| //===- Expressions.cpp - Expression Analysis Utilities --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a package of expression analysis utilties: |
| // |
| // ClassifyExpression: Analyze an expression to determine the complexity of the |
| // expression, and which other variables it depends on. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Type.h" |
| #include <iostream> |
| |
| using namespace llvm; |
| |
| ExprType::ExprType(Value *Val) { |
| if (Val) |
| if (ConstantInt *CPI = dyn_cast<ConstantInt>(Val)) { |
| Offset = CPI; |
| Var = 0; |
| ExprTy = Constant; |
| Scale = 0; |
| return; |
| } |
| |
| Var = Val; Offset = 0; |
| ExprTy = Var ? Linear : Constant; |
| Scale = 0; |
| } |
| |
| ExprType::ExprType(const ConstantInt *scale, Value *var, |
| const ConstantInt *offset) { |
| Scale = var ? scale : 0; Var = var; Offset = offset; |
| ExprTy = Scale ? ScaledLinear : (Var ? Linear : Constant); |
| if (Scale && Scale->isNullValue()) { // Simplify 0*Var + const |
| Scale = 0; Var = 0; |
| ExprTy = Constant; |
| } |
| } |
| |
| |
| const Type *ExprType::getExprType(const Type *Default) const { |
| if (Offset) return Offset->getType(); |
| if (Scale) return Scale->getType(); |
| return Var ? Var->getType() : Default; |
| } |
| |
| |
| namespace { |
| class DefVal { |
| const ConstantInt * const Val; |
| const Type * const Ty; |
| protected: |
| inline DefVal(const ConstantInt *val, const Type *ty) : Val(val), Ty(ty) {} |
| public: |
| inline const Type *getType() const { return Ty; } |
| inline const ConstantInt *getVal() const { return Val; } |
| inline operator const ConstantInt * () const { return Val; } |
| inline const ConstantInt *operator->() const { return Val; } |
| }; |
| |
| struct DefZero : public DefVal { |
| inline DefZero(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} |
| inline DefZero(const ConstantInt *val) : DefVal(val, val->getType()) {} |
| }; |
| |
| struct DefOne : public DefVal { |
| inline DefOne(const ConstantInt *val, const Type *ty) : DefVal(val, ty) {} |
| }; |
| } |
| |
| |
| // getUnsignedConstant - Return a constant value of the specified type. If the |
| // constant value is not valid for the specified type, return null. This cannot |
| // happen for values in the range of 0 to 127. |
| // |
| static ConstantInt *getUnsignedConstant(uint64_t V, const Type *Ty) { |
| if (isa<PointerType>(Ty)) Ty = Type::ULongTy; |
| if (Ty->isSigned()) { |
| // If this value is not a valid unsigned value for this type, return null! |
| if (V > 127 && ((int64_t)V < 0 || |
| !ConstantSInt::isValueValidForType(Ty, (int64_t)V))) |
| return 0; |
| return ConstantSInt::get(Ty, V); |
| } else { |
| // If this value is not a valid unsigned value for this type, return null! |
| if (V > 255 && !ConstantUInt::isValueValidForType(Ty, V)) |
| return 0; |
| return ConstantUInt::get(Ty, V); |
| } |
| } |
| |
| // Add - Helper function to make later code simpler. Basically it just adds |
| // the two constants together, inserts the result into the constant pool, and |
| // returns it. Of course life is not simple, and this is no exception. Factors |
| // that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. The new value takes the type of the left argument. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| static const ConstantInt *Add(const ConstantInt *Arg1, |
| const ConstantInt *Arg2, bool DefOne) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| Constant *Result = ConstantExpr::get(Instruction::Add, (Constant*)Arg1, |
| (Constant*)Arg2); |
| ConstantInt *ResultI = cast<ConstantInt>(Result); |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) |
| return 0; // Yes it is, simply return null. |
| |
| return ResultI; |
| } |
| |
| static inline const ConstantInt *operator+(const DefZero &L, const DefZero &R) { |
| if (L == 0) return R; |
| if (R == 0) return L; |
| return Add(L, R, false); |
| } |
| |
| static inline const ConstantInt *operator+(const DefOne &L, const DefOne &R) { |
| if (L == 0) { |
| if (R == 0) |
| return getUnsignedConstant(2, L.getType()); |
| else |
| return Add(getUnsignedConstant(1, L.getType()), R, true); |
| } else if (R == 0) { |
| return Add(L, getUnsignedConstant(1, L.getType()), true); |
| } |
| return Add(L, R, true); |
| } |
| |
| |
| // Mul - Helper function to make later code simpler. Basically it just |
| // multiplies the two constants together, inserts the result into the constant |
| // pool, and returns it. Of course life is not simple, and this is no |
| // exception. Factors that complicate matters: |
| // 1. Either argument may be null. If this is the case, the null argument is |
| // treated as either 0 (if DefOne = false) or 1 (if DefOne = true) |
| // 2. Types get in the way. We want to do arithmetic operations without |
| // regard for the underlying types. It is assumed that the constants are |
| // integral constants. |
| // 3. If DefOne is true, a null return value indicates a value of 1, if DefOne |
| // is false, a null return value indicates a value of 0. |
| // |
| static inline const ConstantInt *Mul(const ConstantInt *Arg1, |
| const ConstantInt *Arg2, bool DefOne) { |
| assert(Arg1 && Arg2 && "No null arguments should exist now!"); |
| assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!"); |
| |
| // Actually perform the computation now! |
| Constant *Result = ConstantExpr::get(Instruction::Mul, (Constant*)Arg1, |
| (Constant*)Arg2); |
| assert(Result && Result->getType() == Arg1->getType() && |
| "Couldn't perform multiplication!"); |
| ConstantInt *ResultI = cast<ConstantInt>(Result); |
| |
| // Check to see if the result is one of the special cases that we want to |
| // recognize... |
| if (ResultI->equalsInt(DefOne ? 1 : 0)) |
| return 0; // Yes it is, simply return null. |
| |
| return ResultI; |
| } |
| |
| namespace { |
| inline const ConstantInt *operator*(const DefZero &L, const DefZero &R) { |
| if (L == 0 || R == 0) return 0; |
| return Mul(L, R, false); |
| } |
| inline const ConstantInt *operator*(const DefOne &L, const DefZero &R) { |
| if (R == 0) return getUnsignedConstant(0, L.getType()); |
| if (L == 0) return R->equalsInt(1) ? 0 : R.getVal(); |
| return Mul(L, R, true); |
| } |
| inline const ConstantInt *operator*(const DefZero &L, const DefOne &R) { |
| if (L == 0 || R == 0) return L.getVal(); |
| return Mul(R, L, false); |
| } |
| } |
| |
| // handleAddition - Add two expressions together, creating a new expression that |
| // represents the composite of the two... |
| // |
| static ExprType handleAddition(ExprType Left, ExprType Right, Value *V) { |
| const Type *Ty = V->getType(); |
| if (Left.ExprTy > Right.ExprTy) |
| std::swap(Left, Right); // Make left be simpler than right |
| |
| switch (Left.ExprTy) { |
| case ExprType::Constant: |
| return ExprType(Right.Scale, Right.Var, |
| DefZero(Right.Offset, Ty) + DefZero(Left.Offset, Ty)); |
| case ExprType::Linear: // RHS side must be linear or scaled |
| case ExprType::ScaledLinear: // RHS must be scaled |
| if (Left.Var != Right.Var) // Are they the same variables? |
| return V; // if not, we don't know anything! |
| |
| return ExprType(DefOne(Left.Scale , Ty) + DefOne(Right.Scale , Ty), |
| Right.Var, |
| DefZero(Left.Offset, Ty) + DefZero(Right.Offset, Ty)); |
| default: |
| assert(0 && "Dont' know how to handle this case!"); |
| return ExprType(); |
| } |
| } |
| |
| // negate - Negate the value of the specified expression... |
| // |
| static inline ExprType negate(const ExprType &E, Value *V) { |
| const Type *Ty = V->getType(); |
| ConstantInt *Zero = getUnsignedConstant(0, Ty); |
| ConstantInt *One = getUnsignedConstant(1, Ty); |
| ConstantInt *NegOne = cast<ConstantInt>(ConstantExpr::get(Instruction::Sub, |
| Zero, One)); |
| if (NegOne == 0) return V; // Couldn't subtract values... |
| |
| return ExprType(DefOne (E.Scale , Ty) * NegOne, E.Var, |
| DefZero(E.Offset, Ty) * NegOne); |
| } |
| |
| |
| // ClassifyExpr: Analyze an expression to determine the complexity of the |
| // expression, and which other values it depends on. |
| // |
| // Note that this analysis cannot get into infinite loops because it treats PHI |
| // nodes as being an unknown linear expression. |
| // |
| ExprType llvm::ClassifyExpr(Value *Expr) { |
| assert(Expr != 0 && "Can't classify a null expression!"); |
| if (Expr->getType()->isFloatingPoint()) |
| return Expr; // FIXME: Can't handle FP expressions |
| |
| if (Constant *C = dyn_cast<Constant>(Expr)) { |
| if (ConstantInt *CPI = dyn_cast<ConstantInt>(cast<Constant>(Expr))) |
| // It's an integral constant! |
| return ExprType(CPI->isNullValue() ? 0 : CPI); |
| return Expr; |
| } else if (!isa<Instruction>(Expr)) { |
| return Expr; |
| } |
| |
| |
| Instruction *I = cast<Instruction>(Expr); |
| const Type *Ty = I->getType(); |
| |
| switch (I->getOpcode()) { // Handle each instruction type separately |
| case Instruction::Add: { |
| ExprType Left (ClassifyExpr(I->getOperand(0))); |
| ExprType Right(ClassifyExpr(I->getOperand(1))); |
| return handleAddition(Left, Right, I); |
| } // end case Instruction::Add |
| |
| case Instruction::Sub: { |
| ExprType Left (ClassifyExpr(I->getOperand(0))); |
| ExprType Right(ClassifyExpr(I->getOperand(1))); |
| ExprType RightNeg = negate(Right, I); |
| if (RightNeg.Var == I && !RightNeg.Offset && !RightNeg.Scale) |
| return I; // Could not negate value... |
| return handleAddition(Left, RightNeg, I); |
| } // end case Instruction::Sub |
| |
| case Instruction::Shl: { |
| ExprType Right(ClassifyExpr(I->getOperand(1))); |
| if (Right.ExprTy != ExprType::Constant) break; |
| ExprType Left(ClassifyExpr(I->getOperand(0))); |
| if (Right.Offset == 0) return Left; // shl x, 0 = x |
| assert(Right.Offset->getType() == Type::UByteTy && |
| "Shift amount must always be a unsigned byte!"); |
| uint64_t ShiftAmount = cast<ConstantUInt>(Right.Offset)->getValue(); |
| ConstantInt *Multiplier = getUnsignedConstant(1ULL << ShiftAmount, Ty); |
| |
| // We don't know how to classify it if they are shifting by more than what |
| // is reasonable. In most cases, the result will be zero, but there is one |
| // class of cases where it is not, so we cannot optimize without checking |
| // for it. The case is when you are shifting a signed value by 1 less than |
| // the number of bits in the value. For example: |
| // %X = shl sbyte %Y, ubyte 7 |
| // will try to form an sbyte multiplier of 128, which will give a null |
| // multiplier, even though the result is not 0. Until we can check for this |
| // case, be conservative. TODO. |
| // |
| if (Multiplier == 0) |
| return Expr; |
| |
| return ExprType(DefOne(Left.Scale, Ty) * Multiplier, Left.Var, |
| DefZero(Left.Offset, Ty) * Multiplier); |
| } // end case Instruction::Shl |
| |
| case Instruction::Mul: { |
| ExprType Left (ClassifyExpr(I->getOperand(0))); |
| ExprType Right(ClassifyExpr(I->getOperand(1))); |
| if (Left.ExprTy > Right.ExprTy) |
| std::swap(Left, Right); // Make left be simpler than right |
| |
| if (Left.ExprTy != ExprType::Constant) // RHS must be > constant |
| return I; // Quadratic eqn! :( |
| |
| const ConstantInt *Offs = Left.Offset; |
| if (Offs == 0) return ExprType(); |
| return ExprType( DefOne(Right.Scale , Ty) * Offs, Right.Var, |
| DefZero(Right.Offset, Ty) * Offs); |
| } // end case Instruction::Mul |
| |
| case Instruction::Cast: { |
| ExprType Src(ClassifyExpr(I->getOperand(0))); |
| const Type *DestTy = I->getType(); |
| if (isa<PointerType>(DestTy)) |
| DestTy = Type::ULongTy; // Pointer types are represented as ulong |
| |
| const Type *SrcValTy = Src.getExprType(0); |
| if (!SrcValTy) return I; |
| if (!SrcValTy->isLosslesslyConvertibleTo(DestTy)) { |
| if (Src.ExprTy != ExprType::Constant) |
| return I; // Converting cast, and not a constant value... |
| } |
| |
| const ConstantInt *Offset = Src.Offset; |
| const ConstantInt *Scale = Src.Scale; |
| if (Offset) { |
| const Constant *CPV = ConstantExpr::getCast((Constant*)Offset, DestTy); |
| if (!isa<ConstantInt>(CPV)) return I; |
| Offset = cast<ConstantInt>(CPV); |
| } |
| if (Scale) { |
| const Constant *CPV = ConstantExpr::getCast((Constant*)Scale, DestTy); |
| if (!CPV) return I; |
| Scale = cast<ConstantInt>(CPV); |
| } |
| return ExprType(Scale, Src.Var, Offset); |
| } // end case Instruction::Cast |
| // TODO: Handle SUB, SHR? |
| |
| } // end switch |
| |
| // Otherwise, I don't know anything about this value! |
| return I; |
| } |