| //===- PostDominators.cpp - Post-Dominator Calculation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the post-dominator construction algorithms. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // ImmediatePostDominators Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterPass<ImmediatePostDominators> |
| D("postidom", "Immediate Post-Dominators Construction", true); |
| |
| unsigned ImmediatePostDominators::DFSPass(BasicBlock *V, InfoRec &VInfo, |
| unsigned N) { |
| |
| std::vector<std::pair<BasicBlock *, InfoRec *> > workStack; |
| workStack.push_back(std::make_pair(V, &VInfo)); |
| |
| do { |
| BasicBlock *currentBB = workStack.back().first; |
| InfoRec *currentVInfo = workStack.back().second; |
| workStack.pop_back(); |
| |
| currentVInfo->Semi = ++N; |
| currentVInfo->Label = currentBB; |
| |
| Vertex.push_back(currentBB); // Vertex[n] = current; |
| // Info[currentBB].Ancestor = 0; |
| // Ancestor[n] = 0 |
| // Child[currentBB] = 0; |
| currentVInfo->Size = 1; // Size[currentBB] = 1 |
| |
| // For PostDominators, we want to walk predecessors rather than successors |
| // as we do in forward Dominators. |
| for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB); |
| PI != PE; ++PI) { |
| InfoRec &SuccVInfo = Info[*PI]; |
| if (SuccVInfo.Semi == 0) { |
| SuccVInfo.Parent = currentBB; |
| |
| workStack.push_back(std::make_pair(*PI, &SuccVInfo)); |
| } |
| } |
| } while (!workStack.empty()); |
| return N; |
| } |
| |
| void ImmediatePostDominators::Compress(BasicBlock *V, InfoRec &VInfo) { |
| BasicBlock *VAncestor = VInfo.Ancestor; |
| InfoRec &VAInfo = Info[VAncestor]; |
| if (VAInfo.Ancestor == 0) |
| return; |
| |
| Compress(VAncestor, VAInfo); |
| |
| BasicBlock *VAncestorLabel = VAInfo.Label; |
| BasicBlock *VLabel = VInfo.Label; |
| if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) |
| VInfo.Label = VAncestorLabel; |
| |
| VInfo.Ancestor = VAInfo.Ancestor; |
| } |
| |
| BasicBlock *ImmediatePostDominators::Eval(BasicBlock *V) { |
| InfoRec &VInfo = Info[V]; |
| |
| // Higher-complexity but faster implementation |
| if (VInfo.Ancestor == 0) |
| return V; |
| Compress(V, VInfo); |
| return VInfo.Label; |
| } |
| |
| void ImmediatePostDominators::Link(BasicBlock *V, BasicBlock *W, |
| InfoRec &WInfo) { |
| // Higher-complexity but faster implementation |
| WInfo.Ancestor = V; |
| } |
| |
| bool ImmediatePostDominators::runOnFunction(Function &F) { |
| IDoms.clear(); // Reset from the last time we were run... |
| Roots.clear(); |
| |
| // Step #0: Scan the function looking for the root nodes of the post-dominance |
| // relationships. These blocks, which have no successors, end with return and |
| // unwind instructions. |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| if (succ_begin(I) == succ_end(I)) |
| Roots.push_back(I); |
| |
| Vertex.push_back(0); |
| |
| // Step #1: Number blocks in depth-first order and initialize variables used |
| // in later stages of the algorithm. |
| unsigned N = 0; |
| for (unsigned i = 0, e = Roots.size(); i != e; ++i) |
| N = DFSPass(Roots[i], Info[Roots[i]], N); |
| |
| for (unsigned i = N; i >= 2; --i) { |
| BasicBlock *W = Vertex[i]; |
| InfoRec &WInfo = Info[W]; |
| |
| // Step #2: Calculate the semidominators of all vertices |
| for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI) |
| if (Info.count(*SI)) { // Only if this predecessor is reachable! |
| unsigned SemiU = Info[Eval(*SI)].Semi; |
| if (SemiU < WInfo.Semi) |
| WInfo.Semi = SemiU; |
| } |
| |
| Info[Vertex[WInfo.Semi]].Bucket.push_back(W); |
| |
| BasicBlock *WParent = WInfo.Parent; |
| Link(WParent, W, WInfo); |
| |
| // Step #3: Implicitly define the immediate dominator of vertices |
| std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket; |
| while (!WParentBucket.empty()) { |
| BasicBlock *V = WParentBucket.back(); |
| WParentBucket.pop_back(); |
| BasicBlock *U = Eval(V); |
| IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; |
| } |
| } |
| |
| // Step #4: Explicitly define the immediate dominator of each vertex |
| for (unsigned i = 2; i <= N; ++i) { |
| BasicBlock *W = Vertex[i]; |
| BasicBlock *&WIDom = IDoms[W]; |
| if (WIDom != Vertex[Info[W].Semi]) |
| WIDom = IDoms[WIDom]; |
| } |
| |
| // Free temporary memory used to construct idom's |
| Info.clear(); |
| std::vector<BasicBlock*>().swap(Vertex); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominatorSet Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterPass<PostDominatorSet> |
| B("postdomset", "Post-Dominator Set Construction", true); |
| |
| // Postdominator set construction. This converts the specified function to only |
| // have a single exit node (return stmt), then calculates the post dominance |
| // sets for the function. |
| // |
| bool PostDominatorSet::runOnFunction(Function &F) { |
| // Scan the function looking for the root nodes of the post-dominance |
| // relationships. These blocks end with return and unwind instructions. |
| // While we are iterating over the function, we also initialize all of the |
| // domsets to empty. |
| Roots.clear(); |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| if (succ_begin(I) == succ_end(I)) |
| Roots.push_back(I); |
| |
| // If there are no exit nodes for the function, postdomsets are all empty. |
| // This can happen if the function just contains an infinite loop, for |
| // example. |
| ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>(); |
| Doms.clear(); // Reset from the last time we were run... |
| if (Roots.empty()) return false; |
| |
| // If we have more than one root, we insert an artificial "null" exit, which |
| // has "virtual edges" to each of the real exit nodes. |
| //if (Roots.size() > 1) |
| // Doms[0].insert(0); |
| |
| // Root nodes only dominate themselves. |
| for (unsigned i = 0, e = Roots.size(); i != e; ++i) |
| Doms[Roots[i]].insert(Roots[i]); |
| |
| // Loop over all of the blocks in the function, calculating dominator sets for |
| // each function. |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| if (BasicBlock *IPDom = IPD[I]) { // Get idom if block is reachable |
| DomSetType &DS = Doms[I]; |
| assert(DS.empty() && "PostDomset already filled in for this block?"); |
| DS.insert(I); // Blocks always dominate themselves |
| |
| // Insert all dominators into the set... |
| while (IPDom) { |
| // If we have already computed the dominator sets for our immediate post |
| // dominator, just use it instead of walking all the way up to the root. |
| DomSetType &IPDS = Doms[IPDom]; |
| if (!IPDS.empty()) { |
| DS.insert(IPDS.begin(), IPDS.end()); |
| break; |
| } else { |
| DS.insert(IPDom); |
| IPDom = IPD[IPDom]; |
| } |
| } |
| } else { |
| // Ensure that every basic block has at least an empty set of nodes. This |
| // is important for the case when there is unreachable blocks. |
| Doms[I]; |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominatorTree Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterPass<PostDominatorTree> |
| F("postdomtree", "Post-Dominator Tree Construction", true); |
| |
| DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) { |
| Node *&BBNode = Nodes[BB]; |
| if (BBNode) return BBNode; |
| |
| // Haven't calculated this node yet? Get or calculate the node for the |
| // immediate postdominator. |
| BasicBlock *IPDom = getAnalysis<ImmediatePostDominators>()[BB]; |
| Node *IPDomNode = getNodeForBlock(IPDom); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode)); |
| } |
| |
| void PostDominatorTree::calculate(const ImmediatePostDominators &IPD) { |
| if (Roots.empty()) return; |
| |
| // Add a node for the root. This node might be the actual root, if there is |
| // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) |
| // which postdominates all real exits if there are multiple exit blocks. |
| BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0; |
| Nodes[Root] = RootNode = new Node(Root, 0); |
| |
| Function *F = Roots[0]->getParent(); |
| // Loop over all of the reachable blocks in the function... |
| for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) |
| if (BasicBlock *ImmPostDom = IPD.get(I)) { // Reachable block. |
| Node *&BBNode = Nodes[I]; |
| if (!BBNode) { // Haven't calculated this node yet? |
| // Get or calculate the node for the immediate dominator |
| Node *IPDomNode = getNodeForBlock(ImmPostDom); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| BBNode = IPDomNode->addChild(new Node(I, IPDomNode)); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PostETForest Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterPass<PostETForest> |
| G("postetforest", "Post-ET-Forest Construction", true); |
| |
| ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) { |
| ETNode *&BBNode = Nodes[BB]; |
| if (BBNode) return BBNode; |
| |
| // Haven't calculated this node yet? Get or calculate the node for the |
| // immediate dominator. |
| BasicBlock *IDom = getAnalysis<ImmediatePostDominators>()[BB]; |
| |
| // If we are unreachable, we may not have an immediate dominator. |
| if (!IDom) |
| return BBNode = new ETNode(BB); |
| else { |
| ETNode *IDomNode = getNodeForBlock(IDom); |
| |
| // Add a new tree node for this BasicBlock, and link it as a child of |
| // IDomNode |
| BBNode = new ETNode(BB); |
| BBNode->setFather(IDomNode); |
| return BBNode; |
| } |
| } |
| |
| void PostETForest::calculate(const ImmediatePostDominators &ID) { |
| for (unsigned i = 0, e = Roots.size(); i != e; ++i) |
| Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root |
| |
| // Iterate over all nodes in inverse depth first order. |
| for (unsigned i = 0, e = Roots.size(); i != e; ++i) |
| for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]), |
| E = idf_end(Roots[i]); I != E; ++I) { |
| BasicBlock *BB = *I; |
| ETNode *&BBNode = Nodes[BB]; |
| if (!BBNode) { |
| ETNode *IDomNode = NULL; |
| |
| if (ID.get(BB)) |
| IDomNode = getNodeForBlock(ID.get(BB)); |
| |
| // Add a new ETNode for this BasicBlock, and set it's parent |
| // to it's immediate dominator. |
| BBNode = new ETNode(BB); |
| if (IDomNode) |
| BBNode->setFather(IDomNode); |
| } |
| } |
| |
| int dfsnum = 0; |
| // Iterate over all nodes in depth first order... |
| for (unsigned i = 0, e = Roots.size(); i != e; ++i) |
| for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]), |
| E = idf_end(Roots[i]); I != E; ++I) { |
| if (!getNodeForBlock(*I)->hasFather()) |
| getNodeForBlock(*I)->assignDFSNumber(dfsnum); |
| } |
| DFSInfoValid = true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PostDominanceFrontier Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static RegisterPass<PostDominanceFrontier> |
| H("postdomfrontier", "Post-Dominance Frontier Construction", true); |
| |
| const DominanceFrontier::DomSetType & |
| PostDominanceFrontier::calculate(const PostDominatorTree &DT, |
| const DominatorTree::Node *Node) { |
| // Loop over CFG successors to calculate DFlocal[Node] |
| BasicBlock *BB = Node->getBlock(); |
| DomSetType &S = Frontiers[BB]; // The new set to fill in... |
| if (getRoots().empty()) return S; |
| |
| if (BB) |
| for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); |
| SI != SE; ++SI) |
| // Does Node immediately dominate this predecessor? |
| if (DT[*SI]->getIDom() != Node) |
| S.insert(*SI); |
| |
| // At this point, S is DFlocal. Now we union in DFup's of our children... |
| // Loop through and visit the nodes that Node immediately dominates (Node's |
| // children in the IDomTree) |
| // |
| for (PostDominatorTree::Node::const_iterator |
| NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { |
| DominatorTree::Node *IDominee = *NI; |
| const DomSetType &ChildDF = calculate(DT, IDominee); |
| |
| DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); |
| for (; CDFI != CDFE; ++CDFI) { |
| if (!Node->properlyDominates(DT[*CDFI])) |
| S.insert(*CDFI); |
| } |
| } |
| |
| return S; |
| } |
| |
| // Ensure that this .cpp file gets linked when PostDominators.h is used. |
| DEFINING_FILE_FOR(PostDominanceFrontier) |