| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines several CodeGen-specific LLVM IR analysis utilties. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/Analysis.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | using namespace llvm; | 
 |  | 
 | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence | 
 | /// of insertvalue or extractvalue indices that identify a member, return | 
 | /// the linearized index of the start of the member. | 
 | /// | 
 | unsigned llvm::ComputeLinearIndex(const Type *Ty, | 
 |                                   const unsigned *Indices, | 
 |                                   const unsigned *IndicesEnd, | 
 |                                   unsigned CurIndex) { | 
 |   // Base case: We're done. | 
 |   if (Indices && Indices == IndicesEnd) | 
 |     return CurIndex; | 
 |  | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |         EI != EE; ++EI) { | 
 |       if (Indices && *Indices == unsigned(EI - EB)) | 
 |         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); | 
 |       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); | 
 |     } | 
 |     return CurIndex; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     const Type *EltTy = ATy->getElementType(); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
 |       if (Indices && *Indices == i) | 
 |         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); | 
 |       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); | 
 |     } | 
 |     return CurIndex; | 
 |   } | 
 |   // We haven't found the type we're looking for, so keep searching. | 
 |   return CurIndex + 1; | 
 | } | 
 |  | 
 | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
 | /// EVTs that represent all the individual underlying | 
 | /// non-aggregate types that comprise it. | 
 | /// | 
 | /// If Offsets is non-null, it points to a vector to be filled in | 
 | /// with the in-memory offsets of each of the individual values. | 
 | /// | 
 | void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, | 
 |                            SmallVectorImpl<EVT> &ValueVTs, | 
 |                            SmallVectorImpl<uint64_t> *Offsets, | 
 |                            uint64_t StartingOffset) { | 
 |   // Given a struct type, recursively traverse the elements. | 
 |   if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); | 
 |     for (StructType::element_iterator EB = STy->element_begin(), | 
 |                                       EI = EB, | 
 |                                       EE = STy->element_end(); | 
 |          EI != EE; ++EI) | 
 |       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, | 
 |                       StartingOffset + SL->getElementOffset(EI - EB)); | 
 |     return; | 
 |   } | 
 |   // Given an array type, recursively traverse the elements. | 
 |   if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
 |     const Type *EltTy = ATy->getElementType(); | 
 |     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); | 
 |     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
 |       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, | 
 |                       StartingOffset + i * EltSize); | 
 |     return; | 
 |   } | 
 |   // Interpret void as zero return values. | 
 |   if (Ty->isVoidTy()) | 
 |     return; | 
 |   // Base case: we can get an EVT for this LLVM IR type. | 
 |   ValueVTs.push_back(TLI.getValueType(Ty)); | 
 |   if (Offsets) | 
 |     Offsets->push_back(StartingOffset); | 
 | } | 
 |  | 
 | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
 | GlobalVariable *llvm::ExtractTypeInfo(Value *V) { | 
 |   V = V->stripPointerCasts(); | 
 |   GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
 |  | 
 |   if (GV && GV->getName() == "llvm.eh.catch.all.value") { | 
 |     assert(GV->hasInitializer() && | 
 |            "The EH catch-all value must have an initializer"); | 
 |     Value *Init = GV->getInitializer(); | 
 |     GV = dyn_cast<GlobalVariable>(Init); | 
 |     if (!GV) V = cast<ConstantPointerNull>(Init); | 
 |   } | 
 |  | 
 |   assert((GV || isa<ConstantPointerNull>(V)) && | 
 |          "TypeInfo must be a global variable or NULL"); | 
 |   return GV; | 
 | } | 
 |  | 
 | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
 | /// processed uses a memory 'm' constraint. | 
 | bool | 
 | llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, | 
 |                                 const TargetLowering &TLI) { | 
 |   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
 |     InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
 |     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
 |       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
 |       if (CType == TargetLowering::C_Memory) | 
 |         return true; | 
 |     } | 
 |  | 
 |     // Indirect operand accesses access memory. | 
 |     if (CI.isIndirect) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR floating-point condition code.  This includes | 
 | /// consideration of global floating-point math flags. | 
 | /// | 
 | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { | 
 |   ISD::CondCode FPC, FOC; | 
 |   switch (Pred) { | 
 |   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
 |   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
 |   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
 |   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
 |   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
 |   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
 |   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
 |   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; | 
 |   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; | 
 |   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
 |   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
 |   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
 |   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
 |   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
 |   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
 |   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
 |   default: | 
 |     llvm_unreachable("Invalid FCmp predicate opcode!"); | 
 |     FOC = FPC = ISD::SETFALSE; | 
 |     break; | 
 |   } | 
 |   if (NoNaNsFPMath) | 
 |     return FOC; | 
 |   else | 
 |     return FPC; | 
 | } | 
 |  | 
 | /// getICmpCondCode - Return the ISD condition code corresponding to | 
 | /// the given LLVM IR integer condition code. | 
 | /// | 
 | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { | 
 |   switch (Pred) { | 
 |   case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
 |   case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
 |   case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
 |   case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
 |   case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
 |   case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
 |   case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
 |   case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
 |   case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
 |   case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
 |   default: | 
 |     llvm_unreachable("Invalid ICmp predicate opcode!"); | 
 |     return ISD::SETNE; | 
 |   } | 
 | } | 
 |  | 
 | /// Test if the given instruction is in a position to be optimized | 
 | /// with a tail-call. This roughly means that it's in a block with | 
 | /// a return and there's nothing that needs to be scheduled | 
 | /// between it and the return. | 
 | /// | 
 | /// This function only tests target-independent requirements. | 
 | bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, | 
 |                                 const TargetLowering &TLI) { | 
 |   const Instruction *I = CS.getInstruction(); | 
 |   const BasicBlock *ExitBB = I->getParent(); | 
 |   const TerminatorInst *Term = ExitBB->getTerminator(); | 
 |   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); | 
 |   const Function *F = ExitBB->getParent(); | 
 |  | 
 |   // The block must end in a return statement or unreachable. | 
 |   // | 
 |   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in | 
 |   // an unreachable, for now. The way tailcall optimization is currently | 
 |   // implemented means it will add an epilogue followed by a jump. That is | 
 |   // not profitable. Also, if the callee is a special function (e.g. | 
 |   // longjmp on x86), it can end up causing miscompilation that has not | 
 |   // been fully understood. | 
 |   if (!Ret && | 
 |       (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false; | 
 |  | 
 |   // If I will have a chain, make sure no other instruction that will have a | 
 |   // chain interposes between I and the return. | 
 |   if (I->mayHaveSideEffects() || I->mayReadFromMemory() || | 
 |       !I->isSafeToSpeculativelyExecute()) | 
 |     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; | 
 |          --BBI) { | 
 |       if (&*BBI == I) | 
 |         break; | 
 |       // Debug info intrinsics do not get in the way of tail call optimization. | 
 |       if (isa<DbgInfoIntrinsic>(BBI)) | 
 |         continue; | 
 |       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || | 
 |           !BBI->isSafeToSpeculativelyExecute()) | 
 |         return false; | 
 |     } | 
 |  | 
 |   // If the block ends with a void return or unreachable, it doesn't matter | 
 |   // what the call's return type is. | 
 |   if (!Ret || Ret->getNumOperands() == 0) return true; | 
 |  | 
 |   // If the return value is undef, it doesn't matter what the call's | 
 |   // return type is. | 
 |   if (isa<UndefValue>(Ret->getOperand(0))) return true; | 
 |  | 
 |   // Conservatively require the attributes of the call to match those of | 
 |   // the return. Ignore noalias because it doesn't affect the call sequence. | 
 |   unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); | 
 |   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) | 
 |     return false; | 
 |  | 
 |   // It's not safe to eliminate the sign / zero extension of the return value. | 
 |   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) | 
 |     return false; | 
 |  | 
 |   // Otherwise, make sure the unmodified return value of I is the return value. | 
 |   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; | 
 |        U = dyn_cast<Instruction>(U->getOperand(0))) { | 
 |     if (!U) | 
 |       return false; | 
 |     if (!U->hasOneUse()) | 
 |       return false; | 
 |     if (U == I) | 
 |       break; | 
 |     // Check for a truly no-op truncate. | 
 |     if (isa<TruncInst>(U) && | 
 |         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) | 
 |       continue; | 
 |     // Check for a truly no-op bitcast. | 
 |     if (isa<BitCastInst>(U) && | 
 |         (U->getOperand(0)->getType() == U->getType() || | 
 |          (U->getOperand(0)->getType()->isPointerTy() && | 
 |           U->getType()->isPointerTy()))) | 
 |       continue; | 
 |     // Otherwise it's not a true no-op. | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, | 
 |                                 const TargetLowering &TLI) { | 
 |   const Function *F = DAG.getMachineFunction().getFunction(); | 
 |  | 
 |   // Conservatively require the attributes of the call to match those of | 
 |   // the return. Ignore noalias because it doesn't affect the call sequence. | 
 |   unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); | 
 |   if (CallerRetAttr & ~Attribute::NoAlias) | 
 |     return false; | 
 |  | 
 |   // It's not safe to eliminate the sign / zero extension of the return value. | 
 |   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) | 
 |     return false; | 
 |  | 
 |   // Check if the only use is a function return node. | 
 |   return TLI.isUsedByReturnOnly(Node); | 
 | } |