| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements inline cost analysis. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| |
| using namespace llvm; |
| |
| unsigned InlineCostAnalyzer::FunctionInfo::countCodeReductionForConstant( |
| const CodeMetrics &Metrics, Value *V) { |
| unsigned Reduction = 0; |
| SmallVector<Value *, 4> Worklist; |
| Worklist.push_back(V); |
| do { |
| Value *V = Worklist.pop_back_val(); |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
| User *U = *UI; |
| if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { |
| // We will be able to eliminate all but one of the successors. |
| const TerminatorInst &TI = cast<TerminatorInst>(*U); |
| const unsigned NumSucc = TI.getNumSuccessors(); |
| unsigned Instrs = 0; |
| for (unsigned I = 0; I != NumSucc; ++I) |
| Instrs += Metrics.NumBBInsts.lookup(TI.getSuccessor(I)); |
| // We don't know which blocks will be eliminated, so use the average size. |
| Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; |
| continue; |
| } |
| |
| // Figure out if this instruction will be removed due to simple constant |
| // propagation. |
| Instruction &Inst = cast<Instruction>(*U); |
| |
| // We can't constant propagate instructions which have effects or |
| // read memory. |
| // |
| // FIXME: It would be nice to capture the fact that a load from a |
| // pointer-to-constant-global is actually a *really* good thing to zap. |
| // Unfortunately, we don't know the pointer that may get propagated here, |
| // so we can't make this decision. |
| if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || |
| isa<AllocaInst>(Inst)) |
| continue; |
| |
| bool AllOperandsConstant = true; |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) |
| if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { |
| AllOperandsConstant = false; |
| break; |
| } |
| if (!AllOperandsConstant) |
| continue; |
| |
| // We will get to remove this instruction... |
| Reduction += InlineConstants::InstrCost; |
| |
| // And any other instructions that use it which become constants |
| // themselves. |
| Worklist.push_back(&Inst); |
| } |
| } while (!Worklist.empty()); |
| return Reduction; |
| } |
| |
| static unsigned countCodeReductionForAllocaICmp(const CodeMetrics &Metrics, |
| ICmpInst *ICI) { |
| unsigned Reduction = 0; |
| |
| // Bail if this is comparing against a non-constant; there is nothing we can |
| // do there. |
| if (!isa<Constant>(ICI->getOperand(1))) |
| return Reduction; |
| |
| // An icmp pred (alloca, C) becomes true if the predicate is true when |
| // equal and false otherwise. |
| bool Result = ICI->isTrueWhenEqual(); |
| |
| SmallVector<Instruction *, 4> Worklist; |
| Worklist.push_back(ICI); |
| do { |
| Instruction *U = Worklist.pop_back_val(); |
| Reduction += InlineConstants::InstrCost; |
| for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); |
| UI != UE; ++UI) { |
| Instruction *I = dyn_cast<Instruction>(*UI); |
| if (!I || I->mayHaveSideEffects()) continue; |
| if (I->getNumOperands() == 1) |
| Worklist.push_back(I); |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { |
| // If BO produces the same value as U, then the other operand is |
| // irrelevant and we can put it into the Worklist to continue |
| // deleting dead instructions. If BO produces the same value as the |
| // other operand, we can delete BO but that's it. |
| if (Result == true) { |
| if (BO->getOpcode() == Instruction::Or) |
| Worklist.push_back(I); |
| if (BO->getOpcode() == Instruction::And) |
| Reduction += InlineConstants::InstrCost; |
| } else { |
| if (BO->getOpcode() == Instruction::Or || |
| BO->getOpcode() == Instruction::Xor) |
| Reduction += InlineConstants::InstrCost; |
| if (BO->getOpcode() == Instruction::And) |
| Worklist.push_back(I); |
| } |
| } |
| if (BranchInst *BI = dyn_cast<BranchInst>(I)) { |
| BasicBlock *BB = BI->getSuccessor(Result ? 0 : 1); |
| if (BB->getSinglePredecessor()) |
| Reduction |
| += InlineConstants::InstrCost * Metrics.NumBBInsts.lookup(BB); |
| } |
| } |
| } while (!Worklist.empty()); |
| |
| return Reduction; |
| } |
| |
| /// \brief Compute the reduction possible for a given instruction if we are able |
| /// to SROA an alloca. |
| /// |
| /// The reduction for this instruction is added to the SROAReduction output |
| /// parameter. Returns false if this instruction is expected to defeat SROA in |
| /// general. |
| static bool countCodeReductionForSROAInst(Instruction *I, |
| SmallVectorImpl<Value *> &Worklist, |
| unsigned &SROAReduction) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!LI->isSimple()) |
| return false; |
| SROAReduction += InlineConstants::InstrCost; |
| return true; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!SI->isSimple()) |
| return false; |
| SROAReduction += InlineConstants::InstrCost; |
| return true; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| // If the GEP has variable indices, we won't be able to do much with it. |
| if (!GEP->hasAllConstantIndices()) |
| return false; |
| // A non-zero GEP will likely become a mask operation after SROA. |
| if (GEP->hasAllZeroIndices()) |
| SROAReduction += InlineConstants::InstrCost; |
| Worklist.push_back(GEP); |
| return true; |
| } |
| |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { |
| // Track pointer through bitcasts. |
| Worklist.push_back(BCI); |
| SROAReduction += InlineConstants::InstrCost; |
| return true; |
| } |
| |
| // We just look for non-constant operands to ICmp instructions as those will |
| // defeat SROA. The actual reduction for these happens even without SROA. |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) |
| return isa<Constant>(ICI->getOperand(1)); |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(I)) { |
| // SROA can handle a select of alloca iff all uses of the alloca are |
| // loads, and dereferenceable. We assume it's dereferenceable since |
| // we're told the input is an alloca. |
| for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end(); |
| UI != UE; ++UI) { |
| LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| if (LI == 0 || !LI->isSimple()) |
| return false; |
| } |
| // We don't know whether we'll be deleting the rest of the chain of |
| // instructions from the SelectInst on, because we don't know whether |
| // the other side of the select is also an alloca or not. |
| return true; |
| } |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| return false; |
| case Intrinsic::memset: |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| // SROA can usually chew through these intrinsics. |
| SROAReduction += InlineConstants::InstrCost; |
| return true; |
| } |
| } |
| |
| // If there is some other strange instruction, we're not going to be |
| // able to do much if we inline this. |
| return false; |
| } |
| |
| unsigned InlineCostAnalyzer::FunctionInfo::countCodeReductionForAlloca( |
| const CodeMetrics &Metrics, Value *V) { |
| if (!V->getType()->isPointerTy()) return 0; // Not a pointer |
| unsigned Reduction = 0; |
| unsigned SROAReduction = 0; |
| bool CanSROAAlloca = true; |
| |
| SmallVector<Value *, 4> Worklist; |
| Worklist.push_back(V); |
| do { |
| Value *V = Worklist.pop_back_val(); |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI){ |
| Instruction *I = cast<Instruction>(*UI); |
| |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) |
| Reduction += countCodeReductionForAllocaICmp(Metrics, ICI); |
| |
| if (CanSROAAlloca) |
| CanSROAAlloca = countCodeReductionForSROAInst(I, Worklist, |
| SROAReduction); |
| } |
| } while (!Worklist.empty()); |
| |
| return Reduction + (CanSROAAlloca ? SROAReduction : 0); |
| } |
| |
| void InlineCostAnalyzer::FunctionInfo::countCodeReductionForPointerPair( |
| const CodeMetrics &Metrics, DenseMap<Value *, unsigned> &PointerArgs, |
| Value *V, unsigned ArgIdx) { |
| SmallVector<Value *, 4> Worklist; |
| Worklist.push_back(V); |
| do { |
| Value *V = Worklist.pop_back_val(); |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI){ |
| Instruction *I = cast<Instruction>(*UI); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| // If the GEP has variable indices, we won't be able to do much with it. |
| if (!GEP->hasAllConstantIndices()) |
| continue; |
| // Unless the GEP is in-bounds, some comparisons will be non-constant. |
| // Fortunately, the real-world cases where this occurs uses in-bounds |
| // GEPs, and so we restrict the optimization to them here. |
| if (!GEP->isInBounds()) |
| continue; |
| |
| // Constant indices just change the constant offset. Add the resulting |
| // value both to our worklist for this argument, and to the set of |
| // viable paired values with future arguments. |
| PointerArgs[GEP] = ArgIdx; |
| Worklist.push_back(GEP); |
| continue; |
| } |
| |
| // Track pointer through casts. Even when the result is not a pointer, it |
| // remains a constant relative to constants derived from other constant |
| // pointers. |
| if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| PointerArgs[CI] = ArgIdx; |
| Worklist.push_back(CI); |
| continue; |
| } |
| |
| // There are two instructions which produce a strict constant value when |
| // applied to two related pointer values. Ignore everything else. |
| if (!isa<ICmpInst>(I) && I->getOpcode() != Instruction::Sub) |
| continue; |
| assert(I->getNumOperands() == 2); |
| |
| // Ensure that the two operands are in our set of potentially paired |
| // pointers (or are derived from them). |
| Value *OtherArg = I->getOperand(0); |
| if (OtherArg == V) |
| OtherArg = I->getOperand(1); |
| DenseMap<Value *, unsigned>::const_iterator ArgIt |
| = PointerArgs.find(OtherArg); |
| if (ArgIt == PointerArgs.end()) |
| continue; |
| std::pair<unsigned, unsigned> ArgPair(ArgIt->second, ArgIdx); |
| if (ArgPair.first > ArgPair.second) |
| std::swap(ArgPair.first, ArgPair.second); |
| |
| PointerArgPairWeights[ArgPair] |
| += countCodeReductionForConstant(Metrics, I); |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| /// analyzeFunction - Fill in the current structure with information gleaned |
| /// from the specified function. |
| void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F, |
| const TargetData *TD) { |
| Metrics.analyzeFunction(F, TD); |
| |
| // A function with exactly one return has it removed during the inlining |
| // process (see InlineFunction), so don't count it. |
| // FIXME: This knowledge should really be encoded outside of FunctionInfo. |
| if (Metrics.NumRets==1) |
| --Metrics.NumInsts; |
| |
| ArgumentWeights.reserve(F->arg_size()); |
| DenseMap<Value *, unsigned> PointerArgs; |
| unsigned ArgIdx = 0; |
| for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; |
| ++I, ++ArgIdx) { |
| // Count how much code can be eliminated if one of the arguments is |
| // a constant or an alloca. |
| ArgumentWeights.push_back(ArgInfo(countCodeReductionForConstant(Metrics, I), |
| countCodeReductionForAlloca(Metrics, I))); |
| |
| // If the argument is a pointer, also check for pairs of pointers where |
| // knowing a fixed offset between them allows simplification. This pattern |
| // arises mostly due to STL algorithm patterns where pointers are used as |
| // random access iterators. |
| if (!I->getType()->isPointerTy()) |
| continue; |
| PointerArgs[I] = ArgIdx; |
| countCodeReductionForPointerPair(Metrics, PointerArgs, I, ArgIdx); |
| } |
| } |
| |
| /// NeverInline - returns true if the function should never be inlined into |
| /// any caller |
| bool InlineCostAnalyzer::FunctionInfo::NeverInline() { |
| return (Metrics.exposesReturnsTwice || Metrics.isRecursive || |
| Metrics.containsIndirectBr); |
| } |
| |
| // ConstantFunctionBonus - Figure out how much of a bonus we can get for |
| // possibly devirtualizing a function. We'll subtract the size of the function |
| // we may wish to inline from the indirect call bonus providing a limit on |
| // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize |
| // inlining because we decide we don't want to give a bonus for |
| // devirtualizing. |
| int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) { |
| |
| // This could just be NULL. |
| if (!C) return 0; |
| |
| Function *F = dyn_cast<Function>(C); |
| if (!F) return 0; |
| |
| int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F); |
| return (Bonus > 0) ? 0 : Bonus; |
| } |
| |
| // CountBonusForConstant - Figure out an approximation for how much per-call |
| // performance boost we can expect if the specified value is constant. |
| int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) { |
| unsigned Bonus = 0; |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
| User *U = *UI; |
| if (CallInst *CI = dyn_cast<CallInst>(U)) { |
| // Turning an indirect call into a direct call is a BIG win |
| if (CI->getCalledValue() == V) |
| Bonus += ConstantFunctionBonus(CallSite(CI), C); |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { |
| // Turning an indirect call into a direct call is a BIG win |
| if (II->getCalledValue() == V) |
| Bonus += ConstantFunctionBonus(CallSite(II), C); |
| } |
| // FIXME: Eliminating conditional branches and switches should |
| // also yield a per-call performance boost. |
| else { |
| // Figure out the bonuses that wll accrue due to simple constant |
| // propagation. |
| Instruction &Inst = cast<Instruction>(*U); |
| |
| // We can't constant propagate instructions which have effects or |
| // read memory. |
| // |
| // FIXME: It would be nice to capture the fact that a load from a |
| // pointer-to-constant-global is actually a *really* good thing to zap. |
| // Unfortunately, we don't know the pointer that may get propagated here, |
| // so we can't make this decision. |
| if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || |
| isa<AllocaInst>(Inst)) |
| continue; |
| |
| bool AllOperandsConstant = true; |
| for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) |
| if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { |
| AllOperandsConstant = false; |
| break; |
| } |
| |
| if (AllOperandsConstant) |
| Bonus += CountBonusForConstant(&Inst); |
| } |
| } |
| |
| return Bonus; |
| } |
| |
| int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) { |
| // Get information about the callee. |
| FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; |
| |
| // If we haven't calculated this information yet, do so now. |
| if (CalleeFI->Metrics.NumBlocks == 0) |
| CalleeFI->analyzeFunction(Callee, TD); |
| |
| // InlineCost - This value measures how good of an inline candidate this call |
| // site is to inline. A lower inline cost make is more likely for the call to |
| // be inlined. This value may go negative. |
| // |
| int InlineCost = 0; |
| |
| // Compute any size reductions we can expect due to arguments being passed into |
| // the function. |
| // |
| unsigned ArgNo = 0; |
| CallSite::arg_iterator I = CS.arg_begin(); |
| for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); |
| FI != FE; ++I, ++FI, ++ArgNo) { |
| |
| // If an alloca is passed in, inlining this function is likely to allow |
| // significant future optimization possibilities (like scalar promotion, and |
| // scalarization), so encourage the inlining of the function. |
| // |
| if (isa<AllocaInst>(I)) |
| InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; |
| |
| // If this is a constant being passed into the function, use the argument |
| // weights calculated for the callee to determine how much will be folded |
| // away with this information. |
| else if (isa<Constant>(I)) |
| InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; |
| } |
| |
| const DenseMap<std::pair<unsigned, unsigned>, unsigned> &ArgPairWeights |
| = CalleeFI->PointerArgPairWeights; |
| for (DenseMap<std::pair<unsigned, unsigned>, unsigned>::const_iterator I |
| = ArgPairWeights.begin(), E = ArgPairWeights.end(); |
| I != E; ++I) |
| if (CS.getArgument(I->first.first)->stripInBoundsConstantOffsets() == |
| CS.getArgument(I->first.second)->stripInBoundsConstantOffsets()) |
| InlineCost -= I->second; |
| |
| // Each argument passed in has a cost at both the caller and the callee |
| // sides. Measurements show that each argument costs about the same as an |
| // instruction. |
| InlineCost -= (CS.arg_size() * InlineConstants::InstrCost); |
| |
| // Now that we have considered all of the factors that make the call site more |
| // likely to be inlined, look at factors that make us not want to inline it. |
| |
| // Calls usually take a long time, so they make the inlining gain smaller. |
| InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; |
| |
| // Look at the size of the callee. Each instruction counts as 5. |
| InlineCost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; |
| |
| return InlineCost; |
| } |
| |
| int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) { |
| // Get information about the callee. |
| FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; |
| |
| // If we haven't calculated this information yet, do so now. |
| if (CalleeFI->Metrics.NumBlocks == 0) |
| CalleeFI->analyzeFunction(Callee, TD); |
| |
| bool isDirectCall = CS.getCalledFunction() == Callee; |
| Instruction *TheCall = CS.getInstruction(); |
| int Bonus = 0; |
| |
| // If there is only one call of the function, and it has internal linkage, |
| // make it almost guaranteed to be inlined. |
| // |
| if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) |
| Bonus += InlineConstants::LastCallToStaticBonus; |
| |
| // If the instruction after the call, or if the normal destination of the |
| // invoke is an unreachable instruction, the function is noreturn. As such, |
| // there is little point in inlining this. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { |
| if (isa<UnreachableInst>(II->getNormalDest()->begin())) |
| Bonus += InlineConstants::NoreturnPenalty; |
| } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) |
| Bonus += InlineConstants::NoreturnPenalty; |
| |
| // If this function uses the coldcc calling convention, prefer not to inline |
| // it. |
| if (Callee->getCallingConv() == CallingConv::Cold) |
| Bonus += InlineConstants::ColdccPenalty; |
| |
| // Add to the inline quality for properties that make the call valuable to |
| // inline. This includes factors that indicate that the result of inlining |
| // the function will be optimizable. Currently this just looks at arguments |
| // passed into the function. |
| // |
| CallSite::arg_iterator I = CS.arg_begin(); |
| for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); |
| FI != FE; ++I, ++FI) |
| // Compute any constant bonus due to inlining we want to give here. |
| if (isa<Constant>(I)) |
| Bonus += CountBonusForConstant(FI, cast<Constant>(I)); |
| |
| return Bonus; |
| } |
| |
| // getInlineCost - The heuristic used to determine if we should inline the |
| // function call or not. |
| // |
| InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS) { |
| return getInlineCost(CS, CS.getCalledFunction()); |
| } |
| |
| InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee) { |
| Instruction *TheCall = CS.getInstruction(); |
| Function *Caller = TheCall->getParent()->getParent(); |
| |
| // Don't inline functions which can be redefined at link-time to mean |
| // something else. Don't inline functions marked noinline or call sites |
| // marked noinline. |
| if (Callee->mayBeOverridden() || Callee->hasFnAttr(Attribute::NoInline) || |
| CS.isNoInline()) |
| return llvm::InlineCost::getNever(); |
| |
| // Get information about the callee. |
| FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; |
| |
| // If we haven't calculated this information yet, do so now. |
| if (CalleeFI->Metrics.NumBlocks == 0) |
| CalleeFI->analyzeFunction(Callee, TD); |
| |
| // If we should never inline this, return a huge cost. |
| if (CalleeFI->NeverInline()) |
| return InlineCost::getNever(); |
| |
| // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we |
| // could move this up and avoid computing the FunctionInfo for |
| // things we are going to just return always inline for. This |
| // requires handling setjmp somewhere else, however. |
| if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) |
| return InlineCost::getAlways(); |
| |
| if (CalleeFI->Metrics.usesDynamicAlloca) { |
| // Get information about the caller. |
| FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; |
| |
| // If we haven't calculated this information yet, do so now. |
| if (CallerFI.Metrics.NumBlocks == 0) { |
| CallerFI.analyzeFunction(Caller, TD); |
| |
| // Recompute the CalleeFI pointer, getting Caller could have invalidated |
| // it. |
| CalleeFI = &CachedFunctionInfo[Callee]; |
| } |
| |
| // Don't inline a callee with dynamic alloca into a caller without them. |
| // Functions containing dynamic alloca's are inefficient in various ways; |
| // don't create more inefficiency. |
| if (!CallerFI.Metrics.usesDynamicAlloca) |
| return InlineCost::getNever(); |
| } |
| |
| // InlineCost - This value measures how good of an inline candidate this call |
| // site is to inline. A lower inline cost make is more likely for the call to |
| // be inlined. This value may go negative due to the fact that bonuses |
| // are negative numbers. |
| // |
| int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee); |
| return llvm::InlineCost::get(InlineCost); |
| } |
| |
| // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a |
| // higher threshold to determine if the function call should be inlined. |
| float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { |
| Function *Callee = CS.getCalledFunction(); |
| |
| // Get information about the callee. |
| FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; |
| |
| // If we haven't calculated this information yet, do so now. |
| if (CalleeFI.Metrics.NumBlocks == 0) |
| CalleeFI.analyzeFunction(Callee, TD); |
| |
| float Factor = 1.0f; |
| // Single BB functions are often written to be inlined. |
| if (CalleeFI.Metrics.NumBlocks == 1) |
| Factor += 0.5f; |
| |
| // Be more aggressive if the function contains a good chunk (if it mades up |
| // at least 10% of the instructions) of vector instructions. |
| if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2) |
| Factor += 2.0f; |
| else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10) |
| Factor += 1.5f; |
| return Factor; |
| } |
| |
| /// growCachedCostInfo - update the cached cost info for Caller after Callee has |
| /// been inlined. |
| void |
| InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) { |
| CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics; |
| |
| // For small functions we prefer to recalculate the cost for better accuracy. |
| if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) { |
| resetCachedCostInfo(Caller); |
| return; |
| } |
| |
| // For large functions, we can save a lot of computation time by skipping |
| // recalculations. |
| if (CallerMetrics.NumCalls > 0) |
| --CallerMetrics.NumCalls; |
| |
| if (Callee == 0) return; |
| |
| CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics; |
| |
| // If we don't have metrics for the callee, don't recalculate them just to |
| // update an approximation in the caller. Instead, just recalculate the |
| // caller info from scratch. |
| if (CalleeMetrics.NumBlocks == 0) { |
| resetCachedCostInfo(Caller); |
| return; |
| } |
| |
| // Since CalleeMetrics were already calculated, we know that the CallerMetrics |
| // reference isn't invalidated: both were in the DenseMap. |
| CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca; |
| |
| // FIXME: If any of these three are true for the callee, the callee was |
| // not inlined into the caller, so I think they're redundant here. |
| CallerMetrics.exposesReturnsTwice |= CalleeMetrics.exposesReturnsTwice; |
| CallerMetrics.isRecursive |= CalleeMetrics.isRecursive; |
| CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr; |
| |
| CallerMetrics.NumInsts += CalleeMetrics.NumInsts; |
| CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks; |
| CallerMetrics.NumCalls += CalleeMetrics.NumCalls; |
| CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts; |
| CallerMetrics.NumRets += CalleeMetrics.NumRets; |
| |
| // analyzeBasicBlock counts each function argument as an inst. |
| if (CallerMetrics.NumInsts >= Callee->arg_size()) |
| CallerMetrics.NumInsts -= Callee->arg_size(); |
| else |
| CallerMetrics.NumInsts = 0; |
| |
| // We are not updating the argument weights. We have already determined that |
| // Caller is a fairly large function, so we accept the loss of precision. |
| } |
| |
| /// clear - empty the cache of inline costs |
| void InlineCostAnalyzer::clear() { |
| CachedFunctionInfo.clear(); |
| } |