| //===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the writing of the LLVM IR as a set of C++ calls to the |
| // LLVM IR interface. The input module is assumed to be verified. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <iostream> |
| |
| using namespace llvm; |
| |
| namespace { |
| /// This class provides computation of slot numbers for LLVM Assembly writing. |
| /// @brief LLVM Assembly Writing Slot Computation. |
| class SlotMachine { |
| |
| /// @name Types |
| /// @{ |
| public: |
| |
| /// @brief A mapping of Values to slot numbers |
| typedef std::map<const Value*, unsigned> ValueMap; |
| typedef std::map<const Type*, unsigned> TypeMap; |
| |
| /// @brief A plane with next slot number and ValueMap |
| struct ValuePlane { |
| unsigned next_slot; ///< The next slot number to use |
| ValueMap map; ///< The map of Value* -> unsigned |
| ValuePlane() { next_slot = 0; } ///< Make sure we start at 0 |
| }; |
| |
| struct TypePlane { |
| unsigned next_slot; |
| TypeMap map; |
| TypePlane() { next_slot = 0; } |
| void clear() { map.clear(); next_slot = 0; } |
| }; |
| |
| /// @brief The map of planes by Type |
| typedef std::map<const Type*, ValuePlane> TypedPlanes; |
| |
| /// @} |
| /// @name Constructors |
| /// @{ |
| public: |
| /// @brief Construct from a module |
| SlotMachine(const Module *M ); |
| |
| /// @} |
| /// @name Accessors |
| /// @{ |
| public: |
| /// Return the slot number of the specified value in it's type |
| /// plane. Its an error to ask for something not in the SlotMachine. |
| /// Its an error to ask for a Type* |
| int getSlot(const Value *V); |
| int getSlot(const Type*Ty); |
| |
| /// Determine if a Value has a slot or not |
| bool hasSlot(const Value* V); |
| bool hasSlot(const Type* Ty); |
| |
| /// @} |
| /// @name Mutators |
| /// @{ |
| public: |
| /// If you'd like to deal with a function instead of just a module, use |
| /// this method to get its data into the SlotMachine. |
| void incorporateFunction(const Function *F) { |
| TheFunction = F; |
| FunctionProcessed = false; |
| } |
| |
| /// After calling incorporateFunction, use this method to remove the |
| /// most recently incorporated function from the SlotMachine. This |
| /// will reset the state of the machine back to just the module contents. |
| void purgeFunction(); |
| |
| /// @} |
| /// @name Implementation Details |
| /// @{ |
| private: |
| /// Values can be crammed into here at will. If they haven't |
| /// been inserted already, they get inserted, otherwise they are ignored. |
| /// Either way, the slot number for the Value* is returned. |
| unsigned createSlot(const Value *V); |
| unsigned createSlot(const Type* Ty); |
| |
| /// Insert a value into the value table. Return the slot number |
| /// that it now occupies. BadThings(TM) will happen if you insert a |
| /// Value that's already been inserted. |
| unsigned insertValue( const Value *V ); |
| unsigned insertValue( const Type* Ty); |
| |
| /// Add all of the module level global variables (and their initializers) |
| /// and function declarations, but not the contents of those functions. |
| void processModule(); |
| |
| /// Add all of the functions arguments, basic blocks, and instructions |
| void processFunction(); |
| |
| SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT |
| void operator=(const SlotMachine &); // DO NOT IMPLEMENT |
| |
| /// @} |
| /// @name Data |
| /// @{ |
| public: |
| |
| /// @brief The module for which we are holding slot numbers |
| const Module* TheModule; |
| |
| /// @brief The function for which we are holding slot numbers |
| const Function* TheFunction; |
| bool FunctionProcessed; |
| |
| /// @brief The TypePlanes map for the module level data |
| TypedPlanes mMap; |
| TypePlane mTypes; |
| |
| /// @brief The TypePlanes map for the function level data |
| TypedPlanes fMap; |
| TypePlane fTypes; |
| |
| /// @} |
| |
| }; |
| |
| typedef std::vector<const Type*> TypeList; |
| typedef std::map<const Type*,std::string> TypeMap; |
| typedef std::map<const Value*,std::string> ValueMap; |
| |
| void WriteAsOperandInternal(std::ostream &Out, const Value *V, |
| bool PrintName, TypeMap &TypeTable, |
| SlotMachine *Machine); |
| |
| void WriteAsOperandInternal(std::ostream &Out, const Type *T, |
| bool PrintName, TypeMap& TypeTable, |
| SlotMachine *Machine); |
| |
| const Module *getModuleFromVal(const Value *V) { |
| if (const Argument *MA = dyn_cast<Argument>(V)) |
| return MA->getParent() ? MA->getParent()->getParent() : 0; |
| else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) |
| return BB->getParent() ? BB->getParent()->getParent() : 0; |
| else if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| const Function *M = I->getParent() ? I->getParent()->getParent() : 0; |
| return M ? M->getParent() : 0; |
| } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) |
| return GV->getParent(); |
| return 0; |
| } |
| |
| // getLLVMName - Turn the specified string into an 'LLVM name', which is either |
| // prefixed with % (if the string only contains simple characters) or is |
| // surrounded with ""'s (if it has special chars in it). |
| std::string getLLVMName(const std::string &Name, |
| bool prefixName = true) { |
| assert(!Name.empty() && "Cannot get empty name!"); |
| |
| // First character cannot start with a number... |
| if (Name[0] >= '0' && Name[0] <= '9') |
| return "\"" + Name + "\""; |
| |
| // Scan to see if we have any characters that are not on the "white list" |
| for (unsigned i = 0, e = Name.size(); i != e; ++i) { |
| char C = Name[i]; |
| assert(C != '"' && "Illegal character in LLVM value name!"); |
| if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') && |
| C != '-' && C != '.' && C != '_') |
| return "\"" + Name + "\""; |
| } |
| |
| // If we get here, then the identifier is legal to use as a "VarID". |
| if (prefixName) |
| return "%"+Name; |
| else |
| return Name; |
| } |
| |
| |
| /// fillTypeNameTable - If the module has a symbol table, take all global types |
| /// and stuff their names into the TypeNames map. |
| /// |
| void fillTypeNameTable(const Module *M, TypeMap& TypeNames) { |
| if (!M) return; |
| const SymbolTable &ST = M->getSymbolTable(); |
| SymbolTable::type_const_iterator TI = ST.type_begin(); |
| for (; TI != ST.type_end(); ++TI ) { |
| // As a heuristic, don't insert pointer to primitive types, because |
| // they are used too often to have a single useful name. |
| // |
| const Type *Ty = cast<Type>(TI->second); |
| if (!isa<PointerType>(Ty) || |
| !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() || |
| isa<OpaqueType>(cast<PointerType>(Ty)->getElementType())) |
| TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first))); |
| } |
| } |
| |
| void calcTypeName(const Type *Ty, |
| std::vector<const Type *> &TypeStack, |
| TypeMap& TypeNames, |
| std::string & Result){ |
| if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) { |
| Result += Ty->getDescription(); // Base case |
| return; |
| } |
| |
| // Check to see if the type is named. |
| TypeMap::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) { |
| Result += I->second; |
| return; |
| } |
| |
| if (isa<OpaqueType>(Ty)) { |
| Result += "opaque"; |
| return; |
| } |
| |
| // Check to see if the Type is already on the stack... |
| unsigned Slot = 0, CurSize = TypeStack.size(); |
| while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type |
| |
| // This is another base case for the recursion. In this case, we know |
| // that we have looped back to a type that we have previously visited. |
| // Generate the appropriate upreference to handle this. |
| if (Slot < CurSize) { |
| Result += "\\" + utostr(CurSize-Slot); // Here's the upreference |
| return; |
| } |
| |
| TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. |
| |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: { |
| const FunctionType *FTy = cast<FunctionType>(Ty); |
| calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); |
| Result += " ("; |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I) { |
| if (I != FTy->param_begin()) |
| Result += ", "; |
| calcTypeName(*I, TypeStack, TypeNames, Result); |
| } |
| if (FTy->isVarArg()) { |
| if (FTy->getNumParams()) Result += ", "; |
| Result += "..."; |
| } |
| Result += ")"; |
| break; |
| } |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(Ty); |
| Result += "{ "; |
| for (StructType::element_iterator I = STy->element_begin(), |
| E = STy->element_end(); I != E; ++I) { |
| if (I != STy->element_begin()) |
| Result += ", "; |
| calcTypeName(*I, TypeStack, TypeNames, Result); |
| } |
| Result += " }"; |
| break; |
| } |
| case Type::PointerTyID: |
| calcTypeName(cast<PointerType>(Ty)->getElementType(), |
| TypeStack, TypeNames, Result); |
| Result += "*"; |
| break; |
| case Type::ArrayTyID: { |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| Result += "[" + utostr(ATy->getNumElements()) + " x "; |
| calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); |
| Result += "]"; |
| break; |
| } |
| case Type::PackedTyID: { |
| const PackedType *PTy = cast<PackedType>(Ty); |
| Result += "<" + utostr(PTy->getNumElements()) + " x "; |
| calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); |
| Result += ">"; |
| break; |
| } |
| case Type::OpaqueTyID: |
| Result += "opaque"; |
| break; |
| default: |
| Result += "<unrecognized-type>"; |
| } |
| |
| TypeStack.pop_back(); // Remove self from stack... |
| return; |
| } |
| |
| |
| /// printTypeInt - The internal guts of printing out a type that has a |
| /// potentially named portion. |
| /// |
| std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){ |
| // Primitive types always print out their description, regardless of whether |
| // they have been named or not. |
| // |
| if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) |
| return Out << Ty->getDescription(); |
| |
| // Check to see if the type is named. |
| TypeMap::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) return Out << I->second; |
| |
| // Otherwise we have a type that has not been named but is a derived type. |
| // Carefully recurse the type hierarchy to print out any contained symbolic |
| // names. |
| // |
| std::vector<const Type *> TypeStack; |
| std::string TypeName; |
| calcTypeName(Ty, TypeStack, TypeNames, TypeName); |
| TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use |
| return (Out << TypeName); |
| } |
| |
| |
| /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic |
| /// type, iff there is an entry in the modules symbol table for the specified |
| /// type or one of it's component types. This is slower than a simple x << Type |
| /// |
| std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty, |
| const Module *M) { |
| Out << ' '; |
| |
| // If they want us to print out a type, attempt to make it symbolic if there |
| // is a symbol table in the module... |
| if (M) { |
| TypeMap TypeNames; |
| fillTypeNameTable(M, TypeNames); |
| |
| return printTypeInt(Out, Ty, TypeNames); |
| } else { |
| return Out << Ty->getDescription(); |
| } |
| } |
| |
| // PrintEscapedString - Print each character of the specified string, escaping |
| // it if it is not printable or if it is an escape char. |
| void PrintEscapedString(const std::string &Str, std::ostream &Out) { |
| for (unsigned i = 0, e = Str.size(); i != e; ++i) { |
| unsigned char C = Str[i]; |
| if (isprint(C) && C != '"' && C != '\\') { |
| Out << C; |
| } else { |
| Out << '\\' |
| << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) |
| << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| } |
| } |
| } |
| |
| /// @brief Internal constant writer. |
| void WriteConstantInternal(std::ostream &Out, const Constant *CV, |
| bool PrintName, |
| TypeMap& TypeTable, |
| SlotMachine *Machine) { |
| const int IndentSize = 4; |
| static std::string Indent = "\n"; |
| if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| Out << (CB == ConstantBool::True ? "true" : "false"); |
| } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) { |
| Out << CI->getValue(); |
| } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) { |
| Out << CI->getValue(); |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| // We would like to output the FP constant value in exponential notation, |
| // but we cannot do this if doing so will lose precision. Check here to |
| // make sure that we only output it in exponential format if we can parse |
| // the value back and get the same value. |
| // |
| std::string StrVal = ftostr(CFP->getValue()); |
| |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN, that atof will accept, but the lexer will not. Check that |
| // the string matches the "[-+]?[0-9]" regex. |
| // |
| if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| // Reparse stringized version! |
| if (atof(StrVal.c_str()) == CFP->getValue()) { |
| Out << StrVal; |
| return; |
| } |
| |
| // Otherwise we could not reparse it to exactly the same value, so we must |
| // output the string in hexadecimal format! |
| assert(sizeof(double) == sizeof(uint64_t) && |
| "assuming that double is 64 bits!"); |
| Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())); |
| |
| } else if (isa<ConstantAggregateZero>(CV)) { |
| Out << "zeroinitializer"; |
| } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| // As a special case, print the array as a string if it is an array of |
| // ubytes or an array of sbytes with positive values. |
| // |
| const Type *ETy = CA->getType()->getElementType(); |
| if (CA->isString()) { |
| Out << "c\""; |
| PrintEscapedString(CA->getAsString(), Out); |
| Out << "\""; |
| |
| } else { // Cannot output in string format... |
| Out << '['; |
| if (CA->getNumOperands()) { |
| Out << ' '; |
| printTypeInt(Out, ETy, TypeTable); |
| WriteAsOperandInternal(Out, CA->getOperand(0), |
| PrintName, TypeTable, Machine); |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printTypeInt(Out, ETy, TypeTable); |
| WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, |
| TypeTable, Machine); |
| } |
| } |
| Out << " ]"; |
| } |
| } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| Out << '{'; |
| unsigned N = CS->getNumOperands(); |
| if (N) { |
| if (N > 2) { |
| Indent += std::string(IndentSize, ' '); |
| Out << Indent; |
| } else { |
| Out << ' '; |
| } |
| printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); |
| |
| WriteAsOperandInternal(Out, CS->getOperand(0), |
| PrintName, TypeTable, Machine); |
| |
| for (unsigned i = 1; i < N; i++) { |
| Out << ", "; |
| if (N > 2) Out << Indent; |
| printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); |
| |
| WriteAsOperandInternal(Out, CS->getOperand(i), |
| PrintName, TypeTable, Machine); |
| } |
| if (N > 2) Indent.resize(Indent.size() - IndentSize); |
| } |
| |
| Out << " }"; |
| } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { |
| const Type *ETy = CP->getType()->getElementType(); |
| assert(CP->getNumOperands() > 0 && |
| "Number of operands for a PackedConst must be > 0"); |
| Out << '<'; |
| Out << ' '; |
| printTypeInt(Out, ETy, TypeTable); |
| WriteAsOperandInternal(Out, CP->getOperand(0), |
| PrintName, TypeTable, Machine); |
| for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printTypeInt(Out, ETy, TypeTable); |
| WriteAsOperandInternal(Out, CP->getOperand(i), PrintName, |
| TypeTable, Machine); |
| } |
| Out << " >"; |
| } else if (isa<ConstantPointerNull>(CV)) { |
| Out << "null"; |
| |
| } else if (isa<UndefValue>(CV)) { |
| Out << "undef"; |
| |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| Out << CE->getOpcodeName() << " ("; |
| |
| for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| printTypeInt(Out, (*OI)->getType(), TypeTable); |
| WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); |
| if (OI+1 != CE->op_end()) |
| Out << ", "; |
| } |
| |
| if (CE->getOpcode() == Instruction::Cast) { |
| Out << " to "; |
| printTypeInt(Out, CE->getType(), TypeTable); |
| } |
| Out << ')'; |
| |
| } else { |
| Out << "<placeholder or erroneous Constant>"; |
| } |
| } |
| |
| |
| /// WriteAsOperand - Write the name of the specified value out to the specified |
| /// ostream. This can be useful when you just want to print int %reg126, not |
| /// the whole instruction that generated it. |
| /// |
| void WriteAsOperandInternal(std::ostream &Out, const Value *V, |
| bool PrintName, TypeMap& TypeTable, |
| SlotMachine *Machine) { |
| Out << ' '; |
| if ((PrintName || isa<GlobalValue>(V)) && V->hasName()) |
| Out << getLLVMName(V->getName()); |
| else { |
| const Constant *CV = dyn_cast<Constant>(V); |
| if (CV && !isa<GlobalValue>(CV)) { |
| WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine); |
| } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { |
| Out << "asm "; |
| if (IA->hasSideEffects()) |
| Out << "sideeffect "; |
| Out << '"'; |
| PrintEscapedString(IA->getAsmString(), Out); |
| Out << "\", \""; |
| PrintEscapedString(IA->getConstraintString(), Out); |
| Out << '"'; |
| } else { |
| int Slot = Machine->getSlot(V); |
| if (Slot != -1) |
| Out << '%' << Slot; |
| else |
| Out << "<badref>"; |
| } |
| } |
| } |
| |
| /// WriteAsOperand - Write the name of the specified value out to the specified |
| /// ostream. This can be useful when you just want to print int %reg126, not |
| /// the whole instruction that generated it. |
| /// |
| std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, |
| bool PrintType, bool PrintName, |
| const Module *Context) { |
| TypeMap TypeNames; |
| if (Context == 0) Context = getModuleFromVal(V); |
| |
| if (Context) |
| fillTypeNameTable(Context, TypeNames); |
| |
| if (PrintType) |
| printTypeInt(Out, V->getType(), TypeNames); |
| |
| WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); |
| return Out; |
| } |
| |
| /// WriteAsOperandInternal - Write the name of the specified value out to |
| /// the specified ostream. This can be useful when you just want to print |
| /// int %reg126, not the whole instruction that generated it. |
| /// |
| void WriteAsOperandInternal(std::ostream &Out, const Type *T, |
| bool PrintName, TypeMap& TypeTable, |
| SlotMachine *Machine) { |
| Out << ' '; |
| int Slot = Machine->getSlot(T); |
| if (Slot != -1) |
| Out << '%' << Slot; |
| else |
| Out << "<badref>"; |
| } |
| |
| /// WriteAsOperand - Write the name of the specified value out to the specified |
| /// ostream. This can be useful when you just want to print int %reg126, not |
| /// the whole instruction that generated it. |
| /// |
| std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty, |
| bool PrintType, bool PrintName, |
| const Module *Context) { |
| TypeMap TypeNames; |
| assert(Context != 0 && "Can't write types as operand without module context"); |
| |
| fillTypeNameTable(Context, TypeNames); |
| |
| // if (PrintType) |
| // printTypeInt(Out, V->getType(), TypeNames); |
| |
| printTypeInt(Out, Ty, TypeNames); |
| |
| WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0); |
| return Out; |
| } |
| |
| class CppWriter { |
| std::ostream &Out; |
| SlotMachine &Machine; |
| const Module *TheModule; |
| unsigned long uniqueNum; |
| TypeMap TypeNames; |
| ValueMap ValueNames; |
| TypeMap UnresolvedTypes; |
| TypeList TypeStack; |
| |
| public: |
| inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M) |
| : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(), |
| ValueNames(), UnresolvedTypes(), TypeStack() { } |
| |
| inline void write(const Module *M) { printModule(M); } |
| inline void write(const GlobalVariable *G) { printGlobal(G); } |
| inline void write(const Function *F) { printFunction(F); } |
| inline void write(const BasicBlock *BB) { printBasicBlock(BB); } |
| inline void write(const Instruction *I) { printInstruction(*I); } |
| inline void write(const Constant *CPV) { printConstant(CPV); } |
| inline void write(const Type *Ty) { printType(Ty); } |
| |
| void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); |
| |
| const Module* getModule() { return TheModule; } |
| |
| private: |
| void printModule(const Module *M); |
| void printTypes(const Module* M); |
| void printConstants(const Module* M); |
| void printConstant(const Constant *CPV); |
| void printGlobal(const GlobalVariable *GV); |
| void printFunction(const Function *F); |
| void printArgument(const Argument *FA); |
| void printBasicBlock(const BasicBlock *BB); |
| void printInstruction(const Instruction &I); |
| void printSymbolTable(const SymbolTable &ST); |
| void printLinkageType(GlobalValue::LinkageTypes LT); |
| void printCallingConv(unsigned cc); |
| |
| |
| // printType - Go to extreme measures to attempt to print out a short, |
| // symbolic version of a type name. |
| // |
| std::ostream &printType(const Type *Ty) { |
| return printTypeInt(Out, Ty, TypeNames); |
| } |
| |
| // printTypeAtLeastOneLevel - Print out one level of the possibly complex type |
| // without considering any symbolic types that we may have equal to it. |
| // |
| std::ostream &printTypeAtLeastOneLevel(const Type *Ty); |
| |
| // printInfoComment - Print a little comment after the instruction indicating |
| // which slot it occupies. |
| void printInfoComment(const Value &V); |
| |
| std::string getCppName(const Type* val); |
| std::string getCppName(const Value* val); |
| inline void printCppName(const Value* val); |
| inline void printCppName(const Type* val); |
| bool isOnStack(const Type*) const; |
| inline void printTypeDef(const Type* Ty); |
| bool printTypeDefInternal(const Type* Ty); |
| }; |
| |
| std::string |
| CppWriter::getCppName(const Value* val) { |
| std::string name; |
| ValueMap::iterator I = ValueNames.find(val); |
| if (I != ValueNames.end()) { |
| name = I->second; |
| } else { |
| const char* prefix; |
| switch (val->getType()->getTypeID()) { |
| case Type::VoidTyID: prefix = "void_"; break; |
| case Type::BoolTyID: prefix = "bool_"; break; |
| case Type::UByteTyID: prefix = "ubyte_"; break; |
| case Type::SByteTyID: prefix = "sbyte_"; break; |
| case Type::UShortTyID: prefix = "ushort_"; break; |
| case Type::ShortTyID: prefix = "short_"; break; |
| case Type::UIntTyID: prefix = "uint_"; break; |
| case Type::IntTyID: prefix = "int_"; break; |
| case Type::ULongTyID: prefix = "ulong_"; break; |
| case Type::LongTyID: prefix = "long_"; break; |
| case Type::FloatTyID: prefix = "float_"; break; |
| case Type::DoubleTyID: prefix = "double_"; break; |
| case Type::LabelTyID: prefix = "label_"; break; |
| case Type::FunctionTyID: prefix = "func_"; break; |
| case Type::StructTyID: prefix = "struct_"; break; |
| case Type::ArrayTyID: prefix = "array_"; break; |
| case Type::PointerTyID: prefix = "ptr_"; break; |
| case Type::PackedTyID: prefix = "packed_"; break; |
| default: prefix = "other_"; break; |
| } |
| name = ValueNames[val] = std::string(prefix) + |
| (val->hasName() ? val->getName() : utostr(uniqueNum++)); |
| } |
| return name; |
| } |
| |
| void |
| CppWriter::printCppName(const Value* val) { |
| PrintEscapedString(getCppName(val),Out); |
| } |
| |
| void |
| CppWriter::printCppName(const Type* Ty) |
| { |
| PrintEscapedString(getCppName(Ty),Out); |
| } |
| |
| // Gets the C++ name for a type. Returns true if we already saw the type, |
| // false otherwise. |
| // |
| inline const std::string* |
| findTypeName(const SymbolTable& ST, const Type* Ty) |
| { |
| SymbolTable::type_const_iterator TI = ST.type_begin(); |
| SymbolTable::type_const_iterator TE = ST.type_end(); |
| for (;TI != TE; ++TI) |
| if (TI->second == Ty) |
| return &(TI->first); |
| return 0; |
| } |
| |
| std::string |
| CppWriter::getCppName(const Type* Ty) |
| { |
| // First, handle the primitive types .. easy |
| if (Ty->isPrimitiveType()) { |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return "Type::VoidTy"; |
| case Type::BoolTyID: return "Type::BoolTy"; |
| case Type::UByteTyID: return "Type::UByteTy"; |
| case Type::SByteTyID: return "Type::SByteTy"; |
| case Type::UShortTyID: return "Type::UShortTy"; |
| case Type::ShortTyID: return "Type::ShortTy"; |
| case Type::UIntTyID: return "Type::UIntTy"; |
| case Type::IntTyID: return "Type::IntTy"; |
| case Type::ULongTyID: return "Type::ULongTy"; |
| case Type::LongTyID: return "Type::LongTy"; |
| case Type::FloatTyID: return "Type::FloatTy"; |
| case Type::DoubleTyID: return "Type::DoubleTy"; |
| case Type::LabelTyID: return "Type::LabelTy"; |
| default: |
| assert(!"Can't get here"); |
| break; |
| } |
| return "Type::VoidTy"; // shouldn't be returned, but make it sensible |
| } |
| |
| // Now, see if we've seen the type before and return that |
| TypeMap::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) |
| return I->second; |
| |
| // Okay, let's build a new name for this type. Start with a prefix |
| const char* prefix = 0; |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: prefix = "FuncTy_"; break; |
| case Type::StructTyID: prefix = "StructTy_"; break; |
| case Type::ArrayTyID: prefix = "ArrayTy_"; break; |
| case Type::PointerTyID: prefix = "PointerTy_"; break; |
| case Type::OpaqueTyID: prefix = "OpaqueTy_"; break; |
| case Type::PackedTyID: prefix = "PackedTy_"; break; |
| default: prefix = "OtherTy_"; break; // prevent breakage |
| } |
| |
| // See if the type has a name in the symboltable and build accordingly |
| const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty); |
| std::string name; |
| if (tName) |
| name = std::string(prefix) + *tName; |
| else |
| name = std::string(prefix) + utostr(uniqueNum++); |
| |
| // Save the name |
| return TypeNames[Ty] = name; |
| } |
| |
| /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type |
| /// without considering any symbolic types that we may have equal to it. |
| /// |
| std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) { |
| if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) { |
| printType(FTy->getReturnType()) << " ("; |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I) { |
| if (I != FTy->param_begin()) |
| Out << ", "; |
| printType(*I); |
| } |
| if (FTy->isVarArg()) { |
| if (FTy->getNumParams()) Out << ", "; |
| Out << "..."; |
| } |
| Out << ')'; |
| } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| Out << "{ "; |
| for (StructType::element_iterator I = STy->element_begin(), |
| E = STy->element_end(); I != E; ++I) { |
| if (I != STy->element_begin()) |
| Out << ", "; |
| printType(*I); |
| } |
| Out << " }"; |
| } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| printType(PTy->getElementType()) << '*'; |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| Out << '[' << ATy->getNumElements() << " x "; |
| printType(ATy->getElementType()) << ']'; |
| } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) { |
| Out << '<' << PTy->getNumElements() << " x "; |
| printType(PTy->getElementType()) << '>'; |
| } |
| else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) { |
| Out << "opaque"; |
| } else { |
| if (!Ty->isPrimitiveType()) |
| Out << "<unknown derived type>"; |
| printType(Ty); |
| } |
| return Out; |
| } |
| |
| |
| void CppWriter::writeOperand(const Value *Operand, bool PrintType, |
| bool PrintName) { |
| if (Operand != 0) { |
| if (PrintType) { Out << ' '; printType(Operand->getType()); } |
| WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine); |
| } else { |
| Out << "<null operand!>"; |
| } |
| } |
| |
| |
| void CppWriter::printModule(const Module *M) { |
| Out << "\n// Module Construction\n"; |
| Out << "Module* mod = new Module(\""; |
| PrintEscapedString(M->getModuleIdentifier(),Out); |
| Out << "\");\n"; |
| Out << "mod->setEndianness("; |
| switch (M->getEndianness()) { |
| case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break; |
| case Module::BigEndian: Out << "Module::BigEndian);\n"; break; |
| case Module::AnyEndianness:Out << "Module::AnyEndianness);\n"; break; |
| } |
| Out << "mod->setPointerSize("; |
| switch (M->getPointerSize()) { |
| case Module::Pointer32: Out << "Module::Pointer32);\n"; break; |
| case Module::Pointer64: Out << "Module::Pointer64);\n"; break; |
| case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break; |
| } |
| if (!M->getTargetTriple().empty()) |
| Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n"; |
| |
| if (!M->getModuleInlineAsm().empty()) { |
| Out << "mod->setModuleInlineAsm(\""; |
| PrintEscapedString(M->getModuleInlineAsm(),Out); |
| Out << "\");\n"; |
| } |
| |
| // Loop over the dependent libraries and emit them. |
| Module::lib_iterator LI = M->lib_begin(); |
| Module::lib_iterator LE = M->lib_end(); |
| while (LI != LE) { |
| Out << "mod->addLibrary(\"" << *LI << "\");\n"; |
| ++LI; |
| } |
| |
| // Print out all the type definitions |
| Out << "\n// Type Definitions\n"; |
| printTypes(M); |
| |
| // Print out all the constants declarations |
| Out << "\n// Constants Construction\n"; |
| printConstants(M); |
| |
| // Process the global variables |
| Out << "\n// Global Variable Construction\n"; |
| for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); |
| I != E; ++I) { |
| printGlobal(I); |
| } |
| |
| // Output all of the functions. |
| Out << "\n// Function Construction\n"; |
| for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) |
| printFunction(I); |
| } |
| |
| void |
| CppWriter::printCallingConv(unsigned cc){ |
| // Print the calling convention. |
| switch (cc) { |
| default: |
| case CallingConv::C: Out << "CallingConv::C"; break; |
| case CallingConv::CSRet: Out << "CallingConv::CSRet"; break; |
| case CallingConv::Fast: Out << "CallingConv::Fast"; break; |
| case CallingConv::Cold: Out << "CallingConv::Cold"; break; |
| case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break; |
| } |
| } |
| |
| void |
| CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) { |
| switch (LT) { |
| case GlobalValue::InternalLinkage: |
| Out << "GlobalValue::InternalLinkage"; break; |
| case GlobalValue::LinkOnceLinkage: |
| Out << "GlobalValue::LinkOnceLinkage "; break; |
| case GlobalValue::WeakLinkage: |
| Out << "GlobalValue::WeakLinkage"; break; |
| case GlobalValue::AppendingLinkage: |
| Out << "GlobalValue::AppendingLinkage"; break; |
| case GlobalValue::ExternalLinkage: |
| Out << "GlobalValue::ExternalLinkage"; break; |
| case GlobalValue::GhostLinkage: |
| Out << "GlobalValue::GhostLinkage"; break; |
| } |
| } |
| void CppWriter::printGlobal(const GlobalVariable *GV) { |
| Out << "\n"; |
| Out << "GlobalVariable* "; |
| printCppName(GV); |
| Out << " = new GlobalVariable(\n"; |
| Out << " /*Type=*/"; |
| printCppName(GV->getType()->getElementType()); |
| Out << ",\n"; |
| Out << " /*isConstant=*/" << (GV->isConstant()?"true":"false") |
| << ",\n /*Linkage=*/"; |
| printLinkageType(GV->getLinkage()); |
| Out << ",\n /*Initializer=*/"; |
| if (GV->hasInitializer()) { |
| printCppName(GV->getInitializer()); |
| } else { |
| Out << "0"; |
| } |
| Out << ",\n /*Name=*/\""; |
| PrintEscapedString(GV->getName(),Out); |
| Out << "\",\n mod);\n"; |
| |
| if (GV->hasSection()) { |
| printCppName(GV); |
| Out << "->setSection(\""; |
| PrintEscapedString(GV->getSection(),Out); |
| Out << "\");\n"; |
| } |
| if (GV->getAlignment()) { |
| printCppName(GV); |
| Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n"; |
| }; |
| } |
| |
| bool |
| CppWriter::isOnStack(const Type* Ty) const { |
| TypeList::const_iterator TI = |
| std::find(TypeStack.begin(),TypeStack.end(),Ty); |
| return TI != TypeStack.end(); |
| } |
| |
| // Prints a type definition. Returns true if it could not resolve all the types |
| // in the definition but had to use a forward reference. |
| void |
| CppWriter::printTypeDef(const Type* Ty) { |
| assert(TypeStack.empty()); |
| TypeStack.clear(); |
| printTypeDefInternal(Ty); |
| assert(TypeStack.empty()); |
| // early resolve as many unresolved types as possible. Search the unresolved |
| // types map for the type we just printed. Now that its definition is complete |
| // we can resolve any preview references to it. This prevents a cascade of |
| // unresolved types. |
| TypeMap::iterator I = UnresolvedTypes.find(Ty); |
| if (I != UnresolvedTypes.end()) { |
| Out << "cast<OpaqueType>(" << I->second |
| << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n"; |
| Out << I->second << " = cast<"; |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: Out << "FunctionType"; break; |
| case Type::ArrayTyID: Out << "ArrayType"; break; |
| case Type::StructTyID: Out << "StructType"; break; |
| case Type::PackedTyID: Out << "PackedType"; break; |
| case Type::PointerTyID: Out << "PointerType"; break; |
| case Type::OpaqueTyID: Out << "OpaqueType"; break; |
| default: Out << "NoSuchDerivedType"; break; |
| } |
| Out << ">(" << I->second << "_fwd.get());\n"; |
| UnresolvedTypes.erase(I); |
| } |
| Out << "\n"; |
| } |
| |
| bool |
| CppWriter::printTypeDefInternal(const Type* Ty) { |
| // We don't print definitions for primitive types |
| if (Ty->isPrimitiveType()) |
| return false; |
| |
| // Determine if the name is in the name list before we modify that list. |
| TypeMap::const_iterator TNI = TypeNames.find(Ty); |
| |
| // Everything below needs the name for the type so get it now |
| std::string typeName(getCppName(Ty)); |
| |
| // Search the type stack for recursion. If we find it, then generate this |
| // as an OpaqueType, but make sure not to do this multiple times because |
| // the type could appear in multiple places on the stack. Once the opaque |
| // definition is issues, it must not be re-issued. Consequently we have to |
| // check the UnresolvedTypes list as well. |
| if (isOnStack(Ty)) { |
| TypeMap::const_iterator I = UnresolvedTypes.find(Ty); |
| if (I == UnresolvedTypes.end()) { |
| Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n"; |
| UnresolvedTypes[Ty] = typeName; |
| return true; |
| } |
| } |
| |
| // Avoid printing things we have already printed. Since TNI was obtained |
| // before the name was inserted with getCppName and because we know the name |
| // is not on the stack (currently being defined), we can surmise here that if |
| // we got the name we've also already emitted its definition. |
| if (TNI != TypeNames.end()) |
| return false; |
| |
| // We're going to print a derived type which, by definition, contains other |
| // types. So, push this one we're printing onto the type stack to assist with |
| // recursive definitions. |
| TypeStack.push_back(Ty); // push on type stack |
| bool didRecurse = false; |
| |
| // Print the type definition |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: { |
| const FunctionType* FT = cast<FunctionType>(Ty); |
| Out << "std::vector<const Type*>" << typeName << "_args;\n"; |
| FunctionType::param_iterator PI = FT->param_begin(); |
| FunctionType::param_iterator PE = FT->param_end(); |
| for (; PI != PE; ++PI) { |
| const Type* argTy = static_cast<const Type*>(*PI); |
| bool isForward = printTypeDefInternal(argTy); |
| std::string argName(getCppName(argTy)); |
| Out << typeName << "_args.push_back(" << argName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ");\n"; |
| } |
| bool isForward = printTypeDefInternal(FT->getReturnType()); |
| std::string retTypeName(getCppName(FT->getReturnType())); |
| Out << "FunctionType* " << typeName << " = FunctionType::get(\n" |
| << " /*Result=*/" << retTypeName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ",\n /*Params=*/" << typeName << "_args,\n /*isVarArg=*/" |
| << (FT->isVarArg() ? "true" : "false") << ");\n"; |
| break; |
| } |
| case Type::StructTyID: { |
| const StructType* ST = cast<StructType>(Ty); |
| Out << "std::vector<const Type*>" << typeName << "_fields;\n"; |
| StructType::element_iterator EI = ST->element_begin(); |
| StructType::element_iterator EE = ST->element_end(); |
| for (; EI != EE; ++EI) { |
| const Type* fieldTy = static_cast<const Type*>(*EI); |
| bool isForward = printTypeDefInternal(fieldTy); |
| std::string fieldName(getCppName(fieldTy)); |
| Out << typeName << "_fields.push_back(" << fieldName; |
| if (isForward) |
| Out << "_fwd"; |
| Out << ");\n"; |
| } |
| Out << "StructType* " << typeName << " = StructType::get(" |
| << typeName << "_fields);\n"; |
| break; |
| } |
| case Type::ArrayTyID: { |
| const ArrayType* AT = cast<ArrayType>(Ty); |
| const Type* ET = AT->getElementType(); |
| bool isForward = printTypeDefInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "ArrayType* " << typeName << " = ArrayType::get(" |
| << elemName << (isForward ? "_fwd" : "") |
| << ", " << utostr(AT->getNumElements()) << ");\n"; |
| break; |
| } |
| case Type::PointerTyID: { |
| const PointerType* PT = cast<PointerType>(Ty); |
| const Type* ET = PT->getElementType(); |
| bool isForward = printTypeDefInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "PointerType* " << typeName << " = PointerType::get(" |
| << elemName << (isForward ? "_fwd" : "") << ");\n"; |
| break; |
| } |
| case Type::PackedTyID: { |
| const PackedType* PT = cast<PackedType>(Ty); |
| const Type* ET = PT->getElementType(); |
| bool isForward = printTypeDefInternal(ET); |
| std::string elemName(getCppName(ET)); |
| Out << "PackedType* " << typeName << " = PackedType::get(" |
| << elemName << (isForward ? "_fwd" : "") |
| << ", " << utostr(PT->getNumElements()) << ");\n"; |
| break; |
| } |
| case Type::OpaqueTyID: { |
| const OpaqueType* OT = cast<OpaqueType>(Ty); |
| Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n"; |
| break; |
| } |
| default: |
| assert(!"Invalid TypeID"); |
| } |
| |
| // Pop us off the type stack |
| TypeStack.pop_back(); |
| |
| // We weren't a recursive type |
| return false; |
| } |
| |
| void |
| CppWriter::printTypes(const Module* M) { |
| // Add all of the global variables to the value table... |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) { |
| if (I->hasInitializer()) |
| printTypeDef(I->getInitializer()->getType()); |
| printTypeDef(I->getType()); |
| } |
| |
| // Add all the functions to the table |
| for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| printTypeDef(FI->getReturnType()); |
| printTypeDef(FI->getFunctionType()); |
| // Add all the function arguments |
| for(Function::const_arg_iterator AI = FI->arg_begin(), |
| AE = FI->arg_end(); AI != AE; ++AI) { |
| printTypeDef(AI->getType()); |
| } |
| |
| // Add all of the basic blocks and instructions |
| for (Function::const_iterator BB = FI->begin(), |
| E = FI->end(); BB != E; ++BB) { |
| printTypeDef(BB->getType()); |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| ++I) { |
| printTypeDef(I->getType()); |
| } |
| } |
| } |
| } |
| |
| void |
| CppWriter::printConstants(const Module* M) { |
| const SymbolTable& ST = M->getSymbolTable(); |
| |
| // Print the constants, in type plane order. |
| for (SymbolTable::plane_const_iterator PI = ST.plane_begin(); |
| PI != ST.plane_end(); ++PI ) { |
| SymbolTable::value_const_iterator VI = ST.value_begin(PI->first); |
| SymbolTable::value_const_iterator VE = ST.value_end(PI->first); |
| |
| for (; VI != VE; ++VI) { |
| const Value* V = VI->second; |
| const Constant *CPV = dyn_cast<Constant>(V) ; |
| if (CPV && !isa<GlobalValue>(V)) { |
| printConstant(CPV); |
| } |
| } |
| } |
| |
| // Add all of the global variables to the value table... |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) |
| if (I->hasInitializer()) |
| printConstant(I->getInitializer()); |
| } |
| |
| // printSymbolTable - Run through symbol table looking for constants |
| // and types. Emit their declarations. |
| void CppWriter::printSymbolTable(const SymbolTable &ST) { |
| |
| // Print the types. |
| for (SymbolTable::type_const_iterator TI = ST.type_begin(); |
| TI != ST.type_end(); ++TI ) { |
| Out << "\t" << getLLVMName(TI->first) << " = type "; |
| |
| // Make sure we print out at least one level of the type structure, so |
| // that we do not get %FILE = type %FILE |
| // |
| printTypeAtLeastOneLevel(TI->second) << "\n"; |
| } |
| |
| } |
| |
| |
| /// printConstant - Print out a constant pool entry... |
| /// |
| void CppWriter::printConstant(const Constant *CV) { |
| const int IndentSize = 2; |
| static std::string Indent = "\n"; |
| std::string constName(getCppName(CV)); |
| std::string typeName(getCppName(CV->getType())); |
| if (CV->isNullValue()) { |
| Out << "Constant* " << constName << " = Constant::getNullValue(" |
| << typeName << ");\n"; |
| return; |
| } |
| if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) { |
| Out << "Constant* " << constName << " = ConstantBool::get(" |
| << (CB == ConstantBool::True ? "true" : "false") |
| << ");"; |
| } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) { |
| Out << "Constant* " << constName << " = ConstantSInt::get(" |
| << typeName << ", " << CI->getValue() << ");"; |
| } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) { |
| Out << "Constant* " << constName << " = ConstantUInt::get(" |
| << typeName << ", " << CI->getValue() << ");"; |
| } else if (isa<ConstantAggregateZero>(CV)) { |
| Out << "Constant* " << constName << " = ConstantAggregateZero::get(" |
| << typeName << ");"; |
| } else if (isa<ConstantPointerNull>(CV)) { |
| Out << "Constant* " << constName << " = ConstanPointerNull::get(" |
| << typeName << ");"; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| Out << "ConstantFP::get(" << typeName << ", "; |
| // We would like to output the FP constant value in exponential notation, |
| // but we cannot do this if doing so will lose precision. Check here to |
| // make sure that we only output it in exponential format if we can parse |
| // the value back and get the same value. |
| // |
| std::string StrVal = ftostr(CFP->getValue()); |
| |
| // Check to make sure that the stringized number is not some string like |
| // "Inf" or NaN, that atof will accept, but the lexer will not. Check that |
| // the string matches the "[-+]?[0-9]" regex. |
| // |
| if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| // Reparse stringized version! |
| if (atof(StrVal.c_str()) == CFP->getValue()) { |
| Out << StrVal; |
| return; |
| } |
| |
| // Otherwise we could not reparse it to exactly the same value, so we must |
| // output the string in hexadecimal format! |
| assert(sizeof(double) == sizeof(uint64_t) && |
| "assuming that double is 64 bits!"); |
| Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");"; |
| } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { |
| if (CA->isString()) { |
| Out << "Constant* " << constName << " = ConstantArray::get(\""; |
| PrintEscapedString(CA->getAsString(),Out); |
| Out << "\");"; |
| } else { |
| Out << "std::vector<Constant*> " << constName << "_elems;\n"; |
| unsigned N = CA->getNumOperands(); |
| for (unsigned i = 0; i < N; ++i) { |
| printConstant(CA->getOperand(i)); |
| Out << constName << "_elems.push_back(" |
| << getCppName(CA->getOperand(i)) << ");\n"; |
| } |
| Out << "Constant* " << constName << " = ConstantArray::get(" |
| << typeName << ", " << constName << "_elems);"; |
| } |
| } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { |
| Out << "std::vector<Constant*> " << constName << "_fields;\n"; |
| unsigned N = CS->getNumOperands(); |
| for (unsigned i = 0; i < N; i++) { |
| printConstant(CS->getOperand(i)); |
| Out << constName << "_fields.push_back(" |
| << getCppName(CA->getOperand(i)) << ");\n"; |
| } |
| Out << "Constant* " << constName << " = ConstantStruct::get(" |
| << typeName << ", " << constName << "_fields);"; |
| } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) { |
| Out << "std::vector<Constant*> " << constName << "_elems;\n"; |
| unsigned N = CP->getNumOperands(); |
| for (unsigned i = 0; i < N; ++i) { |
| printConstant(CP->getOperand(i)); |
| Out << constName << "_elems.push_back(" |
| << getCppName(CP->getOperand(i)) << ");\n"; |
| } |
| Out << "Constant* " << constName << " = ConstantPacked::get(" |
| << typeName << ", " << constName << "_elems);"; |
| } else if (isa<UndefValue>(CV)) { |
| Out << "Constant* " << constName << " = UndefValue::get(" |
| << typeName << ");\n"; |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| Out << CE->getOpcodeName() << " ("; |
| |
| for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { |
| //printTypeInt(Out, (*OI)->getType(), TypeTable); |
| //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); |
| if (OI+1 != CE->op_end()) |
| Out << ", "; |
| } |
| |
| if (CE->getOpcode() == Instruction::Cast) { |
| Out << " to "; |
| // printTypeInt(Out, CE->getType(), TypeTable); |
| } |
| Out << ')'; |
| |
| } else { |
| Out << "<placeholder or erroneous Constant>"; |
| } |
| Out << "\n"; |
| } |
| |
| /// printFunction - Print all aspects of a function. |
| /// |
| void CppWriter::printFunction(const Function *F) { |
| std::string funcTypeName(getCppName(F->getFunctionType())); |
| |
| Out << "Function* "; |
| printCppName(F); |
| Out << " = new Function(" << funcTypeName << ", " ; |
| printLinkageType(F->getLinkage()); |
| Out << ", \"" << F->getName() << "\", mod);\n"; |
| printCppName(F); |
| Out << "->setCallingConv("; |
| printCallingConv(F->getCallingConv()); |
| Out << ");\n"; |
| if (F->hasSection()) { |
| printCppName(F); |
| Out << "->setSection(" << F->getSection() << ");\n"; |
| } |
| if (F->getAlignment()) { |
| printCppName(F); |
| Out << "->setAlignment(" << F->getAlignment() << ");\n"; |
| } |
| |
| Machine.incorporateFunction(F); |
| |
| if (!F->isExternal()) { |
| Out << "{"; |
| // Output all of its basic blocks... for the function |
| for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) |
| printBasicBlock(I); |
| Out << "}\n"; |
| } |
| |
| Machine.purgeFunction(); |
| } |
| |
| /// printArgument - This member is called for every argument that is passed into |
| /// the function. Simply print it out |
| /// |
| void CppWriter::printArgument(const Argument *Arg) { |
| // Insert commas as we go... the first arg doesn't get a comma |
| if (Arg != Arg->getParent()->arg_begin()) Out << ", "; |
| |
| // Output type... |
| printType(Arg->getType()); |
| |
| // Output name, if available... |
| if (Arg->hasName()) |
| Out << ' ' << getLLVMName(Arg->getName()); |
| } |
| |
| /// printBasicBlock - This member is called for each basic block in a method. |
| /// |
| void CppWriter::printBasicBlock(const BasicBlock *BB) { |
| if (BB->hasName()) { // Print out the label if it exists... |
| Out << "\n" << getLLVMName(BB->getName(), false) << ':'; |
| } else if (!BB->use_empty()) { // Don't print block # of no uses... |
| Out << "\n; <label>:"; |
| int Slot = Machine.getSlot(BB); |
| if (Slot != -1) |
| Out << Slot; |
| else |
| Out << "<badref>"; |
| } |
| |
| if (BB->getParent() == 0) |
| Out << "\t\t; Error: Block without parent!"; |
| else { |
| if (BB != &BB->getParent()->front()) { // Not the entry block? |
| // Output predecessors for the block... |
| Out << "\t\t;"; |
| pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| |
| if (PI == PE) { |
| Out << " No predecessors!"; |
| } else { |
| Out << " preds ="; |
| writeOperand(*PI, false, true); |
| for (++PI; PI != PE; ++PI) { |
| Out << ','; |
| writeOperand(*PI, false, true); |
| } |
| } |
| } |
| } |
| |
| Out << "\n"; |
| |
| // Output all of the instructions in the basic block... |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| printInstruction(*I); |
| } |
| |
| |
| /// printInfoComment - Print a little comment after the instruction indicating |
| /// which slot it occupies. |
| /// |
| void CppWriter::printInfoComment(const Value &V) { |
| if (V.getType() != Type::VoidTy) { |
| Out << "\t\t; <"; |
| printType(V.getType()) << '>'; |
| |
| if (!V.hasName()) { |
| int SlotNum = Machine.getSlot(&V); |
| if (SlotNum == -1) |
| Out << ":<badref>"; |
| else |
| Out << ':' << SlotNum; // Print out the def slot taken. |
| } |
| Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses |
| } |
| } |
| |
| /// printInstruction - This member is called for each Instruction in a function.. |
| /// |
| void CppWriter::printInstruction(const Instruction &I) { |
| Out << "\t"; |
| |
| // Print out name if it exists... |
| if (I.hasName()) |
| Out << getLLVMName(I.getName()) << " = "; |
| |
| // If this is a volatile load or store, print out the volatile marker. |
| if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || |
| (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) { |
| Out << "volatile "; |
| } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) { |
| // If this is a call, check if it's a tail call. |
| Out << "tail "; |
| } |
| |
| // Print out the opcode... |
| Out << I.getOpcodeName(); |
| |
| // Print out the type of the operands... |
| const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; |
| |
| // Special case conditional branches to swizzle the condition out to the front |
| if (isa<BranchInst>(I) && I.getNumOperands() > 1) { |
| writeOperand(I.getOperand(2), true); |
| Out << ','; |
| writeOperand(Operand, true); |
| Out << ','; |
| writeOperand(I.getOperand(1), true); |
| |
| } else if (isa<SwitchInst>(I)) { |
| // Special case switch statement to get formatting nice and correct... |
| writeOperand(Operand , true); Out << ','; |
| writeOperand(I.getOperand(1), true); Out << " ["; |
| |
| for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) { |
| Out << "\n\t\t"; |
| writeOperand(I.getOperand(op ), true); Out << ','; |
| writeOperand(I.getOperand(op+1), true); |
| } |
| Out << "\n\t]"; |
| } else if (isa<PHINode>(I)) { |
| Out << ' '; |
| printType(I.getType()); |
| Out << ' '; |
| |
| for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) { |
| if (op) Out << ", "; |
| Out << '['; |
| writeOperand(I.getOperand(op ), false); Out << ','; |
| writeOperand(I.getOperand(op+1), false); Out << " ]"; |
| } |
| } else if (isa<ReturnInst>(I) && !Operand) { |
| Out << " void"; |
| } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { |
| // Print the calling convention being used. |
| switch (CI->getCallingConv()) { |
| case CallingConv::C: break; // default |
| case CallingConv::CSRet: Out << " csretcc"; break; |
| case CallingConv::Fast: Out << " fastcc"; break; |
| case CallingConv::Cold: Out << " coldcc"; break; |
| default: Out << " cc" << CI->getCallingConv(); break; |
| } |
| |
| const PointerType *PTy = cast<PointerType>(Operand->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| // If possible, print out the short form of the call instruction. We can |
| // only do this if the first argument is a pointer to a nonvararg function, |
| // and if the return type is not a pointer to a function. |
| // |
| if (!FTy->isVarArg() && |
| (!isa<PointerType>(RetTy) || |
| !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { |
| Out << ' '; printType(RetTy); |
| writeOperand(Operand, false); |
| } else { |
| writeOperand(Operand, true); |
| } |
| Out << '('; |
| if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true); |
| for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) { |
| Out << ','; |
| writeOperand(I.getOperand(op), true); |
| } |
| |
| Out << " )"; |
| } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { |
| const PointerType *PTy = cast<PointerType>(Operand->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| // Print the calling convention being used. |
| switch (II->getCallingConv()) { |
| case CallingConv::C: break; // default |
| case CallingConv::CSRet: Out << " csretcc"; break; |
| case CallingConv::Fast: Out << " fastcc"; break; |
| case CallingConv::Cold: Out << " coldcc"; break; |
| default: Out << " cc" << II->getCallingConv(); break; |
| } |
| |
| // If possible, print out the short form of the invoke instruction. We can |
| // only do this if the first argument is a pointer to a nonvararg function, |
| // and if the return type is not a pointer to a function. |
| // |
| if (!FTy->isVarArg() && |
| (!isa<PointerType>(RetTy) || |
| !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) { |
| Out << ' '; printType(RetTy); |
| writeOperand(Operand, false); |
| } else { |
| writeOperand(Operand, true); |
| } |
| |
| Out << '('; |
| if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true); |
| for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) { |
| Out << ','; |
| writeOperand(I.getOperand(op), true); |
| } |
| |
| Out << " )\n\t\t\tto"; |
| writeOperand(II->getNormalDest(), true); |
| Out << " unwind"; |
| writeOperand(II->getUnwindDest(), true); |
| |
| } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) { |
| Out << ' '; |
| printType(AI->getType()->getElementType()); |
| if (AI->isArrayAllocation()) { |
| Out << ','; |
| writeOperand(AI->getArraySize(), true); |
| } |
| if (AI->getAlignment()) { |
| Out << ", align " << AI->getAlignment(); |
| } |
| } else if (isa<CastInst>(I)) { |
| if (Operand) writeOperand(Operand, true); // Work with broken code |
| Out << " to "; |
| printType(I.getType()); |
| } else if (isa<VAArgInst>(I)) { |
| if (Operand) writeOperand(Operand, true); // Work with broken code |
| Out << ", "; |
| printType(I.getType()); |
| } else if (Operand) { // Print the normal way... |
| |
| // PrintAllTypes - Instructions who have operands of all the same type |
| // omit the type from all but the first operand. If the instruction has |
| // different type operands (for example br), then they are all printed. |
| bool PrintAllTypes = false; |
| const Type *TheType = Operand->getType(); |
| |
| // Shift Left & Right print both types even for Ubyte LHS, and select prints |
| // types even if all operands are bools. |
| if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) || |
| isa<ShuffleVectorInst>(I)) { |
| PrintAllTypes = true; |
| } else { |
| for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { |
| Operand = I.getOperand(i); |
| if (Operand->getType() != TheType) { |
| PrintAllTypes = true; // We have differing types! Print them all! |
| break; |
| } |
| } |
| } |
| |
| if (!PrintAllTypes) { |
| Out << ' '; |
| printType(TheType); |
| } |
| |
| for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { |
| if (i) Out << ','; |
| writeOperand(I.getOperand(i), PrintAllTypes); |
| } |
| } |
| |
| printInfoComment(I); |
| Out << "\n"; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // External Interface declarations |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| //===-- SlotMachine Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #if 0 |
| #define SC_DEBUG(X) std::cerr << X |
| #else |
| #define SC_DEBUG(X) |
| #endif |
| |
| // Module level constructor. Causes the contents of the Module (sans functions) |
| // to be added to the slot table. |
| SlotMachine::SlotMachine(const Module *M) |
| : TheModule(M) ///< Saved for lazy initialization. |
| , mMap() |
| , mTypes() |
| , fMap() |
| , fTypes() |
| { |
| assert(M != 0 && "Invalid Module"); |
| processModule(); |
| } |
| |
| // Iterate through all the global variables, functions, and global |
| // variable initializers and create slots for them. |
| void SlotMachine::processModule() { |
| // Add all of the global variables to the value table... |
| for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); |
| I != E; ++I) |
| createSlot(I); |
| |
| // Add all the functions to the table |
| for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end(); |
| FI != FE; ++FI) { |
| createSlot(FI); |
| // Add all the function arguments |
| for(Function::const_arg_iterator AI = FI->arg_begin(), |
| AE = FI->arg_end(); AI != AE; ++AI) |
| createSlot(AI); |
| |
| // Add all of the basic blocks and instructions |
| for (Function::const_iterator BB = FI->begin(), |
| E = FI->end(); BB != E; ++BB) { |
| createSlot(BB); |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; |
| ++I) { |
| createSlot(I); |
| } |
| } |
| } |
| } |
| |
| // Process the arguments, basic blocks, and instructions of a function. |
| void SlotMachine::processFunction() { |
| |
| } |
| |
| // Clean up after incorporating a function. This is the only way |
| // to get out of the function incorporation state that affects the |
| // getSlot/createSlot lock. Function incorporation state is indicated |
| // by TheFunction != 0. |
| void SlotMachine::purgeFunction() { |
| SC_DEBUG("begin purgeFunction!\n"); |
| fMap.clear(); // Simply discard the function level map |
| fTypes.clear(); |
| TheFunction = 0; |
| FunctionProcessed = false; |
| SC_DEBUG("end purgeFunction!\n"); |
| } |
| |
| /// Get the slot number for a value. This function will assert if you |
| /// ask for a Value that hasn't previously been inserted with createSlot. |
| /// Types are forbidden because Type does not inherit from Value (any more). |
| int SlotMachine::getSlot(const Value *V) { |
| assert( V && "Can't get slot for null Value" ); |
| assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| |
| // Get the type of the value |
| const Type* VTy = V->getType(); |
| |
| // Find the type plane in the module map |
| TypedPlanes::const_iterator MI = mMap.find(VTy); |
| |
| if ( TheFunction ) { |
| // Lookup the type in the function map too |
| TypedPlanes::const_iterator FI = fMap.find(VTy); |
| // If there is a corresponding type plane in the function map |
| if ( FI != fMap.end() ) { |
| // Lookup the Value in the function map |
| ValueMap::const_iterator FVI = FI->second.map.find(V); |
| // If the value doesn't exist in the function map |
| if ( FVI == FI->second.map.end() ) { |
| // Look up the value in the module map. |
| if (MI == mMap.end()) return -1; |
| ValueMap::const_iterator MVI = MI->second.map.find(V); |
| // If we didn't find it, it wasn't inserted |
| if (MVI == MI->second.map.end()) return -1; |
| assert( MVI != MI->second.map.end() && "Value not found"); |
| // We found it only at the module level |
| return MVI->second; |
| |
| // else the value exists in the function map |
| } else { |
| // Return the slot number as the module's contribution to |
| // the type plane plus the index in the function's contribution |
| // to the type plane. |
| if (MI != mMap.end()) |
| return MI->second.next_slot + FVI->second; |
| else |
| return FVI->second; |
| } |
| } |
| } |
| |
| // N.B. Can get here only if either !TheFunction or the function doesn't |
| // have a corresponding type plane for the Value |
| |
| // Make sure the type plane exists |
| if (MI == mMap.end()) return -1; |
| // Lookup the value in the module's map |
| ValueMap::const_iterator MVI = MI->second.map.find(V); |
| // Make sure we found it. |
| if (MVI == MI->second.map.end()) return -1; |
| // Return it. |
| return MVI->second; |
| } |
| |
| /// Get the slot number for a type. This function will assert if you |
| /// ask for a Type that hasn't previously been inserted with createSlot. |
| int SlotMachine::getSlot(const Type *Ty) { |
| assert( Ty && "Can't get slot for null Type" ); |
| |
| if ( TheFunction ) { |
| // Lookup the Type in the function map |
| TypeMap::const_iterator FTI = fTypes.map.find(Ty); |
| // If the Type doesn't exist in the function map |
| if ( FTI == fTypes.map.end() ) { |
| TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| // If we didn't find it, it wasn't inserted |
| if (MTI == mTypes.map.end()) |
| return -1; |
| // We found it only at the module level |
| return MTI->second; |
| |
| // else the value exists in the function map |
| } else { |
| // Return the slot number as the module's contribution to |
| // the type plane plus the index in the function's contribution |
| // to the type plane. |
| return mTypes.next_slot + FTI->second; |
| } |
| } |
| |
| // N.B. Can get here only if !TheFunction |
| |
| // Lookup the value in the module's map |
| TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| // Make sure we found it. |
| if (MTI == mTypes.map.end()) return -1; |
| // Return it. |
| return MTI->second; |
| } |
| |
| // Create a new slot, or return the existing slot if it is already |
| // inserted. Note that the logic here parallels getSlot but instead |
| // of asserting when the Value* isn't found, it inserts the value. |
| unsigned SlotMachine::createSlot(const Value *V) { |
| assert( V && "Can't insert a null Value to SlotMachine"); |
| assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| |
| const Type* VTy = V->getType(); |
| |
| // Just ignore void typed things |
| if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value! |
| |
| // Look up the type plane for the Value's type from the module map |
| TypedPlanes::const_iterator MI = mMap.find(VTy); |
| |
| if ( TheFunction ) { |
| // Get the type plane for the Value's type from the function map |
| TypedPlanes::const_iterator FI = fMap.find(VTy); |
| // If there is a corresponding type plane in the function map |
| if ( FI != fMap.end() ) { |
| // Lookup the Value in the function map |
| ValueMap::const_iterator FVI = FI->second.map.find(V); |
| // If the value doesn't exist in the function map |
| if ( FVI == FI->second.map.end() ) { |
| // If there is no corresponding type plane in the module map |
| if ( MI == mMap.end() ) |
| return insertValue(V); |
| // Look up the value in the module map |
| ValueMap::const_iterator MVI = MI->second.map.find(V); |
| // If we didn't find it, it wasn't inserted |
| if ( MVI == MI->second.map.end() ) |
| return insertValue(V); |
| else |
| // We found it only at the module level |
| return MVI->second; |
| |
| // else the value exists in the function map |
| } else { |
| if ( MI == mMap.end() ) |
| return FVI->second; |
| else |
| // Return the slot number as the module's contribution to |
| // the type plane plus the index in the function's contribution |
| // to the type plane. |
| return MI->second.next_slot + FVI->second; |
| } |
| |
| // else there is not a corresponding type plane in the function map |
| } else { |
| // If the type plane doesn't exists at the module level |
| if ( MI == mMap.end() ) { |
| return insertValue(V); |
| // else type plane exists at the module level, examine it |
| } else { |
| // Look up the value in the module's map |
| ValueMap::const_iterator MVI = MI->second.map.find(V); |
| // If we didn't find it there either |
| if ( MVI == MI->second.map.end() ) |
| // Return the slot number as the module's contribution to |
| // the type plane plus the index of the function map insertion. |
| return MI->second.next_slot + insertValue(V); |
| else |
| return MVI->second; |
| } |
| } |
| } |
| |
| // N.B. Can only get here if !TheFunction |
| |
| // If the module map's type plane is not for the Value's type |
| if ( MI != mMap.end() ) { |
| // Lookup the value in the module's map |
| ValueMap::const_iterator MVI = MI->second.map.find(V); |
| if ( MVI != MI->second.map.end() ) |
| return MVI->second; |
| } |
| |
| return insertValue(V); |
| } |
| |
| // Create a new slot, or return the existing slot if it is already |
| // inserted. Note that the logic here parallels getSlot but instead |
| // of asserting when the Value* isn't found, it inserts the value. |
| unsigned SlotMachine::createSlot(const Type *Ty) { |
| assert( Ty && "Can't insert a null Type to SlotMachine"); |
| |
| if ( TheFunction ) { |
| // Lookup the Type in the function map |
| TypeMap::const_iterator FTI = fTypes.map.find(Ty); |
| // If the type doesn't exist in the function map |
| if ( FTI == fTypes.map.end() ) { |
| // Look up the type in the module map |
| TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| // If we didn't find it, it wasn't inserted |
| if ( MTI == mTypes.map.end() ) |
| return insertValue(Ty); |
| else |
| // We found it only at the module level |
| return MTI->second; |
| |
| // else the value exists in the function map |
| } else { |
| // Return the slot number as the module's contribution to |
| // the type plane plus the index in the function's contribution |
| // to the type plane. |
| return mTypes.next_slot + FTI->second; |
| } |
| } |
| |
| // N.B. Can only get here if !TheFunction |
| |
| // Lookup the type in the module's map |
| TypeMap::const_iterator MTI = mTypes.map.find(Ty); |
| if ( MTI != mTypes.map.end() ) |
| return MTI->second; |
| |
| return insertValue(Ty); |
| } |
| |
| // Low level insert function. Minimal checking is done. This |
| // function is just for the convenience of createSlot (above). |
| unsigned SlotMachine::insertValue(const Value *V ) { |
| assert(V && "Can't insert a null Value into SlotMachine!"); |
| assert(!isa<Constant>(V) || isa<GlobalValue>(V) && |
| "Can't insert a non-GlobalValue Constant into SlotMachine"); |
| |
| // If this value does not contribute to a plane (is void) |
| // or if the value already has a name then ignore it. |
| if (V->getType() == Type::VoidTy || V->hasName() ) { |
| SC_DEBUG("ignored value " << *V << "\n"); |
| return 0; // FIXME: Wrong return value |
| } |
| |
| const Type *VTy = V->getType(); |
| unsigned DestSlot = 0; |
| |
| if ( TheFunction ) { |
| TypedPlanes::iterator I = fMap.find( VTy ); |
| if ( I == fMap.end() ) |
| I = fMap.insert(std::make_pair(VTy,ValuePlane())).first; |
| DestSlot = I->second.map[V] = I->second.next_slot++; |
| } else { |
| TypedPlanes::iterator I = mMap.find( VTy ); |
| if ( I == mMap.end() ) |
| I = mMap.insert(std::make_pair(VTy,ValuePlane())).first; |
| DestSlot = I->second.map[V] = I->second.next_slot++; |
| } |
| |
| SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" << |
| DestSlot << " ["); |
| // G = Global, C = Constant, T = Type, F = Function, o = other |
| SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : |
| (isa<Constant>(V) ? 'C' : 'o')))); |
| SC_DEBUG("]\n"); |
| return DestSlot; |
| } |
| |
| // Low level insert function. Minimal checking is done. This |
| // function is just for the convenience of createSlot (above). |
| unsigned SlotMachine::insertValue(const Type *Ty ) { |
| assert(Ty && "Can't insert a null Type into SlotMachine!"); |
| |
| unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++; |
| SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n"); |
| return DestSlot; |
| } |
| |
| } // end anonymous llvm |
| |
| namespace llvm { |
| |
| void WriteModuleToCppFile(Module* mod, std::ostream& o) { |
| o << "#include <llvm/Module.h>\n"; |
| o << "#include <llvm/DerivedTypes.h>\n"; |
| o << "#include <llvm/Constants.h>\n"; |
| o << "#include <llvm/GlobalVariable.h>\n"; |
| o << "#include <llvm/Function.h>\n"; |
| o << "#include <llvm/CallingConv.h>\n"; |
| o << "#include <llvm/BasicBlock.h>\n"; |
| o << "#include <llvm/Instructions.h>\n"; |
| o << "#include <llvm/Pass.h>\n"; |
| o << "#include <llvm/PassManager.h>\n"; |
| o << "#include <llvm/Analysis/Verifier.h>\n"; |
| o << "#include <llvm/Assembly/PrintModulePass.h>\n"; |
| o << "#include <algorithm>\n"; |
| o << "#include <iostream>\n\n"; |
| o << "using namespace llvm;\n\n"; |
| o << "Module* makeLLVMModule();\n\n"; |
| o << "int main(int argc, char**argv) {\n"; |
| o << " Module* Mod = makeLLVMModule();\n"; |
| o << " verifyModule(*Mod, PrintMessageAction);\n"; |
| o << " PassManager PM;\n"; |
| o << " PM.add(new PrintModulePass(&std::cout));\n"; |
| o << " PM.run(*Mod);\n"; |
| o << " return 0;\n"; |
| o << "}\n\n"; |
| o << "Module* makeLLVMModule() {\n"; |
| SlotMachine SlotTable(mod); |
| CppWriter W(o, SlotTable, mod); |
| W.write(mod); |
| o << "}\n"; |
| } |
| |
| } |