| //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This register allocator allocates registers to a basic block at a time, | 
 | // attempting to keep values in registers and reusing registers as appropriate. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "llvm/BasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/IndexedMap.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumStores, "Number of stores added"); | 
 | STATISTIC(NumLoads , "Number of loads added"); | 
 | STATISTIC(NumCopies, "Number of copies coalesced"); | 
 |  | 
 | static RegisterRegAlloc | 
 |   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); | 
 |  | 
 | namespace { | 
 |   class RAFast : public MachineFunctionPass { | 
 |   public: | 
 |     static char ID; | 
 |     RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), | 
 |                isBulkSpilling(false) { | 
 |       initializePHIEliminationPass(*PassRegistry::getPassRegistry()); | 
 |       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |   private: | 
 |     const TargetMachine *TM; | 
 |     MachineFunction *MF; | 
 |     MachineRegisterInfo *MRI; | 
 |     const TargetRegisterInfo *TRI; | 
 |     const TargetInstrInfo *TII; | 
 |  | 
 |     // Basic block currently being allocated. | 
 |     MachineBasicBlock *MBB; | 
 |  | 
 |     // StackSlotForVirtReg - Maps virtual regs to the frame index where these | 
 |     // values are spilled. | 
 |     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; | 
 |  | 
 |     // Everything we know about a live virtual register. | 
 |     struct LiveReg { | 
 |       MachineInstr *LastUse;    // Last instr to use reg. | 
 |       unsigned PhysReg;         // Currently held here. | 
 |       unsigned short LastOpNum; // OpNum on LastUse. | 
 |       bool Dirty;               // Register needs spill. | 
 |  | 
 |       LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0), | 
 |                               Dirty(false) {} | 
 |     }; | 
 |  | 
 |     typedef DenseMap<unsigned, LiveReg> LiveRegMap; | 
 |     typedef LiveRegMap::value_type LiveRegEntry; | 
 |  | 
 |     // LiveVirtRegs - This map contains entries for each virtual register | 
 |     // that is currently available in a physical register. | 
 |     LiveRegMap LiveVirtRegs; | 
 |  | 
 |     DenseMap<unsigned, MachineInstr *> LiveDbgValueMap; | 
 |  | 
 |     // RegState - Track the state of a physical register. | 
 |     enum RegState { | 
 |       // A disabled register is not available for allocation, but an alias may | 
 |       // be in use. A register can only be moved out of the disabled state if | 
 |       // all aliases are disabled. | 
 |       regDisabled, | 
 |  | 
 |       // A free register is not currently in use and can be allocated | 
 |       // immediately without checking aliases. | 
 |       regFree, | 
 |  | 
 |       // A reserved register has been assigned expolicitly (e.g., setting up a | 
 |       // call parameter), and it remains reserved until it is used. | 
 |       regReserved | 
 |  | 
 |       // A register state may also be a virtual register number, indication that | 
 |       // the physical register is currently allocated to a virtual register. In | 
 |       // that case, LiveVirtRegs contains the inverse mapping. | 
 |     }; | 
 |  | 
 |     // PhysRegState - One of the RegState enums, or a virtreg. | 
 |     std::vector<unsigned> PhysRegState; | 
 |  | 
 |     // UsedInInstr - BitVector of physregs that are used in the current | 
 |     // instruction, and so cannot be allocated. | 
 |     BitVector UsedInInstr; | 
 |  | 
 |     // Allocatable - vector of allocatable physical registers. | 
 |     BitVector Allocatable; | 
 |  | 
 |     // SkippedInstrs - Descriptors of instructions whose clobber list was | 
 |     // ignored because all registers were spilled. It is still necessary to | 
 |     // mark all the clobbered registers as used by the function. | 
 |     SmallPtrSet<const TargetInstrDesc*, 4> SkippedInstrs; | 
 |  | 
 |     // isBulkSpilling - This flag is set when LiveRegMap will be cleared | 
 |     // completely after spilling all live registers. LiveRegMap entries should | 
 |     // not be erased. | 
 |     bool isBulkSpilling; | 
 |  | 
 |     enum { | 
 |       spillClean = 1, | 
 |       spillDirty = 100, | 
 |       spillImpossible = ~0u | 
 |     }; | 
 |   public: | 
 |     virtual const char *getPassName() const { | 
 |       return "Fast Register Allocator"; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequiredID(PHIEliminationID); | 
 |       AU.addRequiredID(TwoAddressInstructionPassID); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     bool runOnMachineFunction(MachineFunction &Fn); | 
 |     void AllocateBasicBlock(); | 
 |     void handleThroughOperands(MachineInstr *MI, | 
 |                                SmallVectorImpl<unsigned> &VirtDead); | 
 |     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); | 
 |     bool isLastUseOfLocalReg(MachineOperand&); | 
 |  | 
 |     void addKillFlag(const LiveReg&); | 
 |     void killVirtReg(LiveRegMap::iterator); | 
 |     void killVirtReg(unsigned VirtReg); | 
 |     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); | 
 |     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); | 
 |  | 
 |     void usePhysReg(MachineOperand&); | 
 |     void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); | 
 |     unsigned calcSpillCost(unsigned PhysReg) const; | 
 |     void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg); | 
 |     void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint); | 
 |     LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, | 
 |                                        unsigned VirtReg, unsigned Hint); | 
 |     LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, | 
 |                                        unsigned VirtReg, unsigned Hint); | 
 |     void spillAll(MachineInstr *MI); | 
 |     bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); | 
 |   }; | 
 |   char RAFast::ID = 0; | 
 | } | 
 |  | 
 | /// getStackSpaceFor - This allocates space for the specified virtual register | 
 | /// to be held on the stack. | 
 | int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { | 
 |   // Find the location Reg would belong... | 
 |   int SS = StackSlotForVirtReg[VirtReg]; | 
 |   if (SS != -1) | 
 |     return SS;          // Already has space allocated? | 
 |  | 
 |   // Allocate a new stack object for this spill location... | 
 |   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), | 
 |                                                             RC->getAlignment()); | 
 |  | 
 |   // Assign the slot. | 
 |   StackSlotForVirtReg[VirtReg] = FrameIdx; | 
 |   return FrameIdx; | 
 | } | 
 |  | 
 | /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to | 
 | /// its virtual register, and it is guaranteed to be a block-local register. | 
 | /// | 
 | bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { | 
 |   // Check for non-debug uses or defs following MO. | 
 |   // This is the most likely way to fail - fast path it. | 
 |   MachineOperand *Next = &MO; | 
 |   while ((Next = Next->getNextOperandForReg())) | 
 |     if (!Next->isDebug()) | 
 |       return false; | 
 |  | 
 |   // If the register has ever been spilled or reloaded, we conservatively assume | 
 |   // it is a global register used in multiple blocks. | 
 |   if (StackSlotForVirtReg[MO.getReg()] != -1) | 
 |     return false; | 
 |  | 
 |   // Check that the use/def chain has exactly one operand - MO. | 
 |   return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO; | 
 | } | 
 |  | 
 | /// addKillFlag - Set kill flags on last use of a virtual register. | 
 | void RAFast::addKillFlag(const LiveReg &LR) { | 
 |   if (!LR.LastUse) return; | 
 |   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); | 
 |   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { | 
 |     if (MO.getReg() == LR.PhysReg) | 
 |       MO.setIsKill(); | 
 |     else | 
 |       LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); | 
 |   } | 
 | } | 
 |  | 
 | /// killVirtReg - Mark virtreg as no longer available. | 
 | void RAFast::killVirtReg(LiveRegMap::iterator LRI) { | 
 |   addKillFlag(LRI->second); | 
 |   const LiveReg &LR = LRI->second; | 
 |   assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping"); | 
 |   PhysRegState[LR.PhysReg] = regFree; | 
 |   // Erase from LiveVirtRegs unless we're spilling in bulk. | 
 |   if (!isBulkSpilling) | 
 |     LiveVirtRegs.erase(LRI); | 
 | } | 
 |  | 
 | /// killVirtReg - Mark virtreg as no longer available. | 
 | void RAFast::killVirtReg(unsigned VirtReg) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |          "killVirtReg needs a virtual register"); | 
 |   LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg); | 
 |   if (LRI != LiveVirtRegs.end()) | 
 |     killVirtReg(LRI); | 
 | } | 
 |  | 
 | /// spillVirtReg - This method spills the value specified by VirtReg into the | 
 | /// corresponding stack slot if needed. | 
 | void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |          "Spilling a physical register is illegal!"); | 
 |   LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg); | 
 |   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); | 
 |   spillVirtReg(MI, LRI); | 
 | } | 
 |  | 
 | /// spillVirtReg - Do the actual work of spilling. | 
 | void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, | 
 |                           LiveRegMap::iterator LRI) { | 
 |   LiveReg &LR = LRI->second; | 
 |   assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping"); | 
 |  | 
 |   if (LR.Dirty) { | 
 |     // If this physreg is used by the instruction, we want to kill it on the | 
 |     // instruction, not on the spill. | 
 |     bool SpillKill = LR.LastUse != MI; | 
 |     LR.Dirty = false; | 
 |     DEBUG(dbgs() << "Spilling %reg" << LRI->first | 
 |                  << " in " << TRI->getName(LR.PhysReg)); | 
 |     const TargetRegisterClass *RC = MRI->getRegClass(LRI->first); | 
 |     int FI = getStackSpaceFor(LRI->first, RC); | 
 |     DEBUG(dbgs() << " to stack slot #" << FI << "\n"); | 
 |     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); | 
 |     ++NumStores;   // Update statistics | 
 |  | 
 |     // If this register is used by DBG_VALUE then insert new DBG_VALUE to | 
 |     // identify spilled location as the place to find corresponding variable's | 
 |     // value. | 
 |     if (MachineInstr *DBG = LiveDbgValueMap.lookup(LRI->first)) { | 
 |       const MDNode *MDPtr = | 
 |         DBG->getOperand(DBG->getNumOperands()-1).getMetadata(); | 
 |       int64_t Offset = 0; | 
 |       if (DBG->getOperand(1).isImm()) | 
 |         Offset = DBG->getOperand(1).getImm(); | 
 |       DebugLoc DL; | 
 |       if (MI == MBB->end()) { | 
 |         // If MI is at basic block end then use last instruction's location. | 
 |         MachineBasicBlock::iterator EI = MI; | 
 |         DL = (--EI)->getDebugLoc(); | 
 |       } | 
 |       else | 
 |         DL = MI->getDebugLoc(); | 
 |       if (MachineInstr *NewDV = | 
 |           TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) { | 
 |         MachineBasicBlock *MBB = DBG->getParent(); | 
 |         MBB->insert(MI, NewDV); | 
 |         DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); | 
 |         LiveDbgValueMap[LRI->first] = NewDV; | 
 |       } | 
 |     } | 
 |     if (SpillKill) | 
 |       LR.LastUse = 0; // Don't kill register again | 
 |   } | 
 |   killVirtReg(LRI); | 
 | } | 
 |  | 
 | /// spillAll - Spill all dirty virtregs without killing them. | 
 | void RAFast::spillAll(MachineInstr *MI) { | 
 |   if (LiveVirtRegs.empty()) return; | 
 |   isBulkSpilling = true; | 
 |   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order | 
 |   // of spilling here is deterministic, if arbitrary. | 
 |   for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); | 
 |        i != e; ++i) | 
 |     spillVirtReg(MI, i); | 
 |   LiveVirtRegs.clear(); | 
 |   isBulkSpilling = false; | 
 | } | 
 |  | 
 | /// usePhysReg - Handle the direct use of a physical register. | 
 | /// Check that the register is not used by a virtreg. | 
 | /// Kill the physreg, marking it free. | 
 | /// This may add implicit kills to MO->getParent() and invalidate MO. | 
 | void RAFast::usePhysReg(MachineOperand &MO) { | 
 |   unsigned PhysReg = MO.getReg(); | 
 |   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && | 
 |          "Bad usePhysReg operand"); | 
 |  | 
 |   switch (PhysRegState[PhysReg]) { | 
 |   case regDisabled: | 
 |     break; | 
 |   case regReserved: | 
 |     PhysRegState[PhysReg] = regFree; | 
 |     // Fall through | 
 |   case regFree: | 
 |     UsedInInstr.set(PhysReg); | 
 |     MO.setIsKill(); | 
 |     return; | 
 |   default: | 
 |     // The physreg was allocated to a virtual register. That means the value we | 
 |     // wanted has been clobbered. | 
 |     llvm_unreachable("Instruction uses an allocated register"); | 
 |   } | 
 |  | 
 |   // Maybe a superregister is reserved? | 
 |   for (const unsigned *AS = TRI->getAliasSet(PhysReg); | 
 |        unsigned Alias = *AS; ++AS) { | 
 |     switch (PhysRegState[Alias]) { | 
 |     case regDisabled: | 
 |       break; | 
 |     case regReserved: | 
 |       assert(TRI->isSuperRegister(PhysReg, Alias) && | 
 |              "Instruction is not using a subregister of a reserved register"); | 
 |       // Leave the superregister in the working set. | 
 |       PhysRegState[Alias] = regFree; | 
 |       UsedInInstr.set(Alias); | 
 |       MO.getParent()->addRegisterKilled(Alias, TRI, true); | 
 |       return; | 
 |     case regFree: | 
 |       if (TRI->isSuperRegister(PhysReg, Alias)) { | 
 |         // Leave the superregister in the working set. | 
 |         UsedInInstr.set(Alias); | 
 |         MO.getParent()->addRegisterKilled(Alias, TRI, true); | 
 |         return; | 
 |       } | 
 |       // Some other alias was in the working set - clear it. | 
 |       PhysRegState[Alias] = regDisabled; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("Instruction uses an alias of an allocated register"); | 
 |     } | 
 |   } | 
 |  | 
 |   // All aliases are disabled, bring register into working set. | 
 |   PhysRegState[PhysReg] = regFree; | 
 |   UsedInInstr.set(PhysReg); | 
 |   MO.setIsKill(); | 
 | } | 
 |  | 
 | /// definePhysReg - Mark PhysReg as reserved or free after spilling any | 
 | /// virtregs. This is very similar to defineVirtReg except the physreg is | 
 | /// reserved instead of allocated. | 
 | void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, | 
 |                            RegState NewState) { | 
 |   UsedInInstr.set(PhysReg); | 
 |   switch (unsigned VirtReg = PhysRegState[PhysReg]) { | 
 |   case regDisabled: | 
 |     break; | 
 |   default: | 
 |     spillVirtReg(MI, VirtReg); | 
 |     // Fall through. | 
 |   case regFree: | 
 |   case regReserved: | 
 |     PhysRegState[PhysReg] = NewState; | 
 |     return; | 
 |   } | 
 |  | 
 |   // This is a disabled register, disable all aliases. | 
 |   PhysRegState[PhysReg] = NewState; | 
 |   for (const unsigned *AS = TRI->getAliasSet(PhysReg); | 
 |        unsigned Alias = *AS; ++AS) { | 
 |     UsedInInstr.set(Alias); | 
 |     switch (unsigned VirtReg = PhysRegState[Alias]) { | 
 |     case regDisabled: | 
 |       break; | 
 |     default: | 
 |       spillVirtReg(MI, VirtReg); | 
 |       // Fall through. | 
 |     case regFree: | 
 |     case regReserved: | 
 |       PhysRegState[Alias] = regDisabled; | 
 |       if (TRI->isSuperRegister(PhysReg, Alias)) | 
 |         return; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // calcSpillCost - Return the cost of spilling clearing out PhysReg and | 
 | // aliases so it is free for allocation. | 
 | // Returns 0 when PhysReg is free or disabled with all aliases disabled - it | 
 | // can be allocated directly. | 
 | // Returns spillImpossible when PhysReg or an alias can't be spilled. | 
 | unsigned RAFast::calcSpillCost(unsigned PhysReg) const { | 
 |   if (UsedInInstr.test(PhysReg)) | 
 |     return spillImpossible; | 
 |   switch (unsigned VirtReg = PhysRegState[PhysReg]) { | 
 |   case regDisabled: | 
 |     break; | 
 |   case regFree: | 
 |     return 0; | 
 |   case regReserved: | 
 |     return spillImpossible; | 
 |   default: | 
 |     return LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean; | 
 |   } | 
 |  | 
 |   // This is a disabled register, add up const of aliases. | 
 |   unsigned Cost = 0; | 
 |   for (const unsigned *AS = TRI->getAliasSet(PhysReg); | 
 |        unsigned Alias = *AS; ++AS) { | 
 |     if (UsedInInstr.test(Alias)) | 
 |       return spillImpossible; | 
 |     switch (unsigned VirtReg = PhysRegState[Alias]) { | 
 |     case regDisabled: | 
 |       break; | 
 |     case regFree: | 
 |       ++Cost; | 
 |       break; | 
 |     case regReserved: | 
 |       return spillImpossible; | 
 |     default: | 
 |       Cost += LiveVirtRegs.lookup(VirtReg).Dirty ? spillDirty : spillClean; | 
 |       break; | 
 |     } | 
 |   } | 
 |   return Cost; | 
 | } | 
 |  | 
 |  | 
 | /// assignVirtToPhysReg - This method updates local state so that we know | 
 | /// that PhysReg is the proper container for VirtReg now.  The physical | 
 | /// register must not be used for anything else when this is called. | 
 | /// | 
 | void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) { | 
 |   DEBUG(dbgs() << "Assigning %reg" << LRE.first << " to " | 
 |                << TRI->getName(PhysReg) << "\n"); | 
 |   PhysRegState[PhysReg] = LRE.first; | 
 |   assert(!LRE.second.PhysReg && "Already assigned a physreg"); | 
 |   LRE.second.PhysReg = PhysReg; | 
 | } | 
 |  | 
 | /// allocVirtReg - Allocate a physical register for VirtReg. | 
 | void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) { | 
 |   const unsigned VirtReg = LRE.first; | 
 |  | 
 |   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |          "Can only allocate virtual registers"); | 
 |  | 
 |   const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); | 
 |  | 
 |   // Ignore invalid hints. | 
 |   if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || | 
 |                !RC->contains(Hint) || !Allocatable.test(Hint))) | 
 |     Hint = 0; | 
 |  | 
 |   // Take hint when possible. | 
 |   if (Hint) { | 
 |     switch(calcSpillCost(Hint)) { | 
 |     default: | 
 |       definePhysReg(MI, Hint, regFree); | 
 |       // Fall through. | 
 |     case 0: | 
 |       return assignVirtToPhysReg(LRE, Hint); | 
 |     case spillImpossible: | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF); | 
 |   TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF); | 
 |  | 
 |   // First try to find a completely free register. | 
 |   for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { | 
 |     unsigned PhysReg = *I; | 
 |     if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg) && | 
 |         Allocatable.test(PhysReg)) | 
 |       return assignVirtToPhysReg(LRE, PhysReg); | 
 |   } | 
 |  | 
 |   DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName() | 
 |                << "\n"); | 
 |  | 
 |   unsigned BestReg = 0, BestCost = spillImpossible; | 
 |   for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) { | 
 |     if (!Allocatable.test(*I)) | 
 |       continue; | 
 |     unsigned Cost = calcSpillCost(*I); | 
 |     // Cost is 0 when all aliases are already disabled. | 
 |     if (Cost == 0) | 
 |       return assignVirtToPhysReg(LRE, *I); | 
 |     if (Cost < BestCost) | 
 |       BestReg = *I, BestCost = Cost; | 
 |   } | 
 |  | 
 |   if (BestReg) { | 
 |     definePhysReg(MI, BestReg, regFree); | 
 |     return assignVirtToPhysReg(LRE, BestReg); | 
 |   } | 
 |  | 
 |   // Nothing we can do. | 
 |   std::string msg; | 
 |   raw_string_ostream Msg(msg); | 
 |   Msg << "Ran out of registers during register allocation!"; | 
 |   if (MI->isInlineAsm()) { | 
 |     Msg << "\nPlease check your inline asm statement for " | 
 |         << "invalid constraints:\n"; | 
 |     MI->print(Msg, TM); | 
 |   } | 
 |   report_fatal_error(Msg.str()); | 
 | } | 
 |  | 
 | /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. | 
 | RAFast::LiveRegMap::iterator | 
 | RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, | 
 |                       unsigned VirtReg, unsigned Hint) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |          "Not a virtual register"); | 
 |   LiveRegMap::iterator LRI; | 
 |   bool New; | 
 |   tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg())); | 
 |   LiveReg &LR = LRI->second; | 
 |   if (New) { | 
 |     // If there is no hint, peek at the only use of this register. | 
 |     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && | 
 |         MRI->hasOneNonDBGUse(VirtReg)) { | 
 |       const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); | 
 |       // It's a copy, use the destination register as a hint. | 
 |       if (UseMI.isCopyLike()) | 
 |         Hint = UseMI.getOperand(0).getReg(); | 
 |     } | 
 |     allocVirtReg(MI, *LRI, Hint); | 
 |   } else if (LR.LastUse) { | 
 |     // Redefining a live register - kill at the last use, unless it is this | 
 |     // instruction defining VirtReg multiple times. | 
 |     if (LR.LastUse != MI || LR.LastUse->getOperand(LR.LastOpNum).isUse()) | 
 |       addKillFlag(LR); | 
 |   } | 
 |   assert(LR.PhysReg && "Register not assigned"); | 
 |   LR.LastUse = MI; | 
 |   LR.LastOpNum = OpNum; | 
 |   LR.Dirty = true; | 
 |   UsedInInstr.set(LR.PhysReg); | 
 |   return LRI; | 
 | } | 
 |  | 
 | /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. | 
 | RAFast::LiveRegMap::iterator | 
 | RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, | 
 |                       unsigned VirtReg, unsigned Hint) { | 
 |   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && | 
 |          "Not a virtual register"); | 
 |   LiveRegMap::iterator LRI; | 
 |   bool New; | 
 |   tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg())); | 
 |   LiveReg &LR = LRI->second; | 
 |   MachineOperand &MO = MI->getOperand(OpNum); | 
 |   if (New) { | 
 |     allocVirtReg(MI, *LRI, Hint); | 
 |     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); | 
 |     int FrameIndex = getStackSpaceFor(VirtReg, RC); | 
 |     DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into " | 
 |                  << TRI->getName(LR.PhysReg) << "\n"); | 
 |     TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI); | 
 |     ++NumLoads; | 
 |   } else if (LR.Dirty) { | 
 |     if (isLastUseOfLocalReg(MO)) { | 
 |       DEBUG(dbgs() << "Killing last use: " << MO << "\n"); | 
 |       if (MO.isUse()) | 
 |         MO.setIsKill(); | 
 |       else | 
 |         MO.setIsDead(); | 
 |     } else if (MO.isKill()) { | 
 |       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); | 
 |       MO.setIsKill(false); | 
 |     } else if (MO.isDead()) { | 
 |       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); | 
 |       MO.setIsDead(false); | 
 |     } | 
 |   } else if (MO.isKill()) { | 
 |     // We must remove kill flags from uses of reloaded registers because the | 
 |     // register would be killed immediately, and there might be a second use: | 
 |     //   %foo = OR %x<kill>, %x | 
 |     // This would cause a second reload of %x into a different register. | 
 |     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); | 
 |     MO.setIsKill(false); | 
 |   } else if (MO.isDead()) { | 
 |     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); | 
 |     MO.setIsDead(false); | 
 |   } | 
 |   assert(LR.PhysReg && "Register not assigned"); | 
 |   LR.LastUse = MI; | 
 |   LR.LastOpNum = OpNum; | 
 |   UsedInInstr.set(LR.PhysReg); | 
 |   return LRI; | 
 | } | 
 |  | 
 | // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering | 
 | // subregs. This may invalidate any operand pointers. | 
 | // Return true if the operand kills its register. | 
 | bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { | 
 |   MachineOperand &MO = MI->getOperand(OpNum); | 
 |   if (!MO.getSubReg()) { | 
 |     MO.setReg(PhysReg); | 
 |     return MO.isKill() || MO.isDead(); | 
 |   } | 
 |  | 
 |   // Handle subregister index. | 
 |   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); | 
 |   MO.setSubReg(0); | 
 |  | 
 |   // A kill flag implies killing the full register. Add corresponding super | 
 |   // register kill. | 
 |   if (MO.isKill()) { | 
 |     MI->addRegisterKilled(PhysReg, TRI, true); | 
 |     return true; | 
 |   } | 
 |   return MO.isDead(); | 
 | } | 
 |  | 
 | // Handle special instruction operand like early clobbers and tied ops when | 
 | // there are additional physreg defines. | 
 | void RAFast::handleThroughOperands(MachineInstr *MI, | 
 |                                    SmallVectorImpl<unsigned> &VirtDead) { | 
 |   DEBUG(dbgs() << "Scanning for through registers:"); | 
 |   SmallSet<unsigned, 8> ThroughRegs; | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |     if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || | 
 |         (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { | 
 |       if (ThroughRegs.insert(Reg)) | 
 |         DEBUG(dbgs() << " %reg" << Reg); | 
 |     } | 
 |   } | 
 |  | 
 |   // If any physreg defines collide with preallocated through registers, | 
 |   // we must spill and reallocate. | 
 |   DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg() || !MO.isDef()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |     UsedInInstr.set(Reg); | 
 |     if (ThroughRegs.count(PhysRegState[Reg])) | 
 |       definePhysReg(MI, Reg, regFree); | 
 |     for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { | 
 |       UsedInInstr.set(*AS); | 
 |       if (ThroughRegs.count(PhysRegState[*AS])) | 
 |         definePhysReg(MI, *AS, regFree); | 
 |     } | 
 |   } | 
 |  | 
 |   SmallVector<unsigned, 8> PartialDefs; | 
 |   DEBUG(dbgs() << "Allocating tied uses and early clobbers.\n"); | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |     if (MO.isUse()) { | 
 |       unsigned DefIdx = 0; | 
 |       if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; | 
 |       DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " | 
 |         << DefIdx << ".\n"); | 
 |       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); | 
 |       unsigned PhysReg = LRI->second.PhysReg; | 
 |       setPhysReg(MI, i, PhysReg); | 
 |       // Note: we don't update the def operand yet. That would cause the normal | 
 |       // def-scan to attempt spilling. | 
 |     } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { | 
 |       DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); | 
 |       // Reload the register, but don't assign to the operand just yet. | 
 |       // That would confuse the later phys-def processing pass. | 
 |       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); | 
 |       PartialDefs.push_back(LRI->second.PhysReg); | 
 |     } else if (MO.isEarlyClobber()) { | 
 |       // Note: defineVirtReg may invalidate MO. | 
 |       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); | 
 |       unsigned PhysReg = LRI->second.PhysReg; | 
 |       if (setPhysReg(MI, i, PhysReg)) | 
 |         VirtDead.push_back(Reg); | 
 |     } | 
 |   } | 
 |  | 
 |   // Restore UsedInInstr to a state usable for allocating normal virtual uses. | 
 |   UsedInInstr.reset(); | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |     UsedInInstr.set(Reg); | 
 |     for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
 |       UsedInInstr.set(*AS); | 
 |   } | 
 |  | 
 |   // Also mark PartialDefs as used to avoid reallocation. | 
 |   for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) | 
 |     UsedInInstr.set(PartialDefs[i]); | 
 | } | 
 |  | 
 | void RAFast::AllocateBasicBlock() { | 
 |   DEBUG(dbgs() << "\nAllocating " << *MBB); | 
 |  | 
 |   PhysRegState.assign(TRI->getNumRegs(), regDisabled); | 
 |   assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?"); | 
 |  | 
 |   MachineBasicBlock::iterator MII = MBB->begin(); | 
 |  | 
 |   // Add live-in registers as live. | 
 |   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), | 
 |          E = MBB->livein_end(); I != E; ++I) | 
 |     if (Allocatable.test(*I)) | 
 |       definePhysReg(MII, *I, regReserved); | 
 |  | 
 |   SmallVector<unsigned, 8> VirtDead; | 
 |   SmallVector<MachineInstr*, 32> Coalesced; | 
 |  | 
 |   // Otherwise, sequentially allocate each instruction in the MBB. | 
 |   while (MII != MBB->end()) { | 
 |     MachineInstr *MI = MII++; | 
 |     const TargetInstrDesc &TID = MI->getDesc(); | 
 |     DEBUG({ | 
 |         dbgs() << "\n>> " << *MI << "Regs:"; | 
 |         for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { | 
 |           if (PhysRegState[Reg] == regDisabled) continue; | 
 |           dbgs() << " " << TRI->getName(Reg); | 
 |           switch(PhysRegState[Reg]) { | 
 |           case regFree: | 
 |             break; | 
 |           case regReserved: | 
 |             dbgs() << "*"; | 
 |             break; | 
 |           default: | 
 |             dbgs() << "=%reg" << PhysRegState[Reg]; | 
 |             if (LiveVirtRegs[PhysRegState[Reg]].Dirty) | 
 |               dbgs() << "*"; | 
 |             assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg && | 
 |                    "Bad inverse map"); | 
 |             break; | 
 |           } | 
 |         } | 
 |         dbgs() << '\n'; | 
 |         // Check that LiveVirtRegs is the inverse. | 
 |         for (LiveRegMap::iterator i = LiveVirtRegs.begin(), | 
 |              e = LiveVirtRegs.end(); i != e; ++i) { | 
 |            assert(TargetRegisterInfo::isVirtualRegister(i->first) && | 
 |                   "Bad map key"); | 
 |            assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) && | 
 |                   "Bad map value"); | 
 |            assert(PhysRegState[i->second.PhysReg] == i->first && | 
 |                   "Bad inverse map"); | 
 |         } | 
 |       }); | 
 |  | 
 |     // Debug values are not allowed to change codegen in any way. | 
 |     if (MI->isDebugValue()) { | 
 |       bool ScanDbgValue = true; | 
 |       while (ScanDbgValue) { | 
 |         ScanDbgValue = false; | 
 |         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |           MachineOperand &MO = MI->getOperand(i); | 
 |           if (!MO.isReg()) continue; | 
 |           unsigned Reg = MO.getReg(); | 
 |           if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |           LiveDbgValueMap[Reg] = MI; | 
 |           LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg); | 
 |           if (LRI != LiveVirtRegs.end()) | 
 |             setPhysReg(MI, i, LRI->second.PhysReg); | 
 |           else { | 
 |             int SS = StackSlotForVirtReg[Reg]; | 
 |             if (SS == -1) { | 
 |               // We can't allocate a physreg for a DebugValue, sorry! | 
 |               DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); | 
 |               MO.setReg(0); | 
 |             } | 
 |             else { | 
 |               // Modify DBG_VALUE now that the value is in a spill slot. | 
 |               int64_t Offset = MI->getOperand(1).getImm(); | 
 |               const MDNode *MDPtr = | 
 |                 MI->getOperand(MI->getNumOperands()-1).getMetadata(); | 
 |               DebugLoc DL = MI->getDebugLoc(); | 
 |               if (MachineInstr *NewDV = | 
 |                   TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) { | 
 |                 DEBUG(dbgs() << "Modifying debug info due to spill:" << | 
 |                       "\t" << *MI); | 
 |                 MachineBasicBlock *MBB = MI->getParent(); | 
 |                 MBB->insert(MBB->erase(MI), NewDV); | 
 |                 // Scan NewDV operands from the beginning. | 
 |                 MI = NewDV; | 
 |                 ScanDbgValue = true; | 
 |                 break; | 
 |               } else { | 
 |                 // We can't allocate a physreg for a DebugValue; sorry! | 
 |                 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); | 
 |                 MO.setReg(0); | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |       // Next instruction. | 
 |       continue; | 
 |     } | 
 |  | 
 |     // If this is a copy, we may be able to coalesce. | 
 |     unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; | 
 |     if (MI->isCopy()) { | 
 |       CopyDst = MI->getOperand(0).getReg(); | 
 |       CopySrc = MI->getOperand(1).getReg(); | 
 |       CopyDstSub = MI->getOperand(0).getSubReg(); | 
 |       CopySrcSub = MI->getOperand(1).getSubReg(); | 
 |     } | 
 |  | 
 |     // Track registers used by instruction. | 
 |     UsedInInstr.reset(); | 
 |  | 
 |     // First scan. | 
 |     // Mark physreg uses and early clobbers as used. | 
 |     // Find the end of the virtreg operands | 
 |     unsigned VirtOpEnd = 0; | 
 |     bool hasTiedOps = false; | 
 |     bool hasEarlyClobbers = false; | 
 |     bool hasPartialRedefs = false; | 
 |     bool hasPhysDefs = false; | 
 |     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |       MachineOperand &MO = MI->getOperand(i); | 
 |       if (!MO.isReg()) continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       if (!Reg) continue; | 
 |       if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |         VirtOpEnd = i+1; | 
 |         if (MO.isUse()) { | 
 |           hasTiedOps = hasTiedOps || | 
 |                                 TID.getOperandConstraint(i, TOI::TIED_TO) != -1; | 
 |         } else { | 
 |           if (MO.isEarlyClobber()) | 
 |             hasEarlyClobbers = true; | 
 |           if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) | 
 |             hasPartialRedefs = true; | 
 |         } | 
 |         continue; | 
 |       } | 
 |       if (!Allocatable.test(Reg)) continue; | 
 |       if (MO.isUse()) { | 
 |         usePhysReg(MO); | 
 |       } else if (MO.isEarlyClobber()) { | 
 |         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? | 
 |                                regFree : regReserved); | 
 |         hasEarlyClobbers = true; | 
 |       } else | 
 |         hasPhysDefs = true; | 
 |     } | 
 |  | 
 |     // The instruction may have virtual register operands that must be allocated | 
 |     // the same register at use-time and def-time: early clobbers and tied | 
 |     // operands. If there are also physical defs, these registers must avoid | 
 |     // both physical defs and uses, making them more constrained than normal | 
 |     // operands. | 
 |     // Similarly, if there are multiple defs and tied operands, we must make | 
 |     // sure the same register is allocated to uses and defs. | 
 |     // We didn't detect inline asm tied operands above, so just make this extra | 
 |     // pass for all inline asm. | 
 |     if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || | 
 |         (hasTiedOps && (hasPhysDefs || TID.getNumDefs() > 1))) { | 
 |       handleThroughOperands(MI, VirtDead); | 
 |       // Don't attempt coalescing when we have funny stuff going on. | 
 |       CopyDst = 0; | 
 |       // Pretend we have early clobbers so the use operands get marked below. | 
 |       // This is not necessary for the common case of a single tied use. | 
 |       hasEarlyClobbers = true; | 
 |     } | 
 |  | 
 |     // Second scan. | 
 |     // Allocate virtreg uses. | 
 |     for (unsigned i = 0; i != VirtOpEnd; ++i) { | 
 |       MachineOperand &MO = MI->getOperand(i); | 
 |       if (!MO.isReg()) continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |       if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |       if (MO.isUse()) { | 
 |         LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); | 
 |         unsigned PhysReg = LRI->second.PhysReg; | 
 |         CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; | 
 |         if (setPhysReg(MI, i, PhysReg)) | 
 |           killVirtReg(LRI); | 
 |       } | 
 |     } | 
 |  | 
 |     MRI->addPhysRegsUsed(UsedInInstr); | 
 |  | 
 |     // Track registers defined by instruction - early clobbers and tied uses at | 
 |     // this point. | 
 |     UsedInInstr.reset(); | 
 |     if (hasEarlyClobbers) { | 
 |       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = MI->getOperand(i); | 
 |         if (!MO.isReg()) continue; | 
 |         unsigned Reg = MO.getReg(); | 
 |         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
 |         // Look for physreg defs and tied uses. | 
 |         if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; | 
 |         UsedInInstr.set(Reg); | 
 |         for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) | 
 |           UsedInInstr.set(*AS); | 
 |       } | 
 |     } | 
 |  | 
 |     unsigned DefOpEnd = MI->getNumOperands(); | 
 |     if (TID.isCall()) { | 
 |       // Spill all virtregs before a call. This serves two purposes: 1. If an | 
 |       // exception is thrown, the landing pad is going to expect to find | 
 |       // registers in their spill slots, and 2. we don't have to wade through | 
 |       // all the <imp-def> operands on the call instruction. | 
 |       DefOpEnd = VirtOpEnd; | 
 |       DEBUG(dbgs() << "  Spilling remaining registers before call.\n"); | 
 |       spillAll(MI); | 
 |  | 
 |       // The imp-defs are skipped below, but we still need to mark those | 
 |       // registers as used by the function. | 
 |       SkippedInstrs.insert(&TID); | 
 |     } | 
 |  | 
 |     // Third scan. | 
 |     // Allocate defs and collect dead defs. | 
 |     for (unsigned i = 0; i != DefOpEnd; ++i) { | 
 |       MachineOperand &MO = MI->getOperand(i); | 
 |       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) | 
 |         continue; | 
 |       unsigned Reg = MO.getReg(); | 
 |  | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         if (!Allocatable.test(Reg)) continue; | 
 |         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? | 
 |                                regFree : regReserved); | 
 |         continue; | 
 |       } | 
 |       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); | 
 |       unsigned PhysReg = LRI->second.PhysReg; | 
 |       if (setPhysReg(MI, i, PhysReg)) { | 
 |         VirtDead.push_back(Reg); | 
 |         CopyDst = 0; // cancel coalescing; | 
 |       } else | 
 |         CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; | 
 |     } | 
 |  | 
 |     // Kill dead defs after the scan to ensure that multiple defs of the same | 
 |     // register are allocated identically. We didn't need to do this for uses | 
 |     // because we are crerating our own kill flags, and they are always at the | 
 |     // last use. | 
 |     for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) | 
 |       killVirtReg(VirtDead[i]); | 
 |     VirtDead.clear(); | 
 |  | 
 |     MRI->addPhysRegsUsed(UsedInInstr); | 
 |  | 
 |     if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { | 
 |       DEBUG(dbgs() << "-- coalescing: " << *MI); | 
 |       Coalesced.push_back(MI); | 
 |     } else { | 
 |       DEBUG(dbgs() << "<< " << *MI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Spill all physical registers holding virtual registers now. | 
 |   DEBUG(dbgs() << "Spilling live registers at end of block.\n"); | 
 |   spillAll(MBB->getFirstTerminator()); | 
 |  | 
 |   // Erase all the coalesced copies. We are delaying it until now because | 
 |   // LiveVirtRegs might refer to the instrs. | 
 |   for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) | 
 |     MBB->erase(Coalesced[i]); | 
 |   NumCopies += Coalesced.size(); | 
 |  | 
 |   DEBUG(MBB->dump()); | 
 | } | 
 |  | 
 | /// runOnMachineFunction - Register allocate the whole function | 
 | /// | 
 | bool RAFast::runOnMachineFunction(MachineFunction &Fn) { | 
 |   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" | 
 |                << "********** Function: " | 
 |                << ((Value*)Fn.getFunction())->getName() << '\n'); | 
 |   MF = &Fn; | 
 |   MRI = &MF->getRegInfo(); | 
 |   TM = &Fn.getTarget(); | 
 |   TRI = TM->getRegisterInfo(); | 
 |   TII = TM->getInstrInfo(); | 
 |  | 
 |   UsedInInstr.resize(TRI->getNumRegs()); | 
 |   Allocatable = TRI->getAllocatableSet(*MF); | 
 |  | 
 |   // initialize the virtual->physical register map to have a 'null' | 
 |   // mapping for all virtual registers | 
 |   unsigned LastVirtReg = MRI->getLastVirtReg(); | 
 |   StackSlotForVirtReg.grow(LastVirtReg); | 
 |  | 
 |   // Loop over all of the basic blocks, eliminating virtual register references | 
 |   for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); | 
 |        MBBi != MBBe; ++MBBi) { | 
 |     MBB = &*MBBi; | 
 |     AllocateBasicBlock(); | 
 |   } | 
 |  | 
 |   // Make sure the set of used physregs is closed under subreg operations. | 
 |   MRI->closePhysRegsUsed(*TRI); | 
 |  | 
 |   // Add the clobber lists for all the instructions we skipped earlier. | 
 |   for (SmallPtrSet<const TargetInstrDesc*, 4>::const_iterator | 
 |        I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) | 
 |     if (const unsigned *Defs = (*I)->getImplicitDefs()) | 
 |       while (*Defs) | 
 |         MRI->setPhysRegUsed(*Defs++); | 
 |  | 
 |   SkippedInstrs.clear(); | 
 |   StackSlotForVirtReg.clear(); | 
 |   LiveDbgValueMap.clear(); | 
 |   return true; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createFastRegisterAllocator() { | 
 |   return new RAFast(); | 
 | } |