MLI;
/// \brief A handle to the target's instruction info.
const TargetInstrInfo *TII;
/// \brief A handle to the target's lowering info.
const TargetLowering *TLI;
/// \brief Allocator and owner of BlockChain structures.
///
/// We build BlockChains lazily by merging together high probability BB
/// sequences acording to the "Algo2" in the paper mentioned at the top of
/// the file. To reduce malloc traffic, we allocate them using this slab-like
/// allocator, and destroy them after the pass completes.
SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
/// \brief Function wide BasicBlock to BlockChain mapping.
///
/// This mapping allows efficiently moving from any given basic block to the
/// BlockChain it participates in, if any. We use it to, among other things,
/// allow implicitly defining edges between chains as the existing edges
/// between basic blocks.
DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
void markChainSuccessors(BlockChain &Chain,
MachineBasicBlock *LoopHeaderBB,
SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
const BlockFilterSet *BlockFilter = 0);
MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
BlockChain &Chain,
const BlockFilterSet *BlockFilter);
MachineBasicBlock *selectBestCandidateBlock(
BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
const BlockFilterSet *BlockFilter);
MachineBasicBlock *getFirstUnplacedBlock(const BlockChain &PlacedChain,
ArrayRef<MachineBasicBlock *> Blocks,
unsigned &PrevUnplacedBlockIdx);
void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
ArrayRef<MachineBasicBlock *> Blocks,
SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
const BlockFilterSet *BlockFilter = 0);
void buildLoopChains(MachineFunction &F, MachineLoop &L);
void buildCFGChains(MachineFunction &F);
void AlignLoops(MachineFunction &F);
public:
static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement() : MachineFunctionPass(ID) {
initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &F);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const { return "Block Placement"; }
};
}
char MachineBlockPlacement::ID = 0;
INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
"Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
"Branch Probability Basic Block Placement", false, false)
FunctionPass *llvm::createMachineBlockPlacementPass() {
return new MachineBlockPlacement();
}
#ifndef NDEBUG
/// \brief Helper to print the name of a MBB.
///
/// Only used by debug logging.
static std::string getBlockName(MachineBasicBlock *BB) {
std::string Result;
raw_string_ostream OS(Result);
OS << "BB#" << BB->getNumber()
<< " (derived from LLVM BB '" << BB->getName() << "')";
OS.flush();
return Result;
}
/// \brief Helper to print the number of a MBB.
///
/// Only used by debug logging.
static std::string getBlockNum(MachineBasicBlock *BB) {
std::string Result;
raw_string_ostream OS(Result);
OS << "BB#" << BB->getNumber();
OS.flush();
return Result;
}
#endif
/// \brief Mark a chain's successors as having one fewer preds.
///
/// When a chain is being merged into the "placed" chain, this routine will
/// quickly walk the successors of each block in the chain and mark them as
/// having one fewer active predecessor. It also adds any successors of this
/// chain which reach the zero-predecessor state to the worklist passed in.
void MachineBlockPlacement::markChainSuccessors(
BlockChain &Chain,
MachineBasicBlock *LoopHeaderBB,
SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
const BlockFilterSet *BlockFilter) {
// Walk all the blocks in this chain, marking their successors as having
// a predecessor placed.
for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
CBI != CBE; ++CBI) {
// Add any successors for which this is the only un-placed in-loop
// predecessor to the worklist as a viable candidate for CFG-neutral
// placement. No subsequent placement of this block will violate the CFG
// shape, so we get to use heuristics to choose a favorable placement.
for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
SE = (*CBI)->succ_end();
SI != SE; ++SI) {
if (BlockFilter && !BlockFilter->count(*SI))
continue;
BlockChain &SuccChain = *BlockToChain[*SI];
// Disregard edges within a fixed chain, or edges to the loop header.
if (&Chain == &SuccChain || *SI == LoopHeaderBB)
continue;
// This is a cross-chain edge that is within the loop, so decrement the
// loop predecessor count of the destination chain.
if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
BlockWorkList.push_back(*SI);
}
}
}
/// \brief Select the best successor for a block.
///
/// This looks across all successors of a particular block and attempts to
/// select the "best" one to be the layout successor. It only considers direct
/// successors which also pass the block filter. It will attempt to avoid
/// breaking CFG structure, but cave and break such structures in the case of
/// very hot successor edges.
///
/// \returns The best successor block found, or null if none are viable.
MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
MachineBasicBlock *BB, BlockChain &Chain,
const BlockFilterSet *BlockFilter) {
const BranchProbability HotProb(4, 5); // 80%
MachineBasicBlock *BestSucc = 0;
// FIXME: Due to the performance of the probability and weight routines in
// the MBPI analysis, we manually compute probabilities using the edge
// weights. This is suboptimal as it means that the somewhat subtle
// definition of edge weight semantics is encoded here as well. We should
// improve the MBPI interface to effeciently support query patterns such as
// this.
uint32_t BestWeight = 0;
uint32_t WeightScale = 0;
uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end();
SI != SE; ++SI) {
if (BlockFilter && !BlockFilter->count(*SI))
continue;
BlockChain &SuccChain = *BlockToChain[*SI];
if (&SuccChain == &Chain) {
DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n");
continue;
}
uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
// Only consider successors which are either "hot", or wouldn't violate
// any CFG constraints.
if (SuccChain.LoopPredecessors != 0 && SuccProb < HotProb) {
DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n");
continue;
}
DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb
<< " (prob)"
<< (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
<< "\n");
if (BestSucc && BestWeight >= SuccWeight)
continue;
BestSucc = *SI;
BestWeight = SuccWeight;
}
return BestSucc;
}
namespace {
/// \brief Predicate struct to detect blocks already placed.
class IsBlockPlaced {
const BlockChain &PlacedChain;
const BlockToChainMapType &BlockToChain;
public:
IsBlockPlaced(const BlockChain &PlacedChain,
const BlockToChainMapType &BlockToChain)
: PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
bool operator()(MachineBasicBlock *BB) const {
return BlockToChain.lookup(BB) == &PlacedChain;
}
};
}
/// \brief Select the best block from a worklist.
///
/// This looks through the provided worklist as a list of candidate basic
/// blocks and select the most profitable one to place. The definition of
/// profitable only really makes sense in the context of a loop. This returns
/// the most frequently visited block in the worklist, which in the case of
/// a loop, is the one most desirable to be physically close to the rest of the
/// loop body in order to improve icache behavior.
///
/// \returns The best block found, or null if none are viable.
MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
const BlockFilterSet *BlockFilter) {
// Once we need to walk the worklist looking for a candidate, cleanup the
// worklist of already placed entries.
// FIXME: If this shows up on profiles, it could be folded (at the cost of
// some code complexity) into the loop below.
WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
IsBlockPlaced(Chain, BlockToChain)),
WorkList.end());
MachineBasicBlock *BestBlock = 0;
BlockFrequency BestFreq;
for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
WBE = WorkList.end();
WBI != WBE; ++WBI) {
assert(!BlockFilter || BlockFilter->count(*WBI));
BlockChain &SuccChain = *BlockToChain[*WBI];
if (&SuccChain == &Chain) {
DEBUG(dbgs() << " " << getBlockName(*WBI)
<< " -> Already merged!\n");
continue;
}
assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq
<< " (freq)\n");
if (BestBlock && BestFreq >= CandidateFreq)
continue;
BestBlock = *WBI;
BestFreq = CandidateFreq;
}
return BestBlock;
}
/// \brief Retrieve the first unplaced basic block.
///
/// This routine is called when we are unable to use the CFG to walk through
/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
/// We walk through the sequence of blocks, starting from the
/// LastUnplacedBlockIdx. We update this index to avoid re-scanning the entire
/// sequence on repeated calls to this routine.
MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
const BlockChain &PlacedChain,
ArrayRef<MachineBasicBlock *> Blocks,
unsigned &PrevUnplacedBlockIdx) {
for (unsigned i = PrevUnplacedBlockIdx, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *BB = Blocks[i];
if (BlockToChain[BB] != &PlacedChain) {
PrevUnplacedBlockIdx = i;
return BB;
}
}
return 0;
}
void MachineBlockPlacement::buildChain(
MachineBasicBlock *BB,
BlockChain &Chain,
ArrayRef<MachineBasicBlock *> Blocks,
SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
const BlockFilterSet *BlockFilter) {
assert(BB);
assert(BlockToChain[BB] == &Chain);
assert(*Chain.begin() == BB);
SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
unsigned PrevUnplacedBlockIdx = 0;
MachineBasicBlock *LoopHeaderBB = BB;
markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
BB = *llvm::prior(Chain.end());
for (;;) {
assert(BB);
assert(BlockToChain[BB] == &Chain);
assert(*llvm::prior(Chain.end()) == BB);
MachineBasicBlock *BestSucc = 0;
// Check for unreasonable branches, and forcibly merge the existing layout
// successor for them. We can handle cases that AnalyzeBranch can't: jump
// tables etc are fine. The case we want to handle specially is when there
// is potential fallthrough, but the branch cannot be analyzed. This
// includes blocks without terminators as well as other cases.
Cond.clear();
MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
if (TII->AnalyzeBranch(*BB, TBB, FBB, Cond) && BB->canFallThrough()) {
MachineFunction::iterator I(BB), NextI(llvm::next(I));
// Ensure that the layout successor is a viable block, as we know that
// fallthrough is a possibility. Note that this may not be a valid block
// in the loop, but we allow that to cope with degenerate situations.
assert(NextI != BB->getParent()->end());
BestSucc = NextI;
}
// Otherwise, look for the best viable successor if there is one to place
// immediately after this block.
if (!BestSucc)
BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
// If an immediate successor isn't available, look for the best viable
// block among those we've identified as not violating the loop's CFG at
// this point. This won't be a fallthrough, but it will increase locality.
if (!BestSucc)
BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
if (!BestSucc) {
BestSucc = getFirstUnplacedBlock(Chain, Blocks, PrevUnplacedBlockIdx);
if (!BestSucc)
break;
DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
"layout successor until the CFG reduces\n");
}
// Place this block, updating the datastructures to reflect its placement.
BlockChain &SuccChain = *BlockToChain[BestSucc];
// Zero out LoopPredecessors for the successor we're about to merge in case
// we selected a successor that didn't fit naturally into the CFG.
SuccChain.LoopPredecessors = 0;
DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
<< " to " << getBlockNum(BestSucc) << "\n");
markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
Chain.merge(BestSucc, &SuccChain);
BB = *llvm::prior(Chain.end());
};
DEBUG(dbgs() << "Finished forming chain for header block "
<< getBlockNum(*Chain.begin()) << "\n");
}
/// \brief Forms basic block chains from the natural loop structures.
///
/// These chains are designed to preserve the existing *structure* of the code
/// as much as possible. We can then stitch the chains together in a way which
/// both preserves the topological structure and minimizes taken conditional
/// branches.
void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
MachineLoop &L) {
// First recurse through any nested loops, building chains for those inner
// loops.
for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
buildLoopChains(F, **LI);
SmallVector<MachineBasicBlock *, 16> BlockWorkList;
BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
BlockChain &LoopChain = *BlockToChain[L.getHeader()];
// FIXME: This is a really lame way of walking the chains in the loop: we
// walk the blocks, and use a set to prevent visiting a particular chain
// twice.
SmallPtrSet<BlockChain *, 4> UpdatedPreds;
for (MachineLoop::block_iterator BI = L.block_begin(),
BE = L.block_end();
BI != BE; ++BI) {
BlockChain &Chain = *BlockToChain[*BI];
if (!UpdatedPreds.insert(&Chain) || BI == L.block_begin())
continue;
assert(Chain.LoopPredecessors == 0);
for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
BCI != BCE; ++BCI) {
assert(BlockToChain[*BCI] == &Chain);
for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
PE = (*BCI)->pred_end();
PI != PE; ++PI) {
if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
continue;
++Chain.LoopPredecessors;
}
}
if (Chain.LoopPredecessors == 0)
BlockWorkList.push_back(*BI);
}
buildChain(*L.block_begin(), LoopChain, L.getBlocks(), BlockWorkList,
&LoopBlockSet);
DEBUG({
// Crash at the end so we get all of the debugging output first.
bool BadLoop = false;
if (LoopChain.LoopPredecessors) {
BadLoop = true;
dbgs() << "Loop chain contains a block without its preds placed!\n"
<< " Loop header: " << getBlockName(*L.block_begin()) << "\n"
<< " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
}
for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
BCI != BCE; ++BCI)
if (!LoopBlockSet.erase(*BCI)) {
// We don't mark the loop as bad here because there are real situations
// where this can occur. For example, with an unanalyzable fallthrough
// from a loop block to a non-loop block.
// FIXME: Such constructs shouldn't exist. Track them down and fix them.
dbgs() << "Loop chain contains a block not contained by the loop!\n"
<< " Loop header: " << getBlockName(*L.block_begin()) << "\n"
<< " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
<< " Bad block: " << getBlockName(*BCI) << "\n";
}
if (!LoopBlockSet.empty()) {
BadLoop = true;
for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
LBE = LoopBlockSet.end();
LBI != LBE; ++LBI)
dbgs() << "Loop contains blocks never placed into a chain!\n"
<< " Loop header: " << getBlockName(*L.block_begin()) << "\n"
<< " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
<< " Bad block: " << getBlockName(*LBI) << "\n";
}
assert(!BadLoop && "Detected problems with the placement of this loop.");
});
}
void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
// Ensure that every BB in the function has an associated chain to simplify
// the assumptions of the remaining algorithm.
for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
BlockToChain[&*FI] =
new (ChainAllocator.Allocate()) BlockChain(BlockToChain, &*FI);
// Build any loop-based chains.
for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
++LI)
buildLoopChains(F, **LI);
// We need a vector of blocks so that buildChain can handle unnatural CFG
// constructs by searching for unplaced blocks and just concatenating them.
SmallVector<MachineBasicBlock *, 16> Blocks;
Blocks.reserve(F.size());
SmallVector<MachineBasicBlock *, 16> BlockWorkList;
SmallPtrSet<BlockChain *, 4> UpdatedPreds;
for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
MachineBasicBlock *BB = &*FI;
Blocks.push_back(BB);
BlockChain &Chain = *BlockToChain[BB];
if (!UpdatedPreds.insert(&Chain))
continue;
assert(Chain.LoopPredecessors == 0);
for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
BCI != BCE; ++BCI) {
assert(BlockToChain[*BCI] == &Chain);
for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
PE = (*BCI)->pred_end();
PI != PE; ++PI) {
if (BlockToChain[*PI] == &Chain)
continue;
++Chain.LoopPredecessors;
}
}
if (Chain.LoopPredecessors == 0)
BlockWorkList.push_back(BB);
}
BlockChain &FunctionChain = *BlockToChain[&F.front()];
buildChain(&F.front(), FunctionChain, Blocks, BlockWorkList);
typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
DEBUG({
// Crash at the end so we get all of the debugging output first.
bool BadFunc = false;
FunctionBlockSetType FunctionBlockSet;
for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
FunctionBlockSet.insert(FI);
for (BlockChain::iterator BCI = FunctionChain.begin(),
BCE = FunctionChain.end();
BCI != BCE; ++BCI)
if (!FunctionBlockSet.erase(*BCI)) {
BadFunc = true;
dbgs() << "Function chain contains a block not in the function!\n"
<< " Bad block: " << getBlockName(*BCI) << "\n";
}
if (!FunctionBlockSet.empty()) {
BadFunc = true;
for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
FBE = FunctionBlockSet.end();
FBI != FBE; ++FBI)
dbgs() << "Function contains blocks never placed into a chain!\n"
<< " Bad block: " << getBlockName(*FBI) << "\n";
}
assert(!BadFunc && "Detected problems with the block placement.");
});
// Splice the blocks into place.
MachineFunction::iterator InsertPos = F.begin();
SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
for (BlockChain::iterator BI = FunctionChain.begin(),
BE = FunctionChain.end();
BI != BE; ++BI) {
DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
: " ... ")
<< getBlockName(*BI) << "\n");
if (InsertPos != MachineFunction::iterator(*BI))
F.splice(InsertPos, *BI);
else
++InsertPos;
// Update the terminator of the previous block.
if (BI == FunctionChain.begin())
continue;
MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
// FIXME: It would be awesome of updateTerminator would just return rather
// than assert when the branch cannot be analyzed in order to remove this
// boiler plate.
Cond.clear();
MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond))
PrevBB->updateTerminator();
}
// Fixup the last block.
Cond.clear();
MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
F.back().updateTerminator();
}
/// \brief Recursive helper to align a loop and any nested loops.
static void AlignLoop(MachineFunction &F, MachineLoop *L, unsigned Align) {
// Recurse through nested loops.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
AlignLoop(F, *I, Align);
L->getTopBlock()->setAlignment(Align);
}
/// \brief Align loop headers to target preferred alignments.
void MachineBlockPlacement::AlignLoops(MachineFunction &F) {
if (F.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
return;
unsigned Align = TLI->getPrefLoopAlignment();
if (!Align)
return; // Don't care about loop alignment.
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
AlignLoop(F, *I, Align);
}
bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
// Check for single-block functions and skip them.
if (llvm::next(F.begin()) == F.end())
return false;
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
MLI = &getAnalysis<MachineLoopInfo>();
TII = F.getTarget().getInstrInfo();
TLI = F.getTarget().getTargetLowering();
assert(BlockToChain.empty());
buildCFGChains(F);
AlignLoops(F);
BlockToChain.clear();
ChainAllocator.DestroyAll();
// We always return true as we have no way to track whether the final order
// differs from the original order.
return true;
}
namespace {
/// \brief A pass to compute block placement statistics.
///
/// A separate pass to compute interesting statistics for evaluating block
/// placement. This is separate from the actual placement pass so that they can
/// be computed in the absense of any placement transformations or when using
/// alternative placement strategies.
class MachineBlockPlacementStats : public MachineFunctionPass {
/// \brief A handle to the branch probability pass.
const MachineBranchProbabilityInfo *MBPI;
/// \brief A handle to the function-wide block frequency pass.
const MachineBlockFrequencyInfo *MBFI;
public:
static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats() : MachineFunctionPass(ID) {
initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &F);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const { return "Block Placement Stats"; }
};
}
char MachineBlockPlacementStats::ID = 0;
INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
"Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
"Basic Block Placement Stats", false, false)
FunctionPass *llvm::createMachineBlockPlacementStatsPass() {
return new MachineBlockPlacementStats();
}
bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
// Check for single-block functions and skip them.
if (llvm::next(F.begin()) == F.end())
return false;
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
: NumUncondBranches;
Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq;
for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
SE = I->succ_end();
SI != SE; ++SI) {
// Skip if this successor is a fallthrough.
if (I->isLayoutSuccessor(*SI))
continue;
BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
++NumBranches;
BranchTakenFreq += EdgeFreq.getFrequency();
}
}
return false;
}