Initial Commit of llvm2cpp
This is a safekeeping commit. The program is not finished. It currently
handles modules, types, global variables and function declarations. Blocks
and instructions remain to be done.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28528 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/tools/llvm2cpp/CppWriter.cpp b/tools/llvm2cpp/CppWriter.cpp
new file mode 100644
index 0000000..54a28e9
--- /dev/null
+++ b/tools/llvm2cpp/CppWriter.cpp
@@ -0,0 +1,1995 @@
+//===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the writing of the LLVM IR as a set of C++ calls to the
+// LLVM IR interface. The input module is assumed to be verified.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
+#include "llvm/Module.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <iostream>
+
+using namespace llvm;
+
+namespace {
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+/// @brief LLVM Assembly Writing Slot Computation.
+class SlotMachine {
+
+/// @name Types
+/// @{
+public:
+
+  /// @brief A mapping of Values to slot numbers
+  typedef std::map<const Value*, unsigned> ValueMap;
+  typedef std::map<const Type*, unsigned> TypeMap;
+
+  /// @brief A plane with next slot number and ValueMap
+  struct ValuePlane {
+    unsigned next_slot;        ///< The next slot number to use
+    ValueMap map;              ///< The map of Value* -> unsigned
+    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
+  };
+
+  struct TypePlane {
+    unsigned next_slot;
+    TypeMap map;
+    TypePlane() { next_slot = 0; }
+    void clear() { map.clear(); next_slot = 0; }
+  };
+
+  /// @brief The map of planes by Type
+  typedef std::map<const Type*, ValuePlane> TypedPlanes;
+
+/// @}
+/// @name Constructors
+/// @{
+public:
+  /// @brief Construct from a module
+  SlotMachine(const Module *M );
+
+/// @}
+/// @name Accessors
+/// @{
+public:
+  /// Return the slot number of the specified value in it's type
+  /// plane.  Its an error to ask for something not in the SlotMachine.
+  /// Its an error to ask for a Type*
+  int getSlot(const Value *V);
+  int getSlot(const Type*Ty);
+
+  /// Determine if a Value has a slot or not
+  bool hasSlot(const Value* V);
+  bool hasSlot(const Type* Ty);
+
+/// @}
+/// @name Mutators
+/// @{
+public:
+  /// If you'd like to deal with a function instead of just a module, use
+  /// this method to get its data into the SlotMachine.
+  void incorporateFunction(const Function *F) {
+    TheFunction = F;
+    FunctionProcessed = false;
+  }
+
+  /// After calling incorporateFunction, use this method to remove the
+  /// most recently incorporated function from the SlotMachine. This
+  /// will reset the state of the machine back to just the module contents.
+  void purgeFunction();
+
+/// @}
+/// @name Implementation Details
+/// @{
+private:
+  /// Values can be crammed into here at will. If they haven't
+  /// been inserted already, they get inserted, otherwise they are ignored.
+  /// Either way, the slot number for the Value* is returned.
+  unsigned createSlot(const Value *V);
+  unsigned createSlot(const Type* Ty);
+
+  /// Insert a value into the value table. Return the slot number
+  /// that it now occupies.  BadThings(TM) will happen if you insert a
+  /// Value that's already been inserted.
+  unsigned insertValue( const Value *V );
+  unsigned insertValue( const Type* Ty);
+
+  /// Add all of the module level global variables (and their initializers)
+  /// and function declarations, but not the contents of those functions.
+  void processModule();
+
+  /// Add all of the functions arguments, basic blocks, and instructions
+  void processFunction();
+
+  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
+  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
+
+/// @}
+/// @name Data
+/// @{
+public:
+
+  /// @brief The module for which we are holding slot numbers
+  const Module* TheModule;
+
+  /// @brief The function for which we are holding slot numbers
+  const Function* TheFunction;
+  bool FunctionProcessed;
+
+  /// @brief The TypePlanes map for the module level data
+  TypedPlanes mMap;
+  TypePlane mTypes;
+
+  /// @brief The TypePlanes map for the function level data
+  TypedPlanes fMap;
+  TypePlane fTypes;
+
+/// @}
+
+};
+
+typedef std::vector<const Type*> TypeList;
+typedef std::map<const Type*,std::string> TypeMap;
+typedef std::map<const Value*,std::string> ValueMap;
+
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+                                   bool PrintName, TypeMap &TypeTable,
+                                   SlotMachine *Machine);
+
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+                                   bool PrintName, TypeMap& TypeTable,
+                                   SlotMachine *Machine);
+
+const Module *getModuleFromVal(const Value *V) {
+  if (const Argument *MA = dyn_cast<Argument>(V))
+    return MA->getParent() ? MA->getParent()->getParent() : 0;
+  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+    return BB->getParent() ? BB->getParent()->getParent() : 0;
+  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
+    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
+    return M ? M->getParent() : 0;
+  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+    return GV->getParent();
+  return 0;
+}
+
+// getLLVMName - Turn the specified string into an 'LLVM name', which is either
+// prefixed with % (if the string only contains simple characters) or is
+// surrounded with ""'s (if it has special chars in it).
+std::string getLLVMName(const std::string &Name,
+                               bool prefixName = true) {
+  assert(!Name.empty() && "Cannot get empty name!");
+
+  // First character cannot start with a number...
+  if (Name[0] >= '0' && Name[0] <= '9')
+    return "\"" + Name + "\"";
+
+  // Scan to see if we have any characters that are not on the "white list"
+  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+    char C = Name[i];
+    assert(C != '"' && "Illegal character in LLVM value name!");
+    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
+        C != '-' && C != '.' && C != '_')
+      return "\"" + Name + "\"";
+  }
+
+  // If we get here, then the identifier is legal to use as a "VarID".
+  if (prefixName)
+    return "%"+Name;
+  else
+    return Name;
+}
+
+
+/// fillTypeNameTable - If the module has a symbol table, take all global types
+/// and stuff their names into the TypeNames map.
+///
+void fillTypeNameTable(const Module *M, TypeMap& TypeNames) {
+  if (!M) return;
+  const SymbolTable &ST = M->getSymbolTable();
+  SymbolTable::type_const_iterator TI = ST.type_begin();
+  for (; TI != ST.type_end(); ++TI ) {
+    // As a heuristic, don't insert pointer to primitive types, because
+    // they are used too often to have a single useful name.
+    //
+    const Type *Ty = cast<Type>(TI->second);
+    if (!isa<PointerType>(Ty) ||
+        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
+        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
+      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
+  }
+}
+
+void calcTypeName(const Type *Ty,
+                         std::vector<const Type *> &TypeStack,
+                         TypeMap& TypeNames,
+                         std::string & Result){
+  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
+    Result += Ty->getDescription();  // Base case
+    return;
+  }
+
+  // Check to see if the type is named.
+  TypeMap::iterator I = TypeNames.find(Ty);
+  if (I != TypeNames.end()) {
+    Result += I->second;
+    return;
+  }
+
+  if (isa<OpaqueType>(Ty)) {
+    Result += "opaque";
+    return;
+  }
+
+  // Check to see if the Type is already on the stack...
+  unsigned Slot = 0, CurSize = TypeStack.size();
+  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
+
+  // This is another base case for the recursion.  In this case, we know
+  // that we have looped back to a type that we have previously visited.
+  // Generate the appropriate upreference to handle this.
+  if (Slot < CurSize) {
+    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
+    return;
+  }
+
+  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
+
+  switch (Ty->getTypeID()) {
+  case Type::FunctionTyID: {
+    const FunctionType *FTy = cast<FunctionType>(Ty);
+    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
+    Result += " (";
+    for (FunctionType::param_iterator I = FTy->param_begin(),
+           E = FTy->param_end(); I != E; ++I) {
+      if (I != FTy->param_begin())
+        Result += ", ";
+      calcTypeName(*I, TypeStack, TypeNames, Result);
+    }
+    if (FTy->isVarArg()) {
+      if (FTy->getNumParams()) Result += ", ";
+      Result += "...";
+    }
+    Result += ")";
+    break;
+  }
+  case Type::StructTyID: {
+    const StructType *STy = cast<StructType>(Ty);
+    Result += "{ ";
+    for (StructType::element_iterator I = STy->element_begin(),
+           E = STy->element_end(); I != E; ++I) {
+      if (I != STy->element_begin())
+        Result += ", ";
+      calcTypeName(*I, TypeStack, TypeNames, Result);
+    }
+    Result += " }";
+    break;
+  }
+  case Type::PointerTyID:
+    calcTypeName(cast<PointerType>(Ty)->getElementType(),
+                          TypeStack, TypeNames, Result);
+    Result += "*";
+    break;
+  case Type::ArrayTyID: {
+    const ArrayType *ATy = cast<ArrayType>(Ty);
+    Result += "[" + utostr(ATy->getNumElements()) + " x ";
+    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
+    Result += "]";
+    break;
+  }
+  case Type::PackedTyID: {
+    const PackedType *PTy = cast<PackedType>(Ty);
+    Result += "<" + utostr(PTy->getNumElements()) + " x ";
+    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
+    Result += ">";
+    break;
+  }
+  case Type::OpaqueTyID:
+    Result += "opaque";
+    break;
+  default:
+    Result += "<unrecognized-type>";
+  }
+
+  TypeStack.pop_back();       // Remove self from stack...
+  return;
+}
+
+
+/// printTypeInt - The internal guts of printing out a type that has a
+/// potentially named portion.
+///
+std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){
+  // Primitive types always print out their description, regardless of whether
+  // they have been named or not.
+  //
+  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
+    return Out << Ty->getDescription();
+
+  // Check to see if the type is named.
+  TypeMap::iterator I = TypeNames.find(Ty);
+  if (I != TypeNames.end()) return Out << I->second;
+
+  // Otherwise we have a type that has not been named but is a derived type.
+  // Carefully recurse the type hierarchy to print out any contained symbolic
+  // names.
+  //
+  std::vector<const Type *> TypeStack;
+  std::string TypeName;
+  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
+  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
+  return (Out << TypeName);
+}
+
+
+/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
+/// type, iff there is an entry in the modules symbol table for the specified
+/// type or one of it's component types. This is slower than a simple x << Type
+///
+std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
+                                      const Module *M) {
+  Out << ' ';
+
+  // If they want us to print out a type, attempt to make it symbolic if there
+  // is a symbol table in the module...
+  if (M) {
+    TypeMap TypeNames;
+    fillTypeNameTable(M, TypeNames);
+
+    return printTypeInt(Out, Ty, TypeNames);
+  } else {
+    return Out << Ty->getDescription();
+  }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+void PrintEscapedString(const std::string &Str, std::ostream &Out) {
+  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+    unsigned char C = Str[i];
+    if (isprint(C) && C != '"' && C != '\\') {
+      Out << C;
+    } else {
+      Out << '\\'
+          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+    }
+  }
+}
+
+/// @brief Internal constant writer.
+void WriteConstantInternal(std::ostream &Out, const Constant *CV,
+                             bool PrintName,
+                             TypeMap& TypeTable,
+                             SlotMachine *Machine) {
+  const int IndentSize = 4;
+  static std::string Indent = "\n";
+  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+    Out << (CB == ConstantBool::True ? "true" : "false");
+  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+    Out << CI->getValue();
+  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+    Out << CI->getValue();
+  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+    // We would like to output the FP constant value in exponential notation,
+    // but we cannot do this if doing so will lose precision.  Check here to
+    // make sure that we only output it in exponential format if we can parse
+    // the value back and get the same value.
+    //
+    std::string StrVal = ftostr(CFP->getValue());
+
+    // Check to make sure that the stringized number is not some string like
+    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
+    // the string matches the "[-+]?[0-9]" regex.
+    //
+    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+        ((StrVal[0] == '-' || StrVal[0] == '+') &&
+         (StrVal[1] >= '0' && StrVal[1] <= '9')))
+      // Reparse stringized version!
+      if (atof(StrVal.c_str()) == CFP->getValue()) {
+        Out << StrVal;
+        return;
+      }
+
+    // Otherwise we could not reparse it to exactly the same value, so we must
+    // output the string in hexadecimal format!
+    assert(sizeof(double) == sizeof(uint64_t) &&
+           "assuming that double is 64 bits!");
+    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
+
+  } else if (isa<ConstantAggregateZero>(CV)) {
+    Out << "zeroinitializer";
+  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+    // As a special case, print the array as a string if it is an array of
+    // ubytes or an array of sbytes with positive values.
+    //
+    const Type *ETy = CA->getType()->getElementType();
+    if (CA->isString()) {
+      Out << "c\"";
+      PrintEscapedString(CA->getAsString(), Out);
+      Out << "\"";
+
+    } else {                // Cannot output in string format...
+      Out << '[';
+      if (CA->getNumOperands()) {
+        Out << ' ';
+        printTypeInt(Out, ETy, TypeTable);
+        WriteAsOperandInternal(Out, CA->getOperand(0),
+                               PrintName, TypeTable, Machine);
+        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+          Out << ", ";
+          printTypeInt(Out, ETy, TypeTable);
+          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
+                                 TypeTable, Machine);
+        }
+      }
+      Out << " ]";
+    }
+  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+    Out << '{';
+    unsigned N = CS->getNumOperands();
+    if (N) {
+      if (N > 2) {
+        Indent += std::string(IndentSize, ' ');
+        Out << Indent;
+      } else {
+        Out << ' ';
+      }
+      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
+
+      WriteAsOperandInternal(Out, CS->getOperand(0),
+                             PrintName, TypeTable, Machine);
+
+      for (unsigned i = 1; i < N; i++) {
+        Out << ", ";
+        if (N > 2) Out << Indent;
+        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
+
+        WriteAsOperandInternal(Out, CS->getOperand(i),
+                               PrintName, TypeTable, Machine);
+      }
+      if (N > 2) Indent.resize(Indent.size() - IndentSize);
+    }
+ 
+    Out << " }";
+  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+      const Type *ETy = CP->getType()->getElementType();
+      assert(CP->getNumOperands() > 0 &&
+             "Number of operands for a PackedConst must be > 0");
+      Out << '<';
+      Out << ' ';
+      printTypeInt(Out, ETy, TypeTable);
+      WriteAsOperandInternal(Out, CP->getOperand(0),
+                             PrintName, TypeTable, Machine);
+      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+          Out << ", ";
+          printTypeInt(Out, ETy, TypeTable);
+          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
+                                 TypeTable, Machine);
+      }
+      Out << " >";
+  } else if (isa<ConstantPointerNull>(CV)) {
+    Out << "null";
+
+  } else if (isa<UndefValue>(CV)) {
+    Out << "undef";
+
+  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+    Out << CE->getOpcodeName() << " (";
+
+    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+      printTypeInt(Out, (*OI)->getType(), TypeTable);
+      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+      if (OI+1 != CE->op_end())
+        Out << ", ";
+    }
+
+    if (CE->getOpcode() == Instruction::Cast) {
+      Out << " to ";
+      printTypeInt(Out, CE->getType(), TypeTable);
+    }
+    Out << ')';
+
+  } else {
+    Out << "<placeholder or erroneous Constant>";
+  }
+}
+
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream.  This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+                                   bool PrintName, TypeMap& TypeTable,
+                                   SlotMachine *Machine) {
+  Out << ' ';
+  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
+    Out << getLLVMName(V->getName());
+  else {
+    const Constant *CV = dyn_cast<Constant>(V);
+    if (CV && !isa<GlobalValue>(CV)) {
+      WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine);
+    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+      Out << "asm ";
+      if (IA->hasSideEffects())
+        Out << "sideeffect ";
+      Out << '"';
+      PrintEscapedString(IA->getAsmString(), Out);
+      Out << "\", \"";
+      PrintEscapedString(IA->getConstraintString(), Out);
+      Out << '"';
+    } else {
+      int Slot = Machine->getSlot(V);
+      if (Slot != -1)
+        Out << '%' << Slot;
+      else
+        Out << "<badref>";
+    }
+  }
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream.  This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Value *V,
+                                   bool PrintType, bool PrintName,
+                                   const Module *Context) {
+  TypeMap TypeNames;
+  if (Context == 0) Context = getModuleFromVal(V);
+
+  if (Context)
+    fillTypeNameTable(Context, TypeNames);
+
+  if (PrintType)
+    printTypeInt(Out, V->getType(), TypeNames);
+
+  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
+  return Out;
+}
+
+/// WriteAsOperandInternal - Write the name of the specified value out to
+/// the specified ostream.  This can be useful when you just want to print
+/// int %reg126, not the whole instruction that generated it.
+///
+void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+                                   bool PrintName, TypeMap& TypeTable,
+                                   SlotMachine *Machine) {
+  Out << ' ';
+  int Slot = Machine->getSlot(T);
+  if (Slot != -1)
+    Out << '%' << Slot;
+  else
+    Out << "<badref>";
+}
+
+/// WriteAsOperand - Write the name of the specified value out to the specified
+/// ostream.  This can be useful when you just want to print int %reg126, not
+/// the whole instruction that generated it.
+///
+std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty,
+                                   bool PrintType, bool PrintName,
+                                   const Module *Context) {
+  TypeMap TypeNames;
+  assert(Context != 0 && "Can't write types as operand without module context");
+
+  fillTypeNameTable(Context, TypeNames);
+
+  // if (PrintType)
+    // printTypeInt(Out, V->getType(), TypeNames);
+
+  printTypeInt(Out, Ty, TypeNames);
+
+  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
+  return Out;
+}
+
+class CppWriter {
+  std::ostream &Out;
+  SlotMachine &Machine;
+  const Module *TheModule;
+  unsigned long uniqueNum;
+  TypeMap TypeNames;
+  ValueMap ValueNames;
+  TypeMap UnresolvedTypes;
+  TypeList TypeStack;
+
+public:
+  inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M)
+    : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(),
+      ValueNames(), UnresolvedTypes(), TypeStack() { }
+
+  inline void write(const Module *M)         { printModule(M);      }
+  inline void write(const GlobalVariable *G) { printGlobal(G);      }
+  inline void write(const Function *F)       { printFunction(F);    }
+  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
+  inline void write(const Instruction *I)    { printInstruction(*I); }
+  inline void write(const Constant *CPV)     { printConstant(CPV);  }
+  inline void write(const Type *Ty)          { printType(Ty);       }
+
+  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
+
+  const Module* getModule() { return TheModule; }
+
+private:
+  void printModule(const Module *M);
+  void printTypes(const Module* M);
+  void printConstants(const Module* M);
+  void printConstant(const Constant *CPV);
+  void printGlobal(const GlobalVariable *GV);
+  void printFunction(const Function *F);
+  void printArgument(const Argument *FA);
+  void printBasicBlock(const BasicBlock *BB);
+  void printInstruction(const Instruction &I);
+  void printSymbolTable(const SymbolTable &ST);
+  void printLinkageType(GlobalValue::LinkageTypes LT);
+  void printCallingConv(unsigned cc);
+
+
+  // printType - Go to extreme measures to attempt to print out a short,
+  // symbolic version of a type name.
+  //
+  std::ostream &printType(const Type *Ty) {
+    return printTypeInt(Out, Ty, TypeNames);
+  }
+
+  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+  // without considering any symbolic types that we may have equal to it.
+  //
+  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
+
+  // printInfoComment - Print a little comment after the instruction indicating
+  // which slot it occupies.
+  void printInfoComment(const Value &V);
+
+  std::string getCppName(const Type* val);
+  std::string getCppName(const Value* val);
+  inline void printCppName(const Value* val);
+  inline void printCppName(const Type* val);
+  bool isOnStack(const Type*) const;
+  inline void printTypeDef(const Type* Ty);
+  bool printTypeDefInternal(const Type* Ty);
+};
+
+std::string
+CppWriter::getCppName(const Value* val) {
+  std::string name;
+  ValueMap::iterator I = ValueNames.find(val);
+  if (I != ValueNames.end()) {
+    name = I->second;
+  } else {
+    const char* prefix;
+    switch (val->getType()->getTypeID()) {
+      case Type::VoidTyID:     prefix = "void_"; break;
+      case Type::BoolTyID:     prefix = "bool_"; break; 
+      case Type::UByteTyID:    prefix = "ubyte_"; break;
+      case Type::SByteTyID:    prefix = "sbyte_"; break;
+      case Type::UShortTyID:   prefix = "ushort_"; break;
+      case Type::ShortTyID:    prefix = "short_"; break;
+      case Type::UIntTyID:     prefix = "uint_"; break;
+      case Type::IntTyID:      prefix = "int_"; break;
+      case Type::ULongTyID:    prefix = "ulong_"; break;
+      case Type::LongTyID:     prefix = "long_"; break;
+      case Type::FloatTyID:    prefix = "float_"; break;
+      case Type::DoubleTyID:   prefix = "double_"; break;
+      case Type::LabelTyID:    prefix = "label_"; break;
+      case Type::FunctionTyID: prefix = "func_"; break;
+      case Type::StructTyID:   prefix = "struct_"; break;
+      case Type::ArrayTyID:    prefix = "array_"; break;
+      case Type::PointerTyID:  prefix = "ptr_"; break;
+      case Type::PackedTyID:   prefix = "packed_"; break;
+      default:                 prefix = "other_"; break;
+    }
+    name = ValueNames[val] = std::string(prefix) +
+        (val->hasName() ? val->getName() : utostr(uniqueNum++));
+  }
+  return name;
+}
+
+void
+CppWriter::printCppName(const Value* val) {
+  PrintEscapedString(getCppName(val),Out);
+}
+
+void
+CppWriter::printCppName(const Type* Ty)
+{
+  PrintEscapedString(getCppName(Ty),Out);
+}
+
+// Gets the C++ name for a type. Returns true if we already saw the type,
+// false otherwise.
+//
+inline const std::string* 
+findTypeName(const SymbolTable& ST, const Type* Ty)
+{
+  SymbolTable::type_const_iterator TI = ST.type_begin();
+  SymbolTable::type_const_iterator TE = ST.type_end();
+  for (;TI != TE; ++TI)
+    if (TI->second == Ty)
+      return &(TI->first);
+  return 0;
+}
+
+std::string
+CppWriter::getCppName(const Type* Ty)
+{
+  // First, handle the primitive types .. easy
+  if (Ty->isPrimitiveType()) {
+    switch (Ty->getTypeID()) {
+      case Type::VoidTyID:     return "Type::VoidTy";
+      case Type::BoolTyID:     return "Type::BoolTy"; 
+      case Type::UByteTyID:    return "Type::UByteTy";
+      case Type::SByteTyID:    return "Type::SByteTy";
+      case Type::UShortTyID:   return "Type::UShortTy";
+      case Type::ShortTyID:    return "Type::ShortTy";
+      case Type::UIntTyID:     return "Type::UIntTy";
+      case Type::IntTyID:      return "Type::IntTy";
+      case Type::ULongTyID:    return "Type::ULongTy";
+      case Type::LongTyID:     return "Type::LongTy";
+      case Type::FloatTyID:    return "Type::FloatTy";
+      case Type::DoubleTyID:   return "Type::DoubleTy";
+      case Type::LabelTyID:    return "Type::LabelTy";
+      default:
+        assert(!"Can't get here");
+        break;
+    }
+    return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+  }
+
+  // Now, see if we've seen the type before and return that
+  TypeMap::iterator I = TypeNames.find(Ty);
+  if (I != TypeNames.end())
+    return I->second;
+
+  // Okay, let's build a new name for this type. Start with a prefix
+  const char* prefix = 0;
+  switch (Ty->getTypeID()) {
+    case Type::FunctionTyID:    prefix = "FuncTy_"; break;
+    case Type::StructTyID:      prefix = "StructTy_"; break;
+    case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
+    case Type::PointerTyID:     prefix = "PointerTy_"; break;
+    case Type::OpaqueTyID:      prefix = "OpaqueTy_"; break;
+    case Type::PackedTyID:      prefix = "PackedTy_"; break;
+    default:                    prefix = "OtherTy_"; break; // prevent breakage
+  }
+
+  // See if the type has a name in the symboltable and build accordingly
+  const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
+  std::string name;
+  if (tName) 
+    name = std::string(prefix) + *tName;
+  else
+    name = std::string(prefix) + utostr(uniqueNum++);
+
+  // Save the name
+  return TypeNames[Ty] = name;
+}
+
+/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+/// without considering any symbolic types that we may have equal to it.
+///
+std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) {
+  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
+    printType(FTy->getReturnType()) << " (";
+    for (FunctionType::param_iterator I = FTy->param_begin(),
+           E = FTy->param_end(); I != E; ++I) {
+      if (I != FTy->param_begin())
+        Out << ", ";
+      printType(*I);
+    }
+    if (FTy->isVarArg()) {
+      if (FTy->getNumParams()) Out << ", ";
+      Out << "...";
+    }
+    Out << ')';
+  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    Out << "{ ";
+    for (StructType::element_iterator I = STy->element_begin(),
+           E = STy->element_end(); I != E; ++I) {
+      if (I != STy->element_begin())
+        Out << ", ";
+      printType(*I);
+    }
+    Out << " }";
+  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+    printType(PTy->getElementType()) << '*';
+  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+    Out << '[' << ATy->getNumElements() << " x ";
+    printType(ATy->getElementType()) << ']';
+  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
+    Out << '<' << PTy->getNumElements() << " x ";
+    printType(PTy->getElementType()) << '>';
+  }
+  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
+    Out << "opaque";
+  } else {
+    if (!Ty->isPrimitiveType())
+      Out << "<unknown derived type>";
+    printType(Ty);
+  }
+  return Out;
+}
+
+
+void CppWriter::writeOperand(const Value *Operand, bool PrintType,
+                                  bool PrintName) {
+  if (Operand != 0) {
+    if (PrintType) { Out << ' '; printType(Operand->getType()); }
+    WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
+  } else {
+    Out << "<null operand!>";
+  }
+}
+
+
+void CppWriter::printModule(const Module *M) {
+  Out << "\n// Module Construction\n";
+  Out << "Module* mod = new Module(\"";
+  PrintEscapedString(M->getModuleIdentifier(),Out);
+  Out << "\");\n";
+  Out << "mod->setEndianness(";
+  switch (M->getEndianness()) {
+    case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
+    case Module::BigEndian:    Out << "Module::BigEndian);\n";    break;
+    case Module::AnyEndianness:Out << "Module::AnyEndianness);\n";  break;
+  }
+  Out << "mod->setPointerSize(";
+  switch (M->getPointerSize()) {
+    case Module::Pointer32:      Out << "Module::Pointer32);\n"; break;
+    case Module::Pointer64:      Out << "Module::Pointer64);\n"; break;
+    case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
+  }
+  if (!M->getTargetTriple().empty())
+    Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
+
+  if (!M->getModuleInlineAsm().empty()) {
+    Out << "mod->setModuleInlineAsm(\"";
+    PrintEscapedString(M->getModuleInlineAsm(),Out);
+    Out << "\");\n";
+  }
+  
+  // Loop over the dependent libraries and emit them.
+  Module::lib_iterator LI = M->lib_begin();
+  Module::lib_iterator LE = M->lib_end();
+  while (LI != LE) {
+    Out << "mod->addLibrary(\"" << *LI << "\");\n";
+    ++LI;
+  }
+
+  // Print out all the type definitions
+  Out << "\n// Type Definitions\n";
+  printTypes(M);
+
+  // Print out all the constants declarations
+  Out << "\n// Constants Construction\n";
+  printConstants(M);
+
+  // Process the global variables
+  Out << "\n// Global Variable Construction\n";
+  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
+       I != E; ++I) {
+    printGlobal(I);
+  }
+
+  // Output all of the functions.
+  Out << "\n// Function Construction\n";
+  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+    printFunction(I);
+}
+
+void
+CppWriter::printCallingConv(unsigned cc){
+  // Print the calling convention.
+  switch (cc) {
+    default:
+    case CallingConv::C:     Out << "CallingConv::C"; break;
+    case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
+    case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
+    case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
+    case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+  }
+}
+
+void 
+CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+  switch (LT) {
+    case GlobalValue::InternalLinkage:  
+      Out << "GlobalValue::InternalLinkage"; break;
+    case GlobalValue::LinkOnceLinkage:  
+      Out << "GlobalValue::LinkOnceLinkage "; break;
+    case GlobalValue::WeakLinkage:      
+      Out << "GlobalValue::WeakLinkage"; break;
+    case GlobalValue::AppendingLinkage: 
+      Out << "GlobalValue::AppendingLinkage"; break;
+    case GlobalValue::ExternalLinkage: 
+      Out << "GlobalValue::ExternalLinkage"; break;
+    case GlobalValue::GhostLinkage:
+      Out << "GlobalValue::GhostLinkage"; break;
+  }
+}
+void CppWriter::printGlobal(const GlobalVariable *GV) {
+  Out << "\n";
+  Out << "GlobalVariable* ";
+  printCppName(GV);
+  Out << " = new GlobalVariable(\n";
+  Out << "  /*Type=*/";
+  printCppName(GV->getType()->getElementType());
+  Out << ",\n";
+  Out << "  /*isConstant=*/" << (GV->isConstant()?"true":"false") 
+      << ",\n  /*Linkage=*/";
+  printLinkageType(GV->getLinkage());
+  Out << ",\n  /*Initializer=*/";
+  if (GV->hasInitializer()) {
+    printCppName(GV->getInitializer());
+  } else {
+    Out << "0";
+  }
+  Out << ",\n  /*Name=*/\"";
+  PrintEscapedString(GV->getName(),Out);
+  Out << "\",\n  mod);\n";
+
+  if (GV->hasSection()) {
+    printCppName(GV);
+    Out << "->setSection(\"";
+    PrintEscapedString(GV->getSection(),Out);
+    Out << "\");\n";
+  }
+  if (GV->getAlignment()) {
+    printCppName(GV);
+    Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
+  };
+}
+
+bool
+CppWriter::isOnStack(const Type* Ty) const {
+  TypeList::const_iterator TI = 
+    std::find(TypeStack.begin(),TypeStack.end(),Ty);
+  return TI != TypeStack.end();
+}
+
+// Prints a type definition. Returns true if it could not resolve all the types
+// in the definition but had to use a forward reference.
+void
+CppWriter::printTypeDef(const Type* Ty) {
+  assert(TypeStack.empty());
+  TypeStack.clear();
+  printTypeDefInternal(Ty);
+  assert(TypeStack.empty());
+  // early resolve as many unresolved types as possible. Search the unresolved
+  // types map for the type we just printed. Now that its definition is complete
+  // we can resolve any preview references to it. This prevents a cascade of
+  // unresolved types.
+  TypeMap::iterator I = UnresolvedTypes.find(Ty);
+  if (I != UnresolvedTypes.end()) {
+    Out << "cast<OpaqueType>(" << I->second 
+        << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
+    Out << I->second << " = cast<";
+    switch (Ty->getTypeID()) {
+      case Type::FunctionTyID: Out << "FunctionType"; break;
+      case Type::ArrayTyID:    Out << "ArrayType"; break;
+      case Type::StructTyID:   Out << "StructType"; break;
+      case Type::PackedTyID:   Out << "PackedType"; break;
+      case Type::PointerTyID:  Out << "PointerType"; break;
+      case Type::OpaqueTyID:   Out << "OpaqueType"; break;
+      default:                 Out << "NoSuchDerivedType"; break;
+    }
+    Out << ">(" << I->second << "_fwd.get());\n";
+    UnresolvedTypes.erase(I);
+  }
+  Out << "\n";
+}
+
+bool
+CppWriter::printTypeDefInternal(const Type* Ty) {
+  // We don't print definitions for primitive types
+  if (Ty->isPrimitiveType())
+    return false;
+
+  // Determine if the name is in the name list before we modify that list.
+  TypeMap::const_iterator TNI = TypeNames.find(Ty);
+
+  // Everything below needs the name for the type so get it now
+  std::string typeName(getCppName(Ty));
+
+  // Search the type stack for recursion. If we find it, then generate this
+  // as an OpaqueType, but make sure not to do this multiple times because
+  // the type could appear in multiple places on the stack. Once the opaque
+  // definition is issues, it must not be re-issued. Consequently we have to
+  // check the UnresolvedTypes list as well.
+  if (isOnStack(Ty)) {
+    TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
+    if (I == UnresolvedTypes.end()) {
+      Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
+      UnresolvedTypes[Ty] = typeName;
+      return true;
+    }
+  }
+
+  // Avoid printing things we have already printed. Since TNI was obtained
+  // before the name was inserted with getCppName and because we know the name
+  // is not on the stack (currently being defined), we can surmise here that if
+  // we got the name we've also already emitted its definition.
+  if (TNI != TypeNames.end())
+    return false;
+
+  // We're going to print a derived type which, by definition, contains other
+  // types. So, push this one we're printing onto the type stack to assist with
+  // recursive definitions.
+  TypeStack.push_back(Ty); // push on type stack
+  bool didRecurse = false;
+
+  // Print the type definition
+  switch (Ty->getTypeID()) {
+    case Type::FunctionTyID:  {
+      const FunctionType* FT = cast<FunctionType>(Ty);
+      Out << "std::vector<const Type*>" << typeName << "_args;\n";
+      FunctionType::param_iterator PI = FT->param_begin();
+      FunctionType::param_iterator PE = FT->param_end();
+      for (; PI != PE; ++PI) {
+        const Type* argTy = static_cast<const Type*>(*PI);
+        bool isForward = printTypeDefInternal(argTy);
+        std::string argName(getCppName(argTy));
+        Out << typeName << "_args.push_back(" << argName;
+        if (isForward)
+          Out << "_fwd";
+        Out << ");\n";
+      }
+      bool isForward = printTypeDefInternal(FT->getReturnType());
+      std::string retTypeName(getCppName(FT->getReturnType()));
+      Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
+          << "  /*Result=*/" << retTypeName;
+      if (isForward)
+        Out << "_fwd";
+      Out << ",\n  /*Params=*/" << typeName << "_args,\n  /*isVarArg=*/"
+          << (FT->isVarArg() ? "true" : "false") << ");\n";
+      break;
+    }
+    case Type::StructTyID: {
+      const StructType* ST = cast<StructType>(Ty);
+      Out << "std::vector<const Type*>" << typeName << "_fields;\n";
+      StructType::element_iterator EI = ST->element_begin();
+      StructType::element_iterator EE = ST->element_end();
+      for (; EI != EE; ++EI) {
+        const Type* fieldTy = static_cast<const Type*>(*EI);
+        bool isForward = printTypeDefInternal(fieldTy);
+        std::string fieldName(getCppName(fieldTy));
+        Out << typeName << "_fields.push_back(" << fieldName;
+        if (isForward)
+          Out << "_fwd";
+        Out << ");\n";
+      }
+      Out << "StructType* " << typeName << " = StructType::get("
+          << typeName << "_fields);\n";
+      break;
+    }
+    case Type::ArrayTyID: {
+      const ArrayType* AT = cast<ArrayType>(Ty);
+      const Type* ET = AT->getElementType();
+      bool isForward = printTypeDefInternal(ET);
+      std::string elemName(getCppName(ET));
+      Out << "ArrayType* " << typeName << " = ArrayType::get("
+          << elemName << (isForward ? "_fwd" : "") 
+          << ", " << utostr(AT->getNumElements()) << ");\n";
+      break;
+    }
+    case Type::PointerTyID: {
+      const PointerType* PT = cast<PointerType>(Ty);
+      const Type* ET = PT->getElementType();
+      bool isForward = printTypeDefInternal(ET);
+      std::string elemName(getCppName(ET));
+      Out << "PointerType* " << typeName << " = PointerType::get("
+          << elemName << (isForward ? "_fwd" : "") << ");\n";
+      break;
+    }
+    case Type::PackedTyID: {
+      const PackedType* PT = cast<PackedType>(Ty);
+      const Type* ET = PT->getElementType();
+      bool isForward = printTypeDefInternal(ET);
+      std::string elemName(getCppName(ET));
+      Out << "PackedType* " << typeName << " = PackedType::get("
+          << elemName << (isForward ? "_fwd" : "") 
+          << ", " << utostr(PT->getNumElements()) << ");\n";
+      break;
+    }
+    case Type::OpaqueTyID: {
+      const OpaqueType* OT = cast<OpaqueType>(Ty);
+      Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
+      break;
+    }
+    default:
+      assert(!"Invalid TypeID");
+  }
+
+  // Pop us off the type stack
+  TypeStack.pop_back();
+
+  // We weren't a recursive type
+  return false;
+}
+
+void
+CppWriter::printTypes(const Module* M) {
+  // Add all of the global variables to the value table...
+  for (Module::const_global_iterator I = TheModule->global_begin(), 
+       E = TheModule->global_end(); I != E; ++I) {
+    if (I->hasInitializer())
+      printTypeDef(I->getInitializer()->getType());
+    printTypeDef(I->getType());
+  }
+
+  // Add all the functions to the table
+  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+       FI != FE; ++FI) {
+    printTypeDef(FI->getReturnType());
+    printTypeDef(FI->getFunctionType());
+    // Add all the function arguments
+    for(Function::const_arg_iterator AI = FI->arg_begin(),
+        AE = FI->arg_end(); AI != AE; ++AI) {
+      printTypeDef(AI->getType());
+    }
+
+    // Add all of the basic blocks and instructions
+    for (Function::const_iterator BB = FI->begin(),
+         E = FI->end(); BB != E; ++BB) {
+      printTypeDef(BB->getType());
+      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 
+           ++I) {
+        printTypeDef(I->getType());
+      }
+    }
+  }
+}
+
+void
+CppWriter::printConstants(const Module* M) {
+  const SymbolTable& ST = M->getSymbolTable();
+
+  // Print the constants, in type plane order.
+  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
+       PI != ST.plane_end(); ++PI ) {
+    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
+    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
+
+    for (; VI != VE; ++VI) {
+      const Value* V = VI->second;
+      const Constant *CPV = dyn_cast<Constant>(V) ;
+      if (CPV && !isa<GlobalValue>(V)) {
+        printConstant(CPV);
+      }
+    }
+  }
+
+  // Add all of the global variables to the value table...
+  for (Module::const_global_iterator I = TheModule->global_begin(), 
+       E = TheModule->global_end(); I != E; ++I)
+    if (I->hasInitializer())
+      printConstant(I->getInitializer());
+}
+
+// printSymbolTable - Run through symbol table looking for constants
+// and types. Emit their declarations.
+void CppWriter::printSymbolTable(const SymbolTable &ST) {
+
+  // Print the types.
+  for (SymbolTable::type_const_iterator TI = ST.type_begin();
+       TI != ST.type_end(); ++TI ) {
+    Out << "\t" << getLLVMName(TI->first) << " = type ";
+
+    // Make sure we print out at least one level of the type structure, so
+    // that we do not get %FILE = type %FILE
+    //
+    printTypeAtLeastOneLevel(TI->second) << "\n";
+  }
+
+}
+
+
+/// printConstant - Print out a constant pool entry...
+///
+void CppWriter::printConstant(const Constant *CV) {
+  const int IndentSize = 2;
+  static std::string Indent = "\n";
+  std::string constName(getCppName(CV));
+  std::string typeName(getCppName(CV->getType()));
+  if (CV->isNullValue()) {
+    Out << "Constant* " << constName << " = Constant::getNullValue("
+        << typeName << ");\n";
+    return;
+  }
+  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+    Out << "Constant* " << constName << " = ConstantBool::get(" 
+        << (CB == ConstantBool::True ? "true" : "false")
+        << ");";
+  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+    Out << "Constant* " << constName << " = ConstantSInt::get(" 
+        << typeName << ", " << CI->getValue() << ");";
+  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+    Out << "Constant* " << constName << " = ConstantUInt::get(" 
+        << typeName << ", " << CI->getValue() << ");";
+  } else if (isa<ConstantAggregateZero>(CV)) {
+    Out << "Constant* " << constName << " = ConstantAggregateZero::get(" 
+        << typeName << ");";
+  } else if (isa<ConstantPointerNull>(CV)) {
+    Out << "Constant* " << constName << " = ConstanPointerNull::get(" 
+        << typeName << ");";
+  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+    Out << "ConstantFP::get(" << typeName << ", ";
+    // We would like to output the FP constant value in exponential notation,
+    // but we cannot do this if doing so will lose precision.  Check here to
+    // make sure that we only output it in exponential format if we can parse
+    // the value back and get the same value.
+    //
+    std::string StrVal = ftostr(CFP->getValue());
+
+    // Check to make sure that the stringized number is not some string like
+    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
+    // the string matches the "[-+]?[0-9]" regex.
+    //
+    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+        ((StrVal[0] == '-' || StrVal[0] == '+') &&
+         (StrVal[1] >= '0' && StrVal[1] <= '9')))
+      // Reparse stringized version!
+      if (atof(StrVal.c_str()) == CFP->getValue()) {
+        Out << StrVal;
+        return;
+      }
+
+    // Otherwise we could not reparse it to exactly the same value, so we must
+    // output the string in hexadecimal format!
+    assert(sizeof(double) == sizeof(uint64_t) &&
+           "assuming that double is 64 bits!");
+    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
+  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+    if (CA->isString()) {
+      Out << "Constant* " << constName << " = ConstantArray::get(\"";
+      PrintEscapedString(CA->getAsString(),Out);
+      Out << "\");";
+    } else {
+      Out << "std::vector<Constant*> " << constName << "_elems;\n";
+      unsigned N = CA->getNumOperands();
+      for (unsigned i = 0; i < N; ++i) {
+        printConstant(CA->getOperand(i));
+        Out << constName << "_elems.push_back("
+            << getCppName(CA->getOperand(i)) << ");\n";
+      }
+      Out << "Constant* " << constName << " = ConstantArray::get(" 
+          << typeName << ", " << constName << "_elems);";
+    }
+  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+    Out << "std::vector<Constant*> " << constName << "_fields;\n";
+    unsigned N = CS->getNumOperands();
+    for (unsigned i = 0; i < N; i++) {
+      printConstant(CS->getOperand(i));
+      Out << constName << "_fields.push_back("
+          << getCppName(CA->getOperand(i)) << ");\n";
+    }
+    Out << "Constant* " << constName << " = ConstantStruct::get(" 
+        << typeName << ", " << constName << "_fields);";
+  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+    Out << "std::vector<Constant*> " << constName << "_elems;\n";
+    unsigned N = CP->getNumOperands();
+    for (unsigned i = 0; i < N; ++i) {
+      printConstant(CP->getOperand(i));
+      Out << constName << "_elems.push_back("
+          << getCppName(CP->getOperand(i)) << ");\n";
+    }
+    Out << "Constant* " << constName << " = ConstantPacked::get(" 
+        << typeName << ", " << constName << "_elems);";
+  } else if (isa<UndefValue>(CV)) {
+    Out << "Constant* " << constName << " = UndefValue::get(" 
+        << typeName << ");\n";
+  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+    Out << CE->getOpcodeName() << " (";
+
+    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+      //printTypeInt(Out, (*OI)->getType(), TypeTable);
+      //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+      if (OI+1 != CE->op_end())
+        Out << ", ";
+    }
+
+    if (CE->getOpcode() == Instruction::Cast) {
+      Out << " to ";
+      // printTypeInt(Out, CE->getType(), TypeTable);
+    }
+    Out << ')';
+
+  } else {
+    Out << "<placeholder or erroneous Constant>";
+  }
+  Out << "\n";
+}
+
+/// printFunction - Print all aspects of a function.
+///
+void CppWriter::printFunction(const Function *F) {
+  std::string funcTypeName(getCppName(F->getFunctionType()));
+
+  Out << "Function* ";
+  printCppName(F);
+  Out << " = new Function(" << funcTypeName << ", " ;
+  printLinkageType(F->getLinkage());
+  Out << ", \"" << F->getName() << "\", mod);\n";
+  printCppName(F);
+  Out << "->setCallingConv(";
+  printCallingConv(F->getCallingConv());
+  Out << ");\n";
+  if (F->hasSection()) {
+    printCppName(F);
+    Out << "->setSection(" << F->getSection() << ");\n";
+  }
+  if (F->getAlignment()) {
+    printCppName(F);
+    Out << "->setAlignment(" << F->getAlignment() << ");\n";
+  }
+
+  Machine.incorporateFunction(F);
+
+  if (!F->isExternal()) {
+    Out << "{";
+    // Output all of its basic blocks... for the function
+    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
+      printBasicBlock(I);
+    Out << "}\n";
+  }
+
+  Machine.purgeFunction();
+}
+
+/// printArgument - This member is called for every argument that is passed into
+/// the function.  Simply print it out
+///
+void CppWriter::printArgument(const Argument *Arg) {
+  // Insert commas as we go... the first arg doesn't get a comma
+  if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
+
+  // Output type...
+  printType(Arg->getType());
+
+  // Output name, if available...
+  if (Arg->hasName())
+    Out << ' ' << getLLVMName(Arg->getName());
+}
+
+/// printBasicBlock - This member is called for each basic block in a method.
+///
+void CppWriter::printBasicBlock(const BasicBlock *BB) {
+  if (BB->hasName()) {              // Print out the label if it exists...
+    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
+  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
+    Out << "\n; <label>:";
+    int Slot = Machine.getSlot(BB);
+    if (Slot != -1)
+      Out << Slot;
+    else
+      Out << "<badref>";
+  }
+
+  if (BB->getParent() == 0)
+    Out << "\t\t; Error: Block without parent!";
+  else {
+    if (BB != &BB->getParent()->front()) {  // Not the entry block?
+      // Output predecessors for the block...
+      Out << "\t\t;";
+      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+      if (PI == PE) {
+        Out << " No predecessors!";
+      } else {
+        Out << " preds =";
+        writeOperand(*PI, false, true);
+        for (++PI; PI != PE; ++PI) {
+          Out << ',';
+          writeOperand(*PI, false, true);
+        }
+      }
+    }
+  }
+
+  Out << "\n";
+
+  // Output all of the instructions in the basic block...
+  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+    printInstruction(*I);
+}
+
+
+/// printInfoComment - Print a little comment after the instruction indicating
+/// which slot it occupies.
+///
+void CppWriter::printInfoComment(const Value &V) {
+  if (V.getType() != Type::VoidTy) {
+    Out << "\t\t; <";
+    printType(V.getType()) << '>';
+
+    if (!V.hasName()) {
+      int SlotNum = Machine.getSlot(&V);
+      if (SlotNum == -1)
+        Out << ":<badref>";
+      else
+        Out << ':' << SlotNum; // Print out the def slot taken.
+    }
+    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
+  }
+}
+
+/// printInstruction - This member is called for each Instruction in a function..
+///
+void CppWriter::printInstruction(const Instruction &I) {
+  Out << "\t";
+
+  // Print out name if it exists...
+  if (I.hasName())
+    Out << getLLVMName(I.getName()) << " = ";
+
+  // If this is a volatile load or store, print out the volatile marker.
+  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
+      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
+      Out << "volatile ";
+  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
+    // If this is a call, check if it's a tail call.
+    Out << "tail ";
+  }
+
+  // Print out the opcode...
+  Out << I.getOpcodeName();
+
+  // Print out the type of the operands...
+  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
+
+  // Special case conditional branches to swizzle the condition out to the front
+  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
+    writeOperand(I.getOperand(2), true);
+    Out << ',';
+    writeOperand(Operand, true);
+    Out << ',';
+    writeOperand(I.getOperand(1), true);
+
+  } else if (isa<SwitchInst>(I)) {
+    // Special case switch statement to get formatting nice and correct...
+    writeOperand(Operand        , true); Out << ',';
+    writeOperand(I.getOperand(1), true); Out << " [";
+
+    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
+      Out << "\n\t\t";
+      writeOperand(I.getOperand(op  ), true); Out << ',';
+      writeOperand(I.getOperand(op+1), true);
+    }
+    Out << "\n\t]";
+  } else if (isa<PHINode>(I)) {
+    Out << ' ';
+    printType(I.getType());
+    Out << ' ';
+
+    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
+      if (op) Out << ", ";
+      Out << '[';
+      writeOperand(I.getOperand(op  ), false); Out << ',';
+      writeOperand(I.getOperand(op+1), false); Out << " ]";
+    }
+  } else if (isa<ReturnInst>(I) && !Operand) {
+    Out << " void";
+  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+    // Print the calling convention being used.
+    switch (CI->getCallingConv()) {
+    case CallingConv::C: break;   // default
+    case CallingConv::CSRet: Out << " csretcc"; break;
+    case CallingConv::Fast:  Out << " fastcc"; break;
+    case CallingConv::Cold:  Out << " coldcc"; break;
+    default: Out << " cc" << CI->getCallingConv(); break;
+    }
+
+    const PointerType  *PTy = cast<PointerType>(Operand->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+    const Type       *RetTy = FTy->getReturnType();
+
+    // If possible, print out the short form of the call instruction.  We can
+    // only do this if the first argument is a pointer to a nonvararg function,
+    // and if the return type is not a pointer to a function.
+    //
+    if (!FTy->isVarArg() &&
+        (!isa<PointerType>(RetTy) ||
+         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+      Out << ' '; printType(RetTy);
+      writeOperand(Operand, false);
+    } else {
+      writeOperand(Operand, true);
+    }
+    Out << '(';
+    if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
+    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
+      Out << ',';
+      writeOperand(I.getOperand(op), true);
+    }
+
+    Out << " )";
+  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+    const PointerType  *PTy = cast<PointerType>(Operand->getType());
+    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+    const Type       *RetTy = FTy->getReturnType();
+
+    // Print the calling convention being used.
+    switch (II->getCallingConv()) {
+    case CallingConv::C: break;   // default
+    case CallingConv::CSRet: Out << " csretcc"; break;
+    case CallingConv::Fast:  Out << " fastcc"; break;
+    case CallingConv::Cold:  Out << " coldcc"; break;
+    default: Out << " cc" << II->getCallingConv(); break;
+    }
+
+    // If possible, print out the short form of the invoke instruction. We can
+    // only do this if the first argument is a pointer to a nonvararg function,
+    // and if the return type is not a pointer to a function.
+    //
+    if (!FTy->isVarArg() &&
+        (!isa<PointerType>(RetTy) ||
+         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+      Out << ' '; printType(RetTy);
+      writeOperand(Operand, false);
+    } else {
+      writeOperand(Operand, true);
+    }
+
+    Out << '(';
+    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
+    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
+      Out << ',';
+      writeOperand(I.getOperand(op), true);
+    }
+
+    Out << " )\n\t\t\tto";
+    writeOperand(II->getNormalDest(), true);
+    Out << " unwind";
+    writeOperand(II->getUnwindDest(), true);
+
+  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
+    Out << ' ';
+    printType(AI->getType()->getElementType());
+    if (AI->isArrayAllocation()) {
+      Out << ',';
+      writeOperand(AI->getArraySize(), true);
+    }
+    if (AI->getAlignment()) {
+      Out << ", align " << AI->getAlignment();
+    }
+  } else if (isa<CastInst>(I)) {
+    if (Operand) writeOperand(Operand, true);   // Work with broken code
+    Out << " to ";
+    printType(I.getType());
+  } else if (isa<VAArgInst>(I)) {
+    if (Operand) writeOperand(Operand, true);   // Work with broken code
+    Out << ", ";
+    printType(I.getType());
+  } else if (Operand) {   // Print the normal way...
+
+    // PrintAllTypes - Instructions who have operands of all the same type
+    // omit the type from all but the first operand.  If the instruction has
+    // different type operands (for example br), then they are all printed.
+    bool PrintAllTypes = false;
+    const Type *TheType = Operand->getType();
+
+    // Shift Left & Right print both types even for Ubyte LHS, and select prints
+    // types even if all operands are bools.
+    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
+        isa<ShuffleVectorInst>(I)) {
+      PrintAllTypes = true;
+    } else {
+      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+        Operand = I.getOperand(i);
+        if (Operand->getType() != TheType) {
+          PrintAllTypes = true;    // We have differing types!  Print them all!
+          break;
+        }
+      }
+    }
+
+    if (!PrintAllTypes) {
+      Out << ' ';
+      printType(TheType);
+    }
+
+    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+      if (i) Out << ',';
+      writeOperand(I.getOperand(i), PrintAllTypes);
+    }
+  }
+
+  printInfoComment(I);
+  Out << "\n";
+}
+
+
+//===----------------------------------------------------------------------===//
+//                       External Interface declarations
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+//===--                    SlotMachine Implementation
+//===----------------------------------------------------------------------===//
+
+#if 0
+#define SC_DEBUG(X) std::cerr << X
+#else
+#define SC_DEBUG(X)
+#endif
+
+// Module level constructor. Causes the contents of the Module (sans functions)
+// to be added to the slot table.
+SlotMachine::SlotMachine(const Module *M)
+  : TheModule(M)    ///< Saved for lazy initialization.
+  , mMap()
+  , mTypes()
+  , fMap()
+  , fTypes()
+{
+  assert(M != 0 && "Invalid Module");
+  processModule();
+}
+
+// Iterate through all the global variables, functions, and global
+// variable initializers and create slots for them.
+void SlotMachine::processModule() {
+  // Add all of the global variables to the value table...
+  for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
+       I != E; ++I)
+    createSlot(I);
+
+  // Add all the functions to the table
+  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+       FI != FE; ++FI) {
+    createSlot(FI);
+    // Add all the function arguments
+    for(Function::const_arg_iterator AI = FI->arg_begin(),
+        AE = FI->arg_end(); AI != AE; ++AI)
+      createSlot(AI);
+
+    // Add all of the basic blocks and instructions
+    for (Function::const_iterator BB = FI->begin(),
+         E = FI->end(); BB != E; ++BB) {
+      createSlot(BB);
+      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 
+           ++I) {
+        createSlot(I);
+      }
+    }
+  }
+}
+
+// Process the arguments, basic blocks, and instructions  of a function.
+void SlotMachine::processFunction() {
+
+}
+
+// Clean up after incorporating a function. This is the only way
+// to get out of the function incorporation state that affects the
+// getSlot/createSlot lock. Function incorporation state is indicated
+// by TheFunction != 0.
+void SlotMachine::purgeFunction() {
+  SC_DEBUG("begin purgeFunction!\n");
+  fMap.clear(); // Simply discard the function level map
+  fTypes.clear();
+  TheFunction = 0;
+  FunctionProcessed = false;
+  SC_DEBUG("end purgeFunction!\n");
+}
+
+/// Get the slot number for a value. This function will assert if you
+/// ask for a Value that hasn't previously been inserted with createSlot.
+/// Types are forbidden because Type does not inherit from Value (any more).
+int SlotMachine::getSlot(const Value *V) {
+  assert( V && "Can't get slot for null Value" );
+  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+    "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+  // Get the type of the value
+  const Type* VTy = V->getType();
+
+  // Find the type plane in the module map
+  TypedPlanes::const_iterator MI = mMap.find(VTy);
+
+  if ( TheFunction ) {
+    // Lookup the type in the function map too
+    TypedPlanes::const_iterator FI = fMap.find(VTy);
+    // If there is a corresponding type plane in the function map
+    if ( FI != fMap.end() ) {
+      // Lookup the Value in the function map
+      ValueMap::const_iterator FVI = FI->second.map.find(V);
+      // If the value doesn't exist in the function map
+      if ( FVI == FI->second.map.end() ) {
+        // Look up the value in the module map.
+        if (MI == mMap.end()) return -1;
+        ValueMap::const_iterator MVI = MI->second.map.find(V);
+        // If we didn't find it, it wasn't inserted
+        if (MVI == MI->second.map.end()) return -1;
+        assert( MVI != MI->second.map.end() && "Value not found");
+        // We found it only at the module level
+        return MVI->second;
+
+      // else the value exists in the function map
+      } else {
+        // Return the slot number as the module's contribution to
+        // the type plane plus the index in the function's contribution
+        // to the type plane.
+        if (MI != mMap.end())
+          return MI->second.next_slot + FVI->second;
+        else
+          return FVI->second;
+      }
+    }
+  }
+
+  // N.B. Can get here only if either !TheFunction or the function doesn't
+  // have a corresponding type plane for the Value
+
+  // Make sure the type plane exists
+  if (MI == mMap.end()) return -1;
+  // Lookup the value in the module's map
+  ValueMap::const_iterator MVI = MI->second.map.find(V);
+  // Make sure we found it.
+  if (MVI == MI->second.map.end()) return -1;
+  // Return it.
+  return MVI->second;
+}
+
+/// Get the slot number for a type. This function will assert if you
+/// ask for a Type that hasn't previously been inserted with createSlot.
+int SlotMachine::getSlot(const Type *Ty) {
+  assert( Ty && "Can't get slot for null Type" );
+
+  if ( TheFunction ) {
+    // Lookup the Type in the function map
+    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+    // If the Type doesn't exist in the function map
+    if ( FTI == fTypes.map.end() ) {
+      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+      // If we didn't find it, it wasn't inserted
+      if (MTI == mTypes.map.end())
+        return -1;
+      // We found it only at the module level
+      return MTI->second;
+
+    // else the value exists in the function map
+    } else {
+      // Return the slot number as the module's contribution to
+      // the type plane plus the index in the function's contribution
+      // to the type plane.
+      return mTypes.next_slot + FTI->second;
+    }
+  }
+
+  // N.B. Can get here only if !TheFunction
+
+  // Lookup the value in the module's map
+  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+  // Make sure we found it.
+  if (MTI == mTypes.map.end()) return -1;
+  // Return it.
+  return MTI->second;
+}
+
+// Create a new slot, or return the existing slot if it is already
+// inserted. Note that the logic here parallels getSlot but instead
+// of asserting when the Value* isn't found, it inserts the value.
+unsigned SlotMachine::createSlot(const Value *V) {
+  assert( V && "Can't insert a null Value to SlotMachine");
+  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+    "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+  const Type* VTy = V->getType();
+
+  // Just ignore void typed things
+  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
+
+  // Look up the type plane for the Value's type from the module map
+  TypedPlanes::const_iterator MI = mMap.find(VTy);
+
+  if ( TheFunction ) {
+    // Get the type plane for the Value's type from the function map
+    TypedPlanes::const_iterator FI = fMap.find(VTy);
+    // If there is a corresponding type plane in the function map
+    if ( FI != fMap.end() ) {
+      // Lookup the Value in the function map
+      ValueMap::const_iterator FVI = FI->second.map.find(V);
+      // If the value doesn't exist in the function map
+      if ( FVI == FI->second.map.end() ) {
+        // If there is no corresponding type plane in the module map
+        if ( MI == mMap.end() )
+          return insertValue(V);
+        // Look up the value in the module map
+        ValueMap::const_iterator MVI = MI->second.map.find(V);
+        // If we didn't find it, it wasn't inserted
+        if ( MVI == MI->second.map.end() )
+          return insertValue(V);
+        else
+          // We found it only at the module level
+          return MVI->second;
+
+      // else the value exists in the function map
+      } else {
+        if ( MI == mMap.end() )
+          return FVI->second;
+        else
+          // Return the slot number as the module's contribution to
+          // the type plane plus the index in the function's contribution
+          // to the type plane.
+          return MI->second.next_slot + FVI->second;
+      }
+
+    // else there is not a corresponding type plane in the function map
+    } else {
+      // If the type plane doesn't exists at the module level
+      if ( MI == mMap.end() ) {
+        return insertValue(V);
+      // else type plane exists at the module level, examine it
+      } else {
+        // Look up the value in the module's map
+        ValueMap::const_iterator MVI = MI->second.map.find(V);
+        // If we didn't find it there either
+        if ( MVI == MI->second.map.end() )
+          // Return the slot number as the module's contribution to
+          // the type plane plus the index of the function map insertion.
+          return MI->second.next_slot + insertValue(V);
+        else
+          return MVI->second;
+      }
+    }
+  }
+
+  // N.B. Can only get here if !TheFunction
+
+  // If the module map's type plane is not for the Value's type
+  if ( MI != mMap.end() ) {
+    // Lookup the value in the module's map
+    ValueMap::const_iterator MVI = MI->second.map.find(V);
+    if ( MVI != MI->second.map.end() )
+      return MVI->second;
+  }
+
+  return insertValue(V);
+}
+
+// Create a new slot, or return the existing slot if it is already
+// inserted. Note that the logic here parallels getSlot but instead
+// of asserting when the Value* isn't found, it inserts the value.
+unsigned SlotMachine::createSlot(const Type *Ty) {
+  assert( Ty && "Can't insert a null Type to SlotMachine");
+
+  if ( TheFunction ) {
+    // Lookup the Type in the function map
+    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+    // If the type doesn't exist in the function map
+    if ( FTI == fTypes.map.end() ) {
+      // Look up the type in the module map
+      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+      // If we didn't find it, it wasn't inserted
+      if ( MTI == mTypes.map.end() )
+        return insertValue(Ty);
+      else
+        // We found it only at the module level
+        return MTI->second;
+
+    // else the value exists in the function map
+    } else {
+      // Return the slot number as the module's contribution to
+      // the type plane plus the index in the function's contribution
+      // to the type plane.
+      return mTypes.next_slot + FTI->second;
+    }
+  }
+
+  // N.B. Can only get here if !TheFunction
+
+  // Lookup the type in the module's map
+  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+  if ( MTI != mTypes.map.end() )
+    return MTI->second;
+
+  return insertValue(Ty);
+}
+
+// Low level insert function. Minimal checking is done. This
+// function is just for the convenience of createSlot (above).
+unsigned SlotMachine::insertValue(const Value *V ) {
+  assert(V && "Can't insert a null Value into SlotMachine!");
+  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+    "Can't insert a non-GlobalValue Constant into SlotMachine");
+
+  // If this value does not contribute to a plane (is void)
+  // or if the value already has a name then ignore it.
+  if (V->getType() == Type::VoidTy || V->hasName() ) {
+      SC_DEBUG("ignored value " << *V << "\n");
+      return 0;   // FIXME: Wrong return value
+  }
+
+  const Type *VTy = V->getType();
+  unsigned DestSlot = 0;
+
+  if ( TheFunction ) {
+    TypedPlanes::iterator I = fMap.find( VTy );
+    if ( I == fMap.end() )
+      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
+    DestSlot = I->second.map[V] = I->second.next_slot++;
+  } else {
+    TypedPlanes::iterator I = mMap.find( VTy );
+    if ( I == mMap.end() )
+      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
+    DestSlot = I->second.map[V] = I->second.next_slot++;
+  }
+
+  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
+           DestSlot << " [");
+  // G = Global, C = Constant, T = Type, F = Function, o = other
+  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
+           (isa<Constant>(V) ? 'C' : 'o'))));
+  SC_DEBUG("]\n");
+  return DestSlot;
+}
+
+// Low level insert function. Minimal checking is done. This
+// function is just for the convenience of createSlot (above).
+unsigned SlotMachine::insertValue(const Type *Ty ) {
+  assert(Ty && "Can't insert a null Type into SlotMachine!");
+
+  unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
+  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
+  return DestSlot;
+}
+
+}  // end anonymous llvm
+
+namespace llvm {
+
+void WriteModuleToCppFile(Module* mod, std::ostream& o) {
+  o << "#include <llvm/Module.h>\n";
+  o << "#include <llvm/DerivedTypes.h>\n";
+  o << "#include <llvm/Constants.h>\n";
+  o << "#include <llvm/GlobalVariable.h>\n";
+  o << "#include <llvm/Function.h>\n";
+  o << "#include <llvm/CallingConv.h>\n";
+  o << "#include <llvm/BasicBlock.h>\n";
+  o << "#include <llvm/Instructions.h>\n";
+  o << "#include <llvm/Pass.h>\n";
+  o << "#include <llvm/PassManager.h>\n";
+  o << "#include <llvm/Analysis/Verifier.h>\n";
+  o << "#include <llvm/Assembly/PrintModulePass.h>\n";
+  o << "#include <algorithm>\n";
+  o << "#include <iostream>\n\n";
+  o << "using namespace llvm;\n\n";
+  o << "Module* makeLLVMModule();\n\n";
+  o << "int main(int argc, char**argv) {\n";
+  o << "  Module* Mod = makeLLVMModule();\n";
+  o << "  verifyModule(*Mod, PrintMessageAction);\n";
+  o << "  PassManager PM;\n";
+  o << "  PM.add(new PrintModulePass(&std::cout));\n";
+  o << "  PM.run(*Mod);\n";
+  o << "  return 0;\n";
+  o << "}\n\n";
+  o << "Module* makeLLVMModule() {\n";
+  SlotMachine SlotTable(mod);
+  CppWriter W(o, SlotTable, mod);
+  W.write(mod);
+  o << "}\n";
+}
+
+}