| //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the default implementation of the Alias Analysis interface |
| // that simply implements a few identities (two different globals cannot alias, |
| // etc), but otherwise does no analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Passes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Useful predicates |
| //===----------------------------------------------------------------------===// |
| |
| /// isKnownNonNull - Return true if we know that the specified value is never |
| /// null. |
| static bool isKnownNonNull(const Value *V) { |
| // Alloca never returns null, malloc might. |
| if (isa<AllocaInst>(V)) return true; |
| |
| // A byval argument is never null. |
| if (const Argument *A = dyn_cast<Argument>(V)) |
| return A->hasByValAttr(); |
| |
| // Global values are not null unless extern weak. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return !GV->hasExternalWeakLinkage(); |
| return false; |
| } |
| |
| /// isNonEscapingLocalObject - Return true if the pointer is to a function-local |
| /// object that never escapes from the function. |
| static bool isNonEscapingLocalObject(const Value *V) { |
| // If this is a local allocation, check to see if it escapes. |
| if (isa<AllocaInst>(V) || isNoAliasCall(V)) |
| // Set StoreCaptures to True so that we can assume in our callers that the |
| // pointer is not the result of a load instruction. Currently |
| // PointerMayBeCaptured doesn't have any special analysis for the |
| // StoreCaptures=false case; if it did, our callers could be refined to be |
| // more precise. |
| return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); |
| |
| // If this is an argument that corresponds to a byval or noalias argument, |
| // then it has not escaped before entering the function. Check if it escapes |
| // inside the function. |
| if (const Argument *A = dyn_cast<Argument>(V)) |
| if (A->hasByValAttr() || A->hasNoAliasAttr()) { |
| // Don't bother analyzing arguments already known not to escape. |
| if (A->hasNoCaptureAttr()) |
| return true; |
| return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); |
| } |
| return false; |
| } |
| |
| /// isEscapeSource - Return true if the pointer is one which would have |
| /// been considered an escape by isNonEscapingLocalObject. |
| static bool isEscapeSource(const Value *V) { |
| if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) |
| return true; |
| |
| // The load case works because isNonEscapingLocalObject considers all |
| // stores to be escapes (it passes true for the StoreCaptures argument |
| // to PointerMayBeCaptured). |
| if (isa<LoadInst>(V)) |
| return true; |
| |
| return false; |
| } |
| |
| /// isObjectSmallerThan - Return true if we can prove that the object specified |
| /// by V is smaller than Size. |
| static bool isObjectSmallerThan(const Value *V, unsigned Size, |
| const TargetData &TD) { |
| const Type *AccessTy; |
| if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| AccessTy = GV->getType()->getElementType(); |
| } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| if (!AI->isArrayAllocation()) |
| AccessTy = AI->getType()->getElementType(); |
| else |
| return false; |
| } else if (const CallInst* CI = extractMallocCall(V)) { |
| if (!isArrayMalloc(V, &TD)) |
| // The size is the argument to the malloc call. |
| if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) |
| return (C->getZExtValue() < Size); |
| return false; |
| } else if (const Argument *A = dyn_cast<Argument>(V)) { |
| if (A->hasByValAttr()) |
| AccessTy = cast<PointerType>(A->getType())->getElementType(); |
| else |
| return false; |
| } else { |
| return false; |
| } |
| |
| if (AccessTy->isSized()) |
| return TD.getTypeAllocSize(AccessTy) < Size; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NoAA Pass |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// NoAA - This class implements the -no-aa pass, which always returns "I |
| /// don't know" for alias queries. NoAA is unlike other alias analysis |
| /// implementations, in that it does not chain to a previous analysis. As |
| /// such it doesn't follow many of the rules that other alias analyses must. |
| /// |
| struct NoAA : public ImmutablePass, public AliasAnalysis { |
| static char ID; // Class identification, replacement for typeinfo |
| NoAA() : ImmutablePass(ID) {} |
| explicit NoAA(char &PID) : ImmutablePass(PID) { } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| } |
| |
| virtual void initializePass() { |
| TD = getAnalysisIfAvailable<TargetData>(); |
| } |
| |
| virtual AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| return MayAlias; |
| } |
| |
| virtual bool pointsToConstantMemory(const Value *P) { return false; } |
| virtual ModRefResult getModRefInfo(ImmutableCallSite CS, |
| const Value *P, unsigned Size) { |
| return ModRef; |
| } |
| virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, |
| ImmutableCallSite CS2) { |
| return ModRef; |
| } |
| |
| virtual void deleteValue(Value *V) {} |
| virtual void copyValue(Value *From, Value *To) {} |
| |
| /// getAdjustedAnalysisPointer - This method is used when a pass implements |
| /// an analysis interface through multiple inheritance. If needed, it |
| /// should override this to adjust the this pointer as needed for the |
| /// specified pass info. |
| virtual void *getAdjustedAnalysisPointer(AnalysisID PI) { |
| if (PI == &AliasAnalysis::ID) |
| return (AliasAnalysis*)this; |
| return this; |
| } |
| }; |
| } // End of anonymous namespace |
| |
| // Register this pass... |
| char NoAA::ID = 0; |
| INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa", |
| "No Alias Analysis (always returns 'may' alias)", |
| true, true, false); |
| |
| ImmutablePass *llvm::createNoAAPass() { return new NoAA(); } |
| |
| //===----------------------------------------------------------------------===// |
| // BasicAliasAnalysis Pass |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| static const Function *getParent(const Value *V) { |
| if (const Instruction *inst = dyn_cast<Instruction>(V)) |
| return inst->getParent()->getParent(); |
| |
| if (const Argument *arg = dyn_cast<Argument>(V)) |
| return arg->getParent(); |
| |
| return NULL; |
| } |
| |
| static bool notDifferentParent(const Value *O1, const Value *O2) { |
| |
| const Function *F1 = getParent(O1); |
| const Function *F2 = getParent(O2); |
| |
| return !F1 || !F2 || F1 == F2; |
| } |
| #endif |
| |
| namespace { |
| /// BasicAliasAnalysis - This is the default alias analysis implementation. |
| /// Because it doesn't chain to a previous alias analysis (like -no-aa), it |
| /// derives from the NoAA class. |
| struct BasicAliasAnalysis : public NoAA { |
| static char ID; // Class identification, replacement for typeinfo |
| BasicAliasAnalysis() : NoAA(ID) {} |
| |
| AliasResult alias(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| assert(Visited.empty() && "Visited must be cleared after use!"); |
| assert(notDifferentParent(V1, V2) && |
| "BasicAliasAnalysis doesn't support interprocedural queries."); |
| AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size); |
| Visited.clear(); |
| return Alias; |
| } |
| |
| ModRefResult getModRefInfo(ImmutableCallSite CS, |
| const Value *P, unsigned Size); |
| ModRefResult getModRefInfo(ImmutableCallSite CS1, |
| ImmutableCallSite CS2); |
| |
| /// pointsToConstantMemory - Chase pointers until we find a (constant |
| /// global) or not. |
| bool pointsToConstantMemory(const Value *P); |
| |
| /// getAdjustedAnalysisPointer - This method is used when a pass implements |
| /// an analysis interface through multiple inheritance. If needed, it |
| /// should override this to adjust the this pointer as needed for the |
| /// specified pass info. |
| virtual void *getAdjustedAnalysisPointer(AnalysisID PI) { |
| if (PI == &AliasAnalysis::ID) |
| return (AliasAnalysis*)this; |
| return this; |
| } |
| |
| private: |
| // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP(). |
| SmallPtrSet<const Value*, 16> Visited; |
| |
| // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP |
| // instruction against another. |
| AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size, |
| const Value *UnderlyingV1, const Value *UnderlyingV2); |
| |
| // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI |
| // instruction against another. |
| AliasResult aliasPHI(const PHINode *PN, unsigned PNSize, |
| const Value *V2, unsigned V2Size); |
| |
| /// aliasSelect - Disambiguate a Select instruction against another value. |
| AliasResult aliasSelect(const SelectInst *SI, unsigned SISize, |
| const Value *V2, unsigned V2Size); |
| |
| AliasResult aliasCheck(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size); |
| }; |
| } // End of anonymous namespace |
| |
| // Register this pass... |
| char BasicAliasAnalysis::ID = 0; |
| INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa", |
| "Basic Alias Analysis (default AA impl)", |
| false, true, true); |
| |
| ImmutablePass *llvm::createBasicAliasAnalysisPass() { |
| return new BasicAliasAnalysis(); |
| } |
| |
| |
| /// pointsToConstantMemory - Chase pointers until we find a (constant |
| /// global) or not. |
| bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { |
| if (const GlobalVariable *GV = |
| dyn_cast<GlobalVariable>(P->getUnderlyingObject())) |
| // Note: this doesn't require GV to be "ODR" because it isn't legal for a |
| // global to be marked constant in some modules and non-constant in others. |
| // GV may even be a declaration, not a definition. |
| return GV->isConstant(); |
| return false; |
| } |
| |
| |
| /// getModRefInfo - Check to see if the specified callsite can clobber the |
| /// specified memory object. Since we only look at local properties of this |
| /// function, we really can't say much about this query. We do, however, use |
| /// simple "address taken" analysis on local objects. |
| AliasAnalysis::ModRefResult |
| BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, |
| const Value *P, unsigned Size) { |
| assert(notDifferentParent(CS.getInstruction(), P) && |
| "AliasAnalysis query involving multiple functions!"); |
| |
| const Value *Object = P->getUnderlyingObject(); |
| |
| // If this is a tail call and P points to a stack location, we know that |
| // the tail call cannot access or modify the local stack. |
| // We cannot exclude byval arguments here; these belong to the caller of |
| // the current function not to the current function, and a tail callee |
| // may reference them. |
| if (isa<AllocaInst>(Object)) |
| if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) |
| if (CI->isTailCall()) |
| return NoModRef; |
| |
| // If the pointer is to a locally allocated object that does not escape, |
| // then the call can not mod/ref the pointer unless the call takes the pointer |
| // as an argument, and itself doesn't capture it. |
| if (!isa<Constant>(Object) && CS.getInstruction() != Object && |
| isNonEscapingLocalObject(Object)) { |
| bool PassedAsArg = false; |
| unsigned ArgNo = 0; |
| for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); |
| CI != CE; ++CI, ++ArgNo) { |
| // Only look at the no-capture pointer arguments. |
| if (!(*CI)->getType()->isPointerTy() || |
| !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)) |
| continue; |
| |
| // If this is a no-capture pointer argument, see if we can tell that it |
| // is impossible to alias the pointer we're checking. If not, we have to |
| // assume that the call could touch the pointer, even though it doesn't |
| // escape. |
| if (!isNoAlias(cast<Value>(CI), UnknownSize, P, UnknownSize)) { |
| PassedAsArg = true; |
| break; |
| } |
| } |
| |
| if (!PassedAsArg) |
| return NoModRef; |
| } |
| |
| // Finally, handle specific knowledge of intrinsics. |
| const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); |
| if (II == 0) |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: { |
| unsigned Len = UnknownSize; |
| if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) |
| Len = LenCI->getZExtValue(); |
| Value *Dest = II->getArgOperand(0); |
| Value *Src = II->getArgOperand(1); |
| if (isNoAlias(Dest, Len, P, Size)) { |
| if (isNoAlias(Src, Len, P, Size)) |
| return NoModRef; |
| return Ref; |
| } |
| break; |
| } |
| case Intrinsic::memset: |
| // Since memset is 'accesses arguments' only, the AliasAnalysis base class |
| // will handle it for the variable length case. |
| if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { |
| unsigned Len = LenCI->getZExtValue(); |
| Value *Dest = II->getArgOperand(0); |
| if (isNoAlias(Dest, Len, P, Size)) |
| return NoModRef; |
| } |
| break; |
| case Intrinsic::atomic_cmp_swap: |
| case Intrinsic::atomic_swap: |
| case Intrinsic::atomic_load_add: |
| case Intrinsic::atomic_load_sub: |
| case Intrinsic::atomic_load_and: |
| case Intrinsic::atomic_load_nand: |
| case Intrinsic::atomic_load_or: |
| case Intrinsic::atomic_load_xor: |
| case Intrinsic::atomic_load_max: |
| case Intrinsic::atomic_load_min: |
| case Intrinsic::atomic_load_umax: |
| case Intrinsic::atomic_load_umin: |
| if (TD) { |
| Value *Op1 = II->getArgOperand(0); |
| unsigned Op1Size = TD->getTypeStoreSize(Op1->getType()); |
| if (isNoAlias(Op1, Op1Size, P, Size)) |
| return NoModRef; |
| } |
| break; |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::invariant_start: { |
| unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); |
| if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size)) |
| return NoModRef; |
| break; |
| } |
| case Intrinsic::invariant_end: { |
| unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); |
| if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size)) |
| return NoModRef; |
| break; |
| } |
| } |
| |
| // The AliasAnalysis base class has some smarts, lets use them. |
| return AliasAnalysis::getModRefInfo(CS, P, Size); |
| } |
| |
| |
| AliasAnalysis::ModRefResult |
| BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, |
| ImmutableCallSite CS2) { |
| // If CS1 or CS2 are readnone, they don't interact. |
| ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1); |
| if (CS1B == DoesNotAccessMemory) return NoModRef; |
| |
| ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2); |
| if (CS2B == DoesNotAccessMemory) return NoModRef; |
| |
| // If they both only read from memory, there is no dependence. |
| if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory) |
| return NoModRef; |
| |
| AliasAnalysis::ModRefResult Mask = ModRef; |
| |
| // If CS1 only reads memory, the only dependence on CS2 can be |
| // from CS1 reading memory written by CS2. |
| if (CS1B == OnlyReadsMemory) |
| Mask = ModRefResult(Mask & Ref); |
| |
| // If CS2 only access memory through arguments, accumulate the mod/ref |
| // information from CS1's references to the memory referenced by |
| // CS2's arguments. |
| if (CS2B == AccessesArguments) { |
| AliasAnalysis::ModRefResult R = NoModRef; |
| for (ImmutableCallSite::arg_iterator |
| I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { |
| R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask); |
| if (R == Mask) |
| break; |
| } |
| return R; |
| } |
| |
| // If CS1 only accesses memory through arguments, check if CS2 references |
| // any of the memory referenced by CS1's arguments. If not, return NoModRef. |
| if (CS1B == AccessesArguments) { |
| AliasAnalysis::ModRefResult R = NoModRef; |
| for (ImmutableCallSite::arg_iterator |
| I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) |
| if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) { |
| R = Mask; |
| break; |
| } |
| if (R == NoModRef) |
| return R; |
| } |
| |
| // Otherwise, fall back to NoAA (mod+ref). |
| return ModRefResult(NoAA::getModRefInfo(CS1, CS2) & Mask); |
| } |
| |
| /// GetIndexDifference - Dest and Src are the variable indices from two |
| /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base |
| /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic |
| /// difference between the two pointers. |
| static void GetIndexDifference( |
| SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest, |
| const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) { |
| if (Src.empty()) return; |
| |
| for (unsigned i = 0, e = Src.size(); i != e; ++i) { |
| const Value *V = Src[i].first; |
| int64_t Scale = Src[i].second; |
| |
| // Find V in Dest. This is N^2, but pointer indices almost never have more |
| // than a few variable indexes. |
| for (unsigned j = 0, e = Dest.size(); j != e; ++j) { |
| if (Dest[j].first != V) continue; |
| |
| // If we found it, subtract off Scale V's from the entry in Dest. If it |
| // goes to zero, remove the entry. |
| if (Dest[j].second != Scale) |
| Dest[j].second -= Scale; |
| else |
| Dest.erase(Dest.begin()+j); |
| Scale = 0; |
| break; |
| } |
| |
| // If we didn't consume this entry, add it to the end of the Dest list. |
| if (Scale) |
| Dest.push_back(std::make_pair(V, -Scale)); |
| } |
| } |
| |
| /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction |
| /// against another pointer. We know that V1 is a GEP, but we don't know |
| /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(), |
| /// UnderlyingV2 is the same for V2. |
| /// |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, |
| const Value *V2, unsigned V2Size, |
| const Value *UnderlyingV1, |
| const Value *UnderlyingV2) { |
| // If this GEP has been visited before, we're on a use-def cycle. |
| // Such cycles are only valid when PHI nodes are involved or in unreachable |
| // code. The visitPHI function catches cycles containing PHIs, but there |
| // could still be a cycle without PHIs in unreachable code. |
| if (!Visited.insert(GEP1)) |
| return MayAlias; |
| |
| int64_t GEP1BaseOffset; |
| SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices; |
| |
| // If we have two gep instructions with must-alias'ing base pointers, figure |
| // out if the indexes to the GEP tell us anything about the derived pointer. |
| if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { |
| // Do the base pointers alias? |
| AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, |
| UnderlyingV2, UnknownSize); |
| |
| // If we get a No or May, then return it immediately, no amount of analysis |
| // will improve this situation. |
| if (BaseAlias != MustAlias) return BaseAlias; |
| |
| // Otherwise, we have a MustAlias. Since the base pointers alias each other |
| // exactly, see if the computed offset from the common pointer tells us |
| // about the relation of the resulting pointer. |
| const Value *GEP1BasePtr = |
| DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); |
| |
| int64_t GEP2BaseOffset; |
| SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices; |
| const Value *GEP2BasePtr = |
| DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); |
| |
| // If DecomposeGEPExpression isn't able to look all the way through the |
| // addressing operation, we must not have TD and this is too complex for us |
| // to handle without it. |
| if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { |
| assert(TD == 0 && |
| "DecomposeGEPExpression and getUnderlyingObject disagree!"); |
| return MayAlias; |
| } |
| |
| // Subtract the GEP2 pointer from the GEP1 pointer to find out their |
| // symbolic difference. |
| GEP1BaseOffset -= GEP2BaseOffset; |
| GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); |
| |
| } else { |
| // Check to see if these two pointers are related by the getelementptr |
| // instruction. If one pointer is a GEP with a non-zero index of the other |
| // pointer, we know they cannot alias. |
| |
| // If both accesses are unknown size, we can't do anything useful here. |
| if (V1Size == UnknownSize && V2Size == UnknownSize) |
| return MayAlias; |
| |
| AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, V2, V2Size); |
| if (R != MustAlias) |
| // If V2 may alias GEP base pointer, conservatively returns MayAlias. |
| // If V2 is known not to alias GEP base pointer, then the two values |
| // cannot alias per GEP semantics: "A pointer value formed from a |
| // getelementptr instruction is associated with the addresses associated |
| // with the first operand of the getelementptr". |
| return R; |
| |
| const Value *GEP1BasePtr = |
| DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); |
| |
| // If DecomposeGEPExpression isn't able to look all the way through the |
| // addressing operation, we must not have TD and this is too complex for us |
| // to handle without it. |
| if (GEP1BasePtr != UnderlyingV1) { |
| assert(TD == 0 && |
| "DecomposeGEPExpression and getUnderlyingObject disagree!"); |
| return MayAlias; |
| } |
| } |
| |
| // In the two GEP Case, if there is no difference in the offsets of the |
| // computed pointers, the resultant pointers are a must alias. This |
| // hapens when we have two lexically identical GEP's (for example). |
| // |
| // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 |
| // must aliases the GEP, the end result is a must alias also. |
| if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) |
| return MustAlias; |
| |
| // If we have a known constant offset, see if this offset is larger than the |
| // access size being queried. If so, and if no variable indices can remove |
| // pieces of this constant, then we know we have a no-alias. For example, |
| // &A[100] != &A. |
| |
| // In order to handle cases like &A[100][i] where i is an out of range |
| // subscript, we have to ignore all constant offset pieces that are a multiple |
| // of a scaled index. Do this by removing constant offsets that are a |
| // multiple of any of our variable indices. This allows us to transform |
| // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1 |
| // provides an offset of 4 bytes (assuming a <= 4 byte access). |
| for (unsigned i = 0, e = GEP1VariableIndices.size(); |
| i != e && GEP1BaseOffset;++i) |
| if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second) |
| GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second; |
| |
| // If our known offset is bigger than the access size, we know we don't have |
| // an alias. |
| if (GEP1BaseOffset) { |
| if (GEP1BaseOffset >= (int64_t)V2Size || |
| GEP1BaseOffset <= -(int64_t)V1Size) |
| return NoAlias; |
| } |
| |
| return MayAlias; |
| } |
| |
| /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select |
| /// instruction against another. |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize, |
| const Value *V2, unsigned V2Size) { |
| // If this select has been visited before, we're on a use-def cycle. |
| // Such cycles are only valid when PHI nodes are involved or in unreachable |
| // code. The visitPHI function catches cycles containing PHIs, but there |
| // could still be a cycle without PHIs in unreachable code. |
| if (!Visited.insert(SI)) |
| return MayAlias; |
| |
| // If the values are Selects with the same condition, we can do a more precise |
| // check: just check for aliases between the values on corresponding arms. |
| if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) |
| if (SI->getCondition() == SI2->getCondition()) { |
| AliasResult Alias = |
| aliasCheck(SI->getTrueValue(), SISize, |
| SI2->getTrueValue(), V2Size); |
| if (Alias == MayAlias) |
| return MayAlias; |
| AliasResult ThisAlias = |
| aliasCheck(SI->getFalseValue(), SISize, |
| SI2->getFalseValue(), V2Size); |
| if (ThisAlias != Alias) |
| return MayAlias; |
| return Alias; |
| } |
| |
| // If both arms of the Select node NoAlias or MustAlias V2, then returns |
| // NoAlias / MustAlias. Otherwise, returns MayAlias. |
| AliasResult Alias = |
| aliasCheck(V2, V2Size, SI->getTrueValue(), SISize); |
| if (Alias == MayAlias) |
| return MayAlias; |
| |
| // If V2 is visited, the recursive case will have been caught in the |
| // above aliasCheck call, so these subsequent calls to aliasCheck |
| // don't need to assume that V2 is being visited recursively. |
| Visited.erase(V2); |
| |
| AliasResult ThisAlias = |
| aliasCheck(V2, V2Size, SI->getFalseValue(), SISize); |
| if (ThisAlias != Alias) |
| return MayAlias; |
| return Alias; |
| } |
| |
| // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction |
| // against another. |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize, |
| const Value *V2, unsigned V2Size) { |
| // The PHI node has already been visited, avoid recursion any further. |
| if (!Visited.insert(PN)) |
| return MayAlias; |
| |
| // If the values are PHIs in the same block, we can do a more precise |
| // as well as efficient check: just check for aliases between the values |
| // on corresponding edges. |
| if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) |
| if (PN2->getParent() == PN->getParent()) { |
| AliasResult Alias = |
| aliasCheck(PN->getIncomingValue(0), PNSize, |
| PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), |
| V2Size); |
| if (Alias == MayAlias) |
| return MayAlias; |
| for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { |
| AliasResult ThisAlias = |
| aliasCheck(PN->getIncomingValue(i), PNSize, |
| PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), |
| V2Size); |
| if (ThisAlias != Alias) |
| return MayAlias; |
| } |
| return Alias; |
| } |
| |
| SmallPtrSet<Value*, 4> UniqueSrc; |
| SmallVector<Value*, 4> V1Srcs; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *PV1 = PN->getIncomingValue(i); |
| if (isa<PHINode>(PV1)) |
| // If any of the source itself is a PHI, return MayAlias conservatively |
| // to avoid compile time explosion. The worst possible case is if both |
| // sides are PHI nodes. In which case, this is O(m x n) time where 'm' |
| // and 'n' are the number of PHI sources. |
| return MayAlias; |
| if (UniqueSrc.insert(PV1)) |
| V1Srcs.push_back(PV1); |
| } |
| |
| AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize); |
| // Early exit if the check of the first PHI source against V2 is MayAlias. |
| // Other results are not possible. |
| if (Alias == MayAlias) |
| return MayAlias; |
| |
| // If all sources of the PHI node NoAlias or MustAlias V2, then returns |
| // NoAlias / MustAlias. Otherwise, returns MayAlias. |
| for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { |
| Value *V = V1Srcs[i]; |
| |
| // If V2 is visited, the recursive case will have been caught in the |
| // above aliasCheck call, so these subsequent calls to aliasCheck |
| // don't need to assume that V2 is being visited recursively. |
| Visited.erase(V2); |
| |
| AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize); |
| if (ThisAlias != Alias || ThisAlias == MayAlias) |
| return MayAlias; |
| } |
| |
| return Alias; |
| } |
| |
| // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, |
| // such as array references. |
| // |
| AliasAnalysis::AliasResult |
| BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, |
| const Value *V2, unsigned V2Size) { |
| // If either of the memory references is empty, it doesn't matter what the |
| // pointer values are. |
| if (V1Size == 0 || V2Size == 0) |
| return NoAlias; |
| |
| // Strip off any casts if they exist. |
| V1 = V1->stripPointerCasts(); |
| V2 = V2->stripPointerCasts(); |
| |
| // Are we checking for alias of the same value? |
| if (V1 == V2) return MustAlias; |
| |
| if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) |
| return NoAlias; // Scalars cannot alias each other |
| |
| // Figure out what objects these things are pointing to if we can. |
| const Value *O1 = V1->getUnderlyingObject(); |
| const Value *O2 = V2->getUnderlyingObject(); |
| |
| // Null values in the default address space don't point to any object, so they |
| // don't alias any other pointer. |
| if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) |
| if (CPN->getType()->getAddressSpace() == 0) |
| return NoAlias; |
| if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) |
| if (CPN->getType()->getAddressSpace() == 0) |
| return NoAlias; |
| |
| if (O1 != O2) { |
| // If V1/V2 point to two different objects we know that we have no alias. |
| if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) |
| return NoAlias; |
| |
| // Constant pointers can't alias with non-const isIdentifiedObject objects. |
| if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || |
| (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) |
| return NoAlias; |
| |
| // Arguments can't alias with local allocations or noalias calls |
| // in the same function. |
| if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || |
| (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) |
| return NoAlias; |
| |
| // Most objects can't alias null. |
| if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || |
| (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) |
| return NoAlias; |
| |
| // If one pointer is the result of a call/invoke or load and the other is a |
| // non-escaping local object within the same function, then we know the |
| // object couldn't escape to a point where the call could return it. |
| // |
| // Note that if the pointers are in different functions, there are a |
| // variety of complications. A call with a nocapture argument may still |
| // temporary store the nocapture argument's value in a temporary memory |
| // location if that memory location doesn't escape. Or it may pass a |
| // nocapture value to other functions as long as they don't capture it. |
| if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) |
| return NoAlias; |
| if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) |
| return NoAlias; |
| } |
| |
| // If the size of one access is larger than the entire object on the other |
| // side, then we know such behavior is undefined and can assume no alias. |
| if (TD) |
| if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || |
| (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) |
| return NoAlias; |
| |
| // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the |
| // GEP can't simplify, we don't even look at the PHI cases. |
| if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| std::swap(O1, O2); |
| } |
| if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) |
| return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2); |
| |
| if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| } |
| if (const PHINode *PN = dyn_cast<PHINode>(V1)) |
| return aliasPHI(PN, V1Size, V2, V2Size); |
| |
| if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { |
| std::swap(V1, V2); |
| std::swap(V1Size, V2Size); |
| } |
| if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) |
| return aliasSelect(S1, V1Size, V2, V2Size); |
| |
| return MayAlias; |
| } |
| |
| // Make sure that anything that uses AliasAnalysis pulls in this file. |
| DEFINING_FILE_FOR(BasicAliasAnalysis) |