blob: 3f99d1d0e4afeac99b37abbbcc0702999f875a1d [file] [log] [blame]
Justin Holewinski49683f32012-05-04 20:18:50 +00001//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to NVPTX assembly language.
12//
13//===----------------------------------------------------------------------===//
14
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000015#include "NVPTXAsmPrinter.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000016#include "MCTargetDesc/NVPTXMCAsmInfo.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000017#include "NVPTX.h"
18#include "NVPTXInstrInfo.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000019#include "NVPTXNumRegisters.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000020#include "NVPTXRegisterInfo.h"
21#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "cl_common_defines.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000024#include "llvm/ADT/StringExtras.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000025#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Assembly/Writer.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000027#include "llvm/CodeGen/Analysis.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000028#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000030#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/DebugInfo.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000032#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000037#include "llvm/MC/MCStreamer.h"
38#include "llvm/MC/MCSymbol.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000039#include "llvm/Support/CommandLine.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000040#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/FormattedStream.h"
Justin Holewinski49683f32012-05-04 20:18:50 +000042#include "llvm/Support/Path.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000043#include "llvm/Support/TargetRegistry.h"
44#include "llvm/Support/TimeValue.h"
45#include "llvm/Target/Mangler.h"
46#include "llvm/Target/TargetLoweringObjectFile.h"
Bill Wendling0bcbd1d2012-06-28 00:05:13 +000047#include <sstream>
Justin Holewinski49683f32012-05-04 20:18:50 +000048using namespace llvm;
49
50
51#include "NVPTXGenAsmWriter.inc"
52
53bool RegAllocNilUsed = true;
54
55#define DEPOTNAME "__local_depot"
56
57static cl::opt<bool>
58EmitLineNumbers("nvptx-emit-line-numbers",
59 cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
60 cl::init(true));
61
62namespace llvm {
63bool InterleaveSrcInPtx = false;
64}
65
66static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src",
67 cl::ZeroOrMore,
68 cl::desc("NVPTX Specific: Emit source line in ptx file"),
69 cl::location(llvm::InterleaveSrcInPtx));
70
71
Justin Holewinski2085d002012-11-16 21:03:51 +000072namespace {
73/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
74/// depends.
75void DiscoverDependentGlobals(Value *V,
76 DenseSet<GlobalVariable*> &Globals) {
77 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
78 Globals.insert(GV);
79 else {
80 if (User *U = dyn_cast<User>(V)) {
81 for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
82 DiscoverDependentGlobals(U->getOperand(i), Globals);
83 }
84 }
85 }
86}
Justin Holewinski49683f32012-05-04 20:18:50 +000087
Justin Holewinski2085d002012-11-16 21:03:51 +000088/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
89/// instances to be emitted, but only after any dependents have been added
90/// first.
91void VisitGlobalVariableForEmission(GlobalVariable *GV,
92 SmallVectorImpl<GlobalVariable*> &Order,
93 DenseSet<GlobalVariable*> &Visited,
94 DenseSet<GlobalVariable*> &Visiting) {
95 // Have we already visited this one?
96 if (Visited.count(GV)) return;
97
98 // Do we have a circular dependency?
99 if (Visiting.count(GV))
100 report_fatal_error("Circular dependency found in global variable set");
101
102 // Start visiting this global
103 Visiting.insert(GV);
104
105 // Make sure we visit all dependents first
106 DenseSet<GlobalVariable*> Others;
107 for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
108 DiscoverDependentGlobals(GV->getOperand(i), Others);
109
110 for (DenseSet<GlobalVariable*>::iterator I = Others.begin(),
111 E = Others.end(); I != E; ++I)
112 VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
113
114 // Now we can visit ourself
115 Order.push_back(GV);
116 Visited.insert(GV);
117 Visiting.erase(GV);
118}
119}
Justin Holewinski49683f32012-05-04 20:18:50 +0000120
121// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
122// cannot just link to the existing version.
123/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
124///
125using namespace nvptx;
126const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
127 MCContext &Ctx = AP.OutContext;
128
129 if (CV->isNullValue() || isa<UndefValue>(CV))
130 return MCConstantExpr::Create(0, Ctx);
131
132 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
133 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
134
135 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
136 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
137
138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
139 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
140
141 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
142 if (CE == 0)
143 llvm_unreachable("Unknown constant value to lower!");
144
145
146 switch (CE->getOpcode()) {
147 default:
148 // If the code isn't optimized, there may be outstanding folding
Micah Villmow3574eca2012-10-08 16:38:25 +0000149 // opportunities. Attempt to fold the expression using DataLayout as a
Justin Holewinski49683f32012-05-04 20:18:50 +0000150 // last resort before giving up.
151 if (Constant *C =
Micah Villmow3574eca2012-10-08 16:38:25 +0000152 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
Justin Holewinski49683f32012-05-04 20:18:50 +0000153 if (C != CE)
154 return LowerConstant(C, AP);
155
156 // Otherwise report the problem to the user.
157 {
158 std::string S;
159 raw_string_ostream OS(S);
160 OS << "Unsupported expression in static initializer: ";
161 WriteAsOperand(OS, CE, /*PrintType=*/false,
162 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
163 report_fatal_error(OS.str());
164 }
165 case Instruction::GetElementPtr: {
Micah Villmow3574eca2012-10-08 16:38:25 +0000166 const DataLayout &TD = *AP.TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +0000167 // Generate a symbolic expression for the byte address
Nuno Lopes98281a22012-12-30 16:25:48 +0000168 APInt OffsetAI(TD.getPointerSizeInBits(), 0);
169 cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
Justin Holewinski49683f32012-05-04 20:18:50 +0000170
171 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
Nuno Lopes98281a22012-12-30 16:25:48 +0000172 if (!OffsetAI)
Justin Holewinski49683f32012-05-04 20:18:50 +0000173 return Base;
174
Nuno Lopes98281a22012-12-30 16:25:48 +0000175 int64_t Offset = OffsetAI.getSExtValue();
Justin Holewinski49683f32012-05-04 20:18:50 +0000176 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
177 Ctx);
178 }
179
180 case Instruction::Trunc:
181 // We emit the value and depend on the assembler to truncate the generated
182 // expression properly. This is important for differences between
183 // blockaddress labels. Since the two labels are in the same function, it
184 // is reasonable to treat their delta as a 32-bit value.
185 // FALL THROUGH.
186 case Instruction::BitCast:
187 return LowerConstant(CE->getOperand(0), AP);
188
189 case Instruction::IntToPtr: {
Micah Villmow3574eca2012-10-08 16:38:25 +0000190 const DataLayout &TD = *AP.TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +0000191 // Handle casts to pointers by changing them into casts to the appropriate
192 // integer type. This promotes constant folding and simplifies this code.
193 Constant *Op = CE->getOperand(0);
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000194 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
Justin Holewinski49683f32012-05-04 20:18:50 +0000195 false/*ZExt*/);
196 return LowerConstant(Op, AP);
197 }
198
199 case Instruction::PtrToInt: {
Micah Villmow3574eca2012-10-08 16:38:25 +0000200 const DataLayout &TD = *AP.TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +0000201 // Support only foldable casts to/from pointers that can be eliminated by
202 // changing the pointer to the appropriately sized integer type.
203 Constant *Op = CE->getOperand(0);
204 Type *Ty = CE->getType();
205
206 const MCExpr *OpExpr = LowerConstant(Op, AP);
207
208 // We can emit the pointer value into this slot if the slot is an
209 // integer slot equal to the size of the pointer.
210 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
211 return OpExpr;
212
213 // Otherwise the pointer is smaller than the resultant integer, mask off
214 // the high bits so we are sure to get a proper truncation if the input is
215 // a constant expr.
216 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
217 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
218 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
219 }
220
221 // The MC library also has a right-shift operator, but it isn't consistently
222 // signed or unsigned between different targets.
223 case Instruction::Add:
224 case Instruction::Sub:
225 case Instruction::Mul:
226 case Instruction::SDiv:
227 case Instruction::SRem:
228 case Instruction::Shl:
229 case Instruction::And:
230 case Instruction::Or:
231 case Instruction::Xor: {
232 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
233 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
234 switch (CE->getOpcode()) {
235 default: llvm_unreachable("Unknown binary operator constant cast expr");
236 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
237 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
238 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
239 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
240 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
241 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
242 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
243 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
244 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
245 }
246 }
247 }
248}
249
250
251void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI)
252{
253 if (!EmitLineNumbers)
254 return;
255 if (ignoreLoc(MI))
256 return;
257
258 DebugLoc curLoc = MI.getDebugLoc();
259
260 if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
261 return;
262
263 if (prevDebugLoc == curLoc)
264 return;
265
266 prevDebugLoc = curLoc;
267
268 if (curLoc.isUnknown())
269 return;
270
271
272 const MachineFunction *MF = MI.getParent()->getParent();
273 //const TargetMachine &TM = MF->getTarget();
274
275 const LLVMContext &ctx = MF->getFunction()->getContext();
276 DIScope Scope(curLoc.getScope(ctx));
277
278 if (!Scope.Verify())
279 return;
280
281 StringRef fileName(Scope.getFilename());
282 StringRef dirName(Scope.getDirectory());
283 SmallString<128> FullPathName = dirName;
284 if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
285 sys::path::append(FullPathName, fileName);
286 fileName = FullPathName.str();
287 }
288
289 if (filenameMap.find(fileName.str()) == filenameMap.end())
290 return;
291
292
293 // Emit the line from the source file.
294 if (llvm::InterleaveSrcInPtx)
295 this->emitSrcInText(fileName.str(), curLoc.getLine());
296
297 std::stringstream temp;
298 temp << "\t.loc " << filenameMap[fileName.str()]
299 << " " << curLoc.getLine() << " " << curLoc.getCol();
300 OutStreamer.EmitRawText(Twine(temp.str().c_str()));
301}
302
303void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
304 SmallString<128> Str;
305 raw_svector_ostream OS(Str);
306 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
307 emitLineNumberAsDotLoc(*MI);
308 printInstruction(MI, OS);
309 OutStreamer.EmitRawText(OS.str());
310}
311
312void NVPTXAsmPrinter::printReturnValStr(const Function *F,
313 raw_ostream &O)
314{
Micah Villmow3574eca2012-10-08 16:38:25 +0000315 const DataLayout *TD = TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +0000316 const TargetLowering *TLI = TM.getTargetLowering();
317
318 Type *Ty = F->getReturnType();
319
320 bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
321
322 if (Ty->getTypeID() == Type::VoidTyID)
323 return;
324
325 O << " (";
326
327 if (isABI) {
328 if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
329 unsigned size = 0;
330 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
331 size = ITy->getBitWidth();
332 if (size < 32) size = 32;
333 } else {
334 assert(Ty->isFloatingPointTy() &&
335 "Floating point type expected here");
336 size = Ty->getPrimitiveSizeInBits();
337 }
338
339 O << ".param .b" << size << " func_retval0";
340 }
341 else if (isa<PointerType>(Ty)) {
342 O << ".param .b" << TLI->getPointerTy().getSizeInBits()
343 << " func_retval0";
344 } else {
345 if ((Ty->getTypeID() == Type::StructTyID) ||
346 isa<VectorType>(Ty)) {
347 SmallVector<EVT, 16> vtparts;
348 ComputeValueVTs(*TLI, Ty, vtparts);
349 unsigned totalsz = 0;
350 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
351 unsigned elems = 1;
352 EVT elemtype = vtparts[i];
353 if (vtparts[i].isVector()) {
354 elems = vtparts[i].getVectorNumElements();
355 elemtype = vtparts[i].getVectorElementType();
356 }
357 for (unsigned j=0, je=elems; j!=je; ++j) {
358 unsigned sz = elemtype.getSizeInBits();
359 if (elemtype.isInteger() && (sz < 8)) sz = 8;
360 totalsz += sz/8;
361 }
362 }
363 unsigned retAlignment = 0;
364 if (!llvm::getAlign(*F, 0, retAlignment))
365 retAlignment = TD->getABITypeAlignment(Ty);
366 O << ".param .align "
367 << retAlignment
368 << " .b8 func_retval0["
369 << totalsz << "]";
370 } else
371 assert(false &&
372 "Unknown return type");
373 }
374 } else {
375 SmallVector<EVT, 16> vtparts;
376 ComputeValueVTs(*TLI, Ty, vtparts);
377 unsigned idx = 0;
378 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
379 unsigned elems = 1;
380 EVT elemtype = vtparts[i];
381 if (vtparts[i].isVector()) {
382 elems = vtparts[i].getVectorNumElements();
383 elemtype = vtparts[i].getVectorElementType();
384 }
385
386 for (unsigned j=0, je=elems; j!=je; ++j) {
387 unsigned sz = elemtype.getSizeInBits();
388 if (elemtype.isInteger() && (sz < 32)) sz = 32;
389 O << ".reg .b" << sz << " func_retval" << idx;
390 if (j<je-1) O << ", ";
391 ++idx;
392 }
393 if (i < e-1)
394 O << ", ";
395 }
396 }
397 O << ") ";
398 return;
399}
400
401void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
402 raw_ostream &O) {
403 const Function *F = MF.getFunction();
404 printReturnValStr(F, O);
405}
406
407void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
408 SmallString<128> Str;
409 raw_svector_ostream O(Str);
410
411 // Set up
412 MRI = &MF->getRegInfo();
413 F = MF->getFunction();
414 emitLinkageDirective(F,O);
415 if (llvm::isKernelFunction(*F))
416 O << ".entry ";
417 else {
418 O << ".func ";
419 printReturnValStr(*MF, O);
420 }
421
422 O << *CurrentFnSym;
423
424 emitFunctionParamList(*MF, O);
425
426 if (llvm::isKernelFunction(*F))
427 emitKernelFunctionDirectives(*F, O);
428
429 OutStreamer.EmitRawText(O.str());
430
431 prevDebugLoc = DebugLoc();
432}
433
434void NVPTXAsmPrinter::EmitFunctionBodyStart() {
435 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
436 unsigned numRegClasses = TRI.getNumRegClasses();
437 VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1];
438 OutStreamer.EmitRawText(StringRef("{\n"));
439 setAndEmitFunctionVirtualRegisters(*MF);
440
441 SmallString<128> Str;
442 raw_svector_ostream O(Str);
443 emitDemotedVars(MF->getFunction(), O);
444 OutStreamer.EmitRawText(O.str());
445}
446
447void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
448 OutStreamer.EmitRawText(StringRef("}\n"));
449 delete []VRidGlobal2LocalMap;
450}
451
452
453void
454NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F,
455 raw_ostream &O) const {
456 // If the NVVM IR has some of reqntid* specified, then output
457 // the reqntid directive, and set the unspecified ones to 1.
458 // If none of reqntid* is specified, don't output reqntid directive.
459 unsigned reqntidx, reqntidy, reqntidz;
460 bool specified = false;
461 if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1;
462 else specified = true;
463 if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1;
464 else specified = true;
465 if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1;
466 else specified = true;
467
468 if (specified)
469 O << ".reqntid " << reqntidx << ", "
470 << reqntidy << ", " << reqntidz << "\n";
471
472 // If the NVVM IR has some of maxntid* specified, then output
473 // the maxntid directive, and set the unspecified ones to 1.
474 // If none of maxntid* is specified, don't output maxntid directive.
475 unsigned maxntidx, maxntidy, maxntidz;
476 specified = false;
477 if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1;
478 else specified = true;
479 if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1;
480 else specified = true;
481 if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1;
482 else specified = true;
483
484 if (specified)
485 O << ".maxntid " << maxntidx << ", "
486 << maxntidy << ", " << maxntidz << "\n";
487
488 unsigned mincta;
489 if (llvm::getMinCTASm(F, mincta))
490 O << ".minnctapersm " << mincta << "\n";
491}
492
493void
494NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
495 raw_ostream &O) {
496 const TargetRegisterClass * RC = MRI->getRegClass(vr);
497 unsigned id = RC->getID();
498
499 std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[id];
500 unsigned mapped_vr = regmap[vr];
501
502 if (!isVec) {
503 O << getNVPTXRegClassStr(RC) << mapped_vr;
504 return;
505 }
506 // Vector virtual register
507 if (getNVPTXVectorSize(RC) == 4)
508 O << "{"
509 << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
510 << getNVPTXRegClassStr(RC) << mapped_vr << "_1, "
511 << getNVPTXRegClassStr(RC) << mapped_vr << "_2, "
512 << getNVPTXRegClassStr(RC) << mapped_vr << "_3"
513 << "}";
514 else if (getNVPTXVectorSize(RC) == 2)
515 O << "{"
516 << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
517 << getNVPTXRegClassStr(RC) << mapped_vr << "_1"
518 << "}";
519 else
Craig Topper63663612012-05-24 07:02:50 +0000520 llvm_unreachable("Unsupported vector size");
Justin Holewinski49683f32012-05-04 20:18:50 +0000521}
522
523void
524NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
525 raw_ostream &O) {
526 getVirtualRegisterName(vr, isVec, O);
527}
528
529void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO,
530 const char *Modifier,
531 raw_ostream &O) {
Craig Topper6fcf1292012-05-24 04:22:05 +0000532 static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'};
Justin Holewinski49683f32012-05-04 20:18:50 +0000533 int Imm = (int)MO.getImm();
534 if(0 == strcmp(Modifier, "vecelem"))
535 O << "_" << vecelem[Imm];
536 else if(0 == strcmp(Modifier, "vecv4comm1")) {
537 if((Imm < 0) || (Imm > 3))
538 O << "//";
539 }
540 else if(0 == strcmp(Modifier, "vecv4comm2")) {
541 if((Imm < 4) || (Imm > 7))
542 O << "//";
543 }
544 else if(0 == strcmp(Modifier, "vecv4pos")) {
545 if(Imm < 0) Imm = 0;
546 O << "_" << vecelem[Imm%4];
547 }
548 else if(0 == strcmp(Modifier, "vecv2comm1")) {
549 if((Imm < 0) || (Imm > 1))
550 O << "//";
551 }
552 else if(0 == strcmp(Modifier, "vecv2comm2")) {
553 if((Imm < 2) || (Imm > 3))
554 O << "//";
555 }
556 else if(0 == strcmp(Modifier, "vecv2pos")) {
557 if(Imm < 0) Imm = 0;
558 O << "_" << vecelem[Imm%2];
559 }
560 else
Craig Topper63663612012-05-24 07:02:50 +0000561 llvm_unreachable("Unknown Modifier on immediate operand");
Justin Holewinski49683f32012-05-04 20:18:50 +0000562}
563
564void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
565 raw_ostream &O, const char *Modifier) {
566 const MachineOperand &MO = MI->getOperand(opNum);
567 switch (MO.getType()) {
568 case MachineOperand::MO_Register:
569 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
570 if (MO.getReg() == NVPTX::VRDepot)
571 O << DEPOTNAME << getFunctionNumber();
572 else
573 O << getRegisterName(MO.getReg());
574 } else {
575 if (!Modifier)
576 emitVirtualRegister(MO.getReg(), false, O);
577 else {
578 if (strcmp(Modifier, "vecfull") == 0)
579 emitVirtualRegister(MO.getReg(), true, O);
580 else
Craig Topper63663612012-05-24 07:02:50 +0000581 llvm_unreachable(
Justin Holewinski49683f32012-05-04 20:18:50 +0000582 "Don't know how to handle the modifier on virtual register.");
583 }
584 }
585 return;
586
587 case MachineOperand::MO_Immediate:
588 if (!Modifier)
589 O << MO.getImm();
590 else if (strstr(Modifier, "vec") == Modifier)
591 printVecModifiedImmediate(MO, Modifier, O);
592 else
Craig Topper63663612012-05-24 07:02:50 +0000593 llvm_unreachable("Don't know how to handle modifier on immediate operand");
Justin Holewinski49683f32012-05-04 20:18:50 +0000594 return;
595
596 case MachineOperand::MO_FPImmediate:
597 printFPConstant(MO.getFPImm(), O);
598 break;
599
600 case MachineOperand::MO_GlobalAddress:
601 O << *Mang->getSymbol(MO.getGlobal());
602 break;
603
604 case MachineOperand::MO_ExternalSymbol: {
605 const char * symbname = MO.getSymbolName();
606 if (strstr(symbname, ".PARAM") == symbname) {
607 unsigned index;
608 sscanf(symbname+6, "%u[];", &index);
609 printParamName(index, O);
610 }
611 else if (strstr(symbname, ".HLPPARAM") == symbname) {
612 unsigned index;
613 sscanf(symbname+9, "%u[];", &index);
614 O << *CurrentFnSym << "_param_" << index << "_offset";
615 }
616 else
617 O << symbname;
618 break;
619 }
620
621 case MachineOperand::MO_MachineBasicBlock:
622 O << *MO.getMBB()->getSymbol();
623 return;
624
625 default:
Craig Topper63663612012-05-24 07:02:50 +0000626 llvm_unreachable("Operand type not supported.");
Justin Holewinski49683f32012-05-04 20:18:50 +0000627 }
628}
629
630void NVPTXAsmPrinter::
631printImplicitDef(const MachineInstr *MI, raw_ostream &O) const {
632#ifndef __OPTIMIZE__
633 O << "\t// Implicit def :";
634 //printOperand(MI, 0);
635 O << "\n";
636#endif
637}
638
639void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
640 raw_ostream &O, const char *Modifier) {
641 printOperand(MI, opNum, O);
642
643 if (Modifier && !strcmp(Modifier, "add")) {
644 O << ", ";
645 printOperand(MI, opNum+1, O);
646 } else {
647 if (MI->getOperand(opNum+1).isImm() &&
648 MI->getOperand(opNum+1).getImm() == 0)
649 return; // don't print ',0' or '+0'
650 O << "+";
651 printOperand(MI, opNum+1, O);
652 }
653}
654
655void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum,
656 raw_ostream &O, const char *Modifier)
657{
658 if (Modifier) {
659 const MachineOperand &MO = MI->getOperand(opNum);
660 int Imm = (int)MO.getImm();
661 if (!strcmp(Modifier, "volatile")) {
662 if (Imm)
663 O << ".volatile";
664 } else if (!strcmp(Modifier, "addsp")) {
665 switch (Imm) {
666 case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break;
667 case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break;
668 case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break;
669 case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break;
670 case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break;
671 case NVPTX::PTXLdStInstCode::GENERIC:
672 if (!nvptxSubtarget.hasGenericLdSt())
673 O << ".global";
674 break;
675 default:
Jakub Staszak7454fc22012-11-14 21:03:40 +0000676 llvm_unreachable("Wrong Address Space");
Justin Holewinski49683f32012-05-04 20:18:50 +0000677 }
678 }
679 else if (!strcmp(Modifier, "sign")) {
680 if (Imm==NVPTX::PTXLdStInstCode::Signed)
681 O << "s";
682 else if (Imm==NVPTX::PTXLdStInstCode::Unsigned)
683 O << "u";
684 else
685 O << "f";
686 }
687 else if (!strcmp(Modifier, "vec")) {
688 if (Imm==NVPTX::PTXLdStInstCode::V2)
689 O << ".v2";
690 else if (Imm==NVPTX::PTXLdStInstCode::V4)
691 O << ".v4";
692 }
693 else
Jakub Staszak7454fc22012-11-14 21:03:40 +0000694 llvm_unreachable("Unknown Modifier");
Justin Holewinski49683f32012-05-04 20:18:50 +0000695 }
696 else
Jakub Staszak7454fc22012-11-14 21:03:40 +0000697 llvm_unreachable("Empty Modifier");
Justin Holewinski49683f32012-05-04 20:18:50 +0000698}
699
700void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) {
701
702 emitLinkageDirective(F,O);
703 if (llvm::isKernelFunction(*F))
704 O << ".entry ";
705 else
706 O << ".func ";
707 printReturnValStr(F, O);
708 O << *CurrentFnSym << "\n";
709 emitFunctionParamList(F, O);
710 O << ";\n";
711}
712
713static bool usedInGlobalVarDef(const Constant *C)
714{
715 if (!C)
716 return false;
717
718 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
719 if (GV->getName().str() == "llvm.used")
720 return false;
721 return true;
722 }
723
724 for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
725 ui!=ue; ++ui) {
726 const Constant *C = dyn_cast<Constant>(*ui);
727 if (usedInGlobalVarDef(C))
728 return true;
729 }
730 return false;
731}
732
733static bool usedInOneFunc(const User *U, Function const *&oneFunc)
734{
735 if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
736 if (othergv->getName().str() == "llvm.used")
737 return true;
738 }
739
740 if (const Instruction *instr = dyn_cast<Instruction>(U)) {
741 if (instr->getParent() && instr->getParent()->getParent()) {
742 const Function *curFunc = instr->getParent()->getParent();
743 if (oneFunc && (curFunc != oneFunc))
744 return false;
745 oneFunc = curFunc;
746 return true;
747 }
748 else
749 return false;
750 }
751
752 if (const MDNode *md = dyn_cast<MDNode>(U))
753 if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
754 (md->getName().str() == "llvm.dbg.sp")))
755 return true;
756
757
758 for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end();
759 ui!=ue; ++ui) {
760 if (usedInOneFunc(*ui, oneFunc) == false)
761 return false;
762 }
763 return true;
764}
765
766/* Find out if a global variable can be demoted to local scope.
767 * Currently, this is valid for CUDA shared variables, which have local
768 * scope and global lifetime. So the conditions to check are :
769 * 1. Is the global variable in shared address space?
770 * 2. Does it have internal linkage?
771 * 3. Is the global variable referenced only in one function?
772 */
773static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
774 if (gv->hasInternalLinkage() == false)
775 return false;
776 const PointerType *Pty = gv->getType();
777 if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
778 return false;
779
780 const Function *oneFunc = 0;
781
782 bool flag = usedInOneFunc(gv, oneFunc);
783 if (flag == false)
784 return false;
785 if (!oneFunc)
786 return false;
787 f = oneFunc;
788 return true;
789}
790
791static bool useFuncSeen(const Constant *C,
792 llvm::DenseMap<const Function *, bool> &seenMap) {
793 for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
794 ui!=ue; ++ui) {
795 if (const Constant *cu = dyn_cast<Constant>(*ui)) {
796 if (useFuncSeen(cu, seenMap))
797 return true;
798 } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
799 const BasicBlock *bb = I->getParent();
800 if (!bb) continue;
801 const Function *caller = bb->getParent();
802 if (!caller) continue;
803 if (seenMap.find(caller) != seenMap.end())
804 return true;
805 }
806 }
807 return false;
808}
809
810void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) {
811 llvm::DenseMap<const Function *, bool> seenMap;
812 for (Module::const_iterator FI=M.begin(), FE=M.end();
813 FI!=FE; ++FI) {
814 const Function *F = FI;
815
816 if (F->isDeclaration()) {
817 if (F->use_empty())
818 continue;
819 if (F->getIntrinsicID())
820 continue;
821 CurrentFnSym = Mang->getSymbol(F);
822 emitDeclaration(F, O);
823 continue;
824 }
825 for (Value::const_use_iterator iter=F->use_begin(),
826 iterEnd=F->use_end(); iter!=iterEnd; ++iter) {
827 if (const Constant *C = dyn_cast<Constant>(*iter)) {
828 if (usedInGlobalVarDef(C)) {
829 // The use is in the initialization of a global variable
830 // that is a function pointer, so print a declaration
831 // for the original function
832 CurrentFnSym = Mang->getSymbol(F);
833 emitDeclaration(F, O);
834 break;
835 }
836 // Emit a declaration of this function if the function that
837 // uses this constant expr has already been seen.
838 if (useFuncSeen(C, seenMap)) {
839 CurrentFnSym = Mang->getSymbol(F);
840 emitDeclaration(F, O);
841 break;
842 }
843 }
844
845 if (!isa<Instruction>(*iter)) continue;
846 const Instruction *instr = cast<Instruction>(*iter);
847 const BasicBlock *bb = instr->getParent();
848 if (!bb) continue;
849 const Function *caller = bb->getParent();
850 if (!caller) continue;
851
852 // If a caller has already been seen, then the caller is
853 // appearing in the module before the callee. so print out
854 // a declaration for the callee.
855 if (seenMap.find(caller) != seenMap.end()) {
856 CurrentFnSym = Mang->getSymbol(F);
857 emitDeclaration(F, O);
858 break;
859 }
860 }
861 seenMap[F] = true;
862 }
863}
864
865void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
866 DebugInfoFinder DbgFinder;
867 DbgFinder.processModule(M);
868
869 unsigned i=1;
870 for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
871 E = DbgFinder.compile_unit_end(); I != E; ++I) {
872 DICompileUnit DIUnit(*I);
873 StringRef Filename(DIUnit.getFilename());
874 StringRef Dirname(DIUnit.getDirectory());
875 SmallString<128> FullPathName = Dirname;
876 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
877 sys::path::append(FullPathName, Filename);
878 Filename = FullPathName.str();
879 }
880 if (filenameMap.find(Filename.str()) != filenameMap.end())
881 continue;
882 filenameMap[Filename.str()] = i;
883 OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
884 ++i;
885 }
886
887 for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
888 E = DbgFinder.subprogram_end(); I != E; ++I) {
889 DISubprogram SP(*I);
890 StringRef Filename(SP.getFilename());
891 StringRef Dirname(SP.getDirectory());
892 SmallString<128> FullPathName = Dirname;
893 if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
894 sys::path::append(FullPathName, Filename);
895 Filename = FullPathName.str();
896 }
897 if (filenameMap.find(Filename.str()) != filenameMap.end())
898 continue;
899 filenameMap[Filename.str()] = i;
900 ++i;
901 }
902}
903
904bool NVPTXAsmPrinter::doInitialization (Module &M) {
905
906 SmallString<128> Str1;
907 raw_svector_ostream OS1(Str1);
908
909 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
910 MMI->AnalyzeModule(M);
911
912 // We need to call the parent's one explicitly.
913 //bool Result = AsmPrinter::doInitialization(M);
914
915 // Initialize TargetLoweringObjectFile.
916 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
917 .Initialize(OutContext, TM);
918
Micah Villmow3574eca2012-10-08 16:38:25 +0000919 Mang = new Mangler(OutContext, *TM.getDataLayout());
Justin Holewinski49683f32012-05-04 20:18:50 +0000920
921 // Emit header before any dwarf directives are emitted below.
922 emitHeader(M, OS1);
923 OutStreamer.EmitRawText(OS1.str());
924
925
926 // Already commented out
927 //bool Result = AsmPrinter::doInitialization(M);
928
929
930 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
931 recordAndEmitFilenames(M);
932
933 SmallString<128> Str2;
934 raw_svector_ostream OS2(Str2);
935
936 emitDeclarations(M, OS2);
937
Justin Holewinski2085d002012-11-16 21:03:51 +0000938 // As ptxas does not support forward references of globals, we need to first
939 // sort the list of module-level globals in def-use order. We visit each
940 // global variable in order, and ensure that we emit it *after* its dependent
941 // globals. We use a little extra memory maintaining both a set and a list to
942 // have fast searches while maintaining a strict ordering.
943 SmallVector<GlobalVariable*,8> Globals;
944 DenseSet<GlobalVariable*> GVVisited;
945 DenseSet<GlobalVariable*> GVVisiting;
946
947 // Visit each global variable, in order
Justin Holewinski49683f32012-05-04 20:18:50 +0000948 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
Justin Holewinski2085d002012-11-16 21:03:51 +0000949 I != E; ++I)
950 VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
951
952 assert(GVVisited.size() == M.getGlobalList().size() &&
953 "Missed a global variable");
954 assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
955
956 // Print out module-level global variables in proper order
957 for (unsigned i = 0, e = Globals.size(); i != e; ++i)
958 printModuleLevelGV(Globals[i], OS2);
Justin Holewinski49683f32012-05-04 20:18:50 +0000959
960 OS2 << '\n';
961
962 OutStreamer.EmitRawText(OS2.str());
963 return false; // success
964}
965
966void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) {
967 O << "//\n";
968 O << "// Generated by LLVM NVPTX Back-End\n";
969 O << "//\n";
970 O << "\n";
971
Justin Holewinski08e9cb42012-11-12 03:16:43 +0000972 unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
973 O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
Justin Holewinski49683f32012-05-04 20:18:50 +0000974
975 O << ".target ";
976 O << nvptxSubtarget.getTargetName();
977
978 if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
979 O << ", texmode_independent";
980 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
981 if (!nvptxSubtarget.hasDouble())
982 O << ", map_f64_to_f32";
983 }
984
985 if (MAI->doesSupportDebugInformation())
986 O << ", debug";
987
988 O << "\n";
989
990 O << ".address_size ";
991 if (nvptxSubtarget.is64Bit())
992 O << "64";
993 else
994 O << "32";
995 O << "\n";
996
997 O << "\n";
998}
999
1000bool NVPTXAsmPrinter::doFinalization(Module &M) {
1001 // XXX Temproarily remove global variables so that doFinalization() will not
1002 // emit them again (global variables are emitted at beginning).
1003
1004 Module::GlobalListType &global_list = M.getGlobalList();
1005 int i, n = global_list.size();
1006 GlobalVariable **gv_array = new GlobalVariable* [n];
1007
1008 // first, back-up GlobalVariable in gv_array
1009 i = 0;
1010 for (Module::global_iterator I = global_list.begin(), E = global_list.end();
1011 I != E; ++I)
1012 gv_array[i++] = &*I;
1013
1014 // second, empty global_list
1015 while (!global_list.empty())
1016 global_list.remove(global_list.begin());
1017
1018 // call doFinalization
1019 bool ret = AsmPrinter::doFinalization(M);
1020
1021 // now we restore global variables
1022 for (i = 0; i < n; i ++)
1023 global_list.insert(global_list.end(), gv_array[i]);
1024
1025 delete[] gv_array;
1026 return ret;
1027
1028
1029 //bool Result = AsmPrinter::doFinalization(M);
1030 // Instead of calling the parents doFinalization, we may
1031 // clone parents doFinalization and customize here.
1032 // Currently, we if NVISA out the EmitGlobals() in
1033 // parent's doFinalization, which is too intrusive.
1034 //
1035 // Same for the doInitialization.
1036 //return Result;
1037}
1038
1039// This function emits appropriate linkage directives for
1040// functions and global variables.
1041//
1042// extern function declaration -> .extern
1043// extern function definition -> .visible
1044// external global variable with init -> .visible
1045// external without init -> .extern
1046// appending -> not allowed, assert.
1047
1048void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O)
1049{
1050 if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
1051 if (V->hasExternalLinkage()) {
1052 if (isa<GlobalVariable>(V)) {
1053 const GlobalVariable *GVar = cast<GlobalVariable>(V);
1054 if (GVar) {
1055 if (GVar->hasInitializer())
1056 O << ".visible ";
1057 else
1058 O << ".extern ";
1059 }
1060 } else if (V->isDeclaration())
1061 O << ".extern ";
1062 else
1063 O << ".visible ";
1064 } else if (V->hasAppendingLinkage()) {
1065 std::string msg;
1066 msg.append("Error: ");
1067 msg.append("Symbol ");
1068 if (V->hasName())
1069 msg.append(V->getName().str());
1070 msg.append("has unsupported appending linkage type");
1071 llvm_unreachable(msg.c_str());
1072 }
1073 }
1074}
1075
1076
1077void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O,
1078 bool processDemoted) {
1079
1080 // Skip meta data
1081 if (GVar->hasSection()) {
1082 if (GVar->getSection() == "llvm.metadata")
1083 return;
1084 }
1085
Micah Villmow3574eca2012-10-08 16:38:25 +00001086 const DataLayout *TD = TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +00001087
1088 // GlobalVariables are always constant pointers themselves.
1089 const PointerType *PTy = GVar->getType();
1090 Type *ETy = PTy->getElementType();
1091
1092 if (GVar->hasExternalLinkage()) {
1093 if (GVar->hasInitializer())
1094 O << ".visible ";
1095 else
1096 O << ".extern ";
1097 }
1098
1099 if (llvm::isTexture(*GVar)) {
1100 O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1101 return;
1102 }
1103
1104 if (llvm::isSurface(*GVar)) {
1105 O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1106 return;
1107 }
1108
1109 if (GVar->isDeclaration()) {
1110 // (extern) declarations, no definition or initializer
1111 // Currently the only known declaration is for an automatic __local
1112 // (.shared) promoted to global.
1113 emitPTXGlobalVariable(GVar, O);
1114 O << ";\n";
1115 return;
1116 }
1117
1118 if (llvm::isSampler(*GVar)) {
1119 O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1120
1121 Constant *Initializer = NULL;
1122 if (GVar->hasInitializer())
1123 Initializer = GVar->getInitializer();
1124 ConstantInt *CI = NULL;
1125 if (Initializer)
1126 CI = dyn_cast<ConstantInt>(Initializer);
1127 if (CI) {
1128 unsigned sample=CI->getZExtValue();
1129
1130 O << " = { ";
1131
1132 for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >>
1133 __CLK_ADDRESS_BASE) ; i < 3 ; i++) {
1134 O << "addr_mode_" << i << " = ";
1135 switch (addr) {
1136 case 0: O << "wrap"; break;
1137 case 1: O << "clamp_to_border"; break;
1138 case 2: O << "clamp_to_edge"; break;
1139 case 3: O << "wrap"; break;
1140 case 4: O << "mirror"; break;
1141 }
1142 O <<", ";
1143 }
1144 O << "filter_mode = ";
1145 switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) {
1146 case 0: O << "nearest"; break;
1147 case 1: O << "linear"; break;
1148 case 2: assert ( 0 && "Anisotropic filtering is not supported");
1149 default: O << "nearest"; break;
1150 }
1151 if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) {
1152 O << ", force_unnormalized_coords = 1";
1153 }
1154 O << " }";
1155 }
1156
1157 O << ";\n";
1158 return;
1159 }
1160
1161 if (GVar->hasPrivateLinkage()) {
1162
1163 if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1164 return;
1165
1166 // FIXME - need better way (e.g. Metadata) to avoid generating this global
1167 if (!strncmp(GVar->getName().data(), "filename", 8))
1168 return;
1169 if (GVar->use_empty())
1170 return;
1171 }
1172
1173 const Function *demotedFunc = 0;
1174 if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1175 O << "// " << GVar->getName().str() << " has been demoted\n";
1176 if (localDecls.find(demotedFunc) != localDecls.end())
1177 localDecls[demotedFunc].push_back(GVar);
1178 else {
1179 std::vector<GlobalVariable *> temp;
1180 temp.push_back(GVar);
1181 localDecls[demotedFunc] = temp;
1182 }
1183 return;
1184 }
1185
1186 O << ".";
1187 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1188 if (GVar->getAlignment() == 0)
1189 O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1190 else
1191 O << " .align " << GVar->getAlignment();
1192
1193
1194 if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1195 O << " .";
1196 O << getPTXFundamentalTypeStr(ETy, false);
1197 O << " ";
1198 O << *Mang->getSymbol(GVar);
1199
1200 // Ptx allows variable initilization only for constant and global state
1201 // spaces.
1202 if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1203 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1204 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1205 && GVar->hasInitializer()) {
1206 Constant *Initializer = GVar->getInitializer();
1207 if (!Initializer->isNullValue()) {
1208 O << " = " ;
1209 printScalarConstant(Initializer, O);
1210 }
1211 }
1212 } else {
1213 unsigned int ElementSize =0;
1214
1215 // Although PTX has direct support for struct type and array type and
1216 // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1217 // targets that support these high level field accesses. Structs, arrays
1218 // and vectors are lowered into arrays of bytes.
1219 switch (ETy->getTypeID()) {
1220 case Type::StructTyID:
1221 case Type::ArrayTyID:
1222 case Type::VectorTyID:
1223 ElementSize = TD->getTypeStoreSize(ETy);
1224 // Ptx allows variable initilization only for constant and
1225 // global state spaces.
1226 if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1227 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1228 (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1229 && GVar->hasInitializer()) {
1230 Constant *Initializer = GVar->getInitializer();
1231 if (!isa<UndefValue>(Initializer) &&
1232 !Initializer->isNullValue()) {
1233 AggBuffer aggBuffer(ElementSize, O, *this);
1234 bufferAggregateConstant(Initializer, &aggBuffer);
1235 if (aggBuffer.numSymbols) {
1236 if (nvptxSubtarget.is64Bit()) {
1237 O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ;
1238 O << ElementSize/8;
1239 }
1240 else {
1241 O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ;
1242 O << ElementSize/4;
1243 }
1244 O << "]";
1245 }
1246 else {
1247 O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1248 O << ElementSize;
1249 O << "]";
1250 }
1251 O << " = {" ;
1252 aggBuffer.print();
1253 O << "}";
1254 }
1255 else {
1256 O << " .b8 " << *Mang->getSymbol(GVar) ;
1257 if (ElementSize) {
1258 O <<"[" ;
1259 O << ElementSize;
1260 O << "]";
1261 }
1262 }
1263 }
1264 else {
1265 O << " .b8 " << *Mang->getSymbol(GVar);
1266 if (ElementSize) {
1267 O <<"[" ;
1268 O << ElementSize;
1269 O << "]";
1270 }
1271 }
1272 break;
1273 default:
1274 assert( 0 && "type not supported yet");
1275 }
1276
1277 }
1278 O << ";\n";
1279}
1280
1281void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1282 if (localDecls.find(f) == localDecls.end())
1283 return;
1284
1285 std::vector<GlobalVariable *> &gvars = localDecls[f];
1286
1287 for (unsigned i=0, e=gvars.size(); i!=e; ++i) {
1288 O << "\t// demoted variable\n\t";
1289 printModuleLevelGV(gvars[i], O, true);
1290 }
1291}
1292
1293void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1294 raw_ostream &O) const {
1295 switch (AddressSpace) {
1296 case llvm::ADDRESS_SPACE_LOCAL:
1297 O << "local" ;
1298 break;
1299 case llvm::ADDRESS_SPACE_GLOBAL:
1300 O << "global" ;
1301 break;
1302 case llvm::ADDRESS_SPACE_CONST:
1303 // This logic should be consistent with that in
1304 // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp)
1305 if (nvptxSubtarget.hasGenericLdSt())
1306 O << "global" ;
1307 else
1308 O << "const" ;
1309 break;
1310 case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1311 O << "const" ;
1312 break;
1313 case llvm::ADDRESS_SPACE_SHARED:
1314 O << "shared" ;
1315 break;
1316 default:
Justin Holewinski00d9da12013-02-09 13:34:15 +00001317 report_fatal_error("Bad address space found while emitting PTX");
1318 break;
Justin Holewinski49683f32012-05-04 20:18:50 +00001319 }
1320}
1321
1322std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty,
1323 bool useB4PTR) const {
1324 switch (Ty->getTypeID()) {
1325 default:
1326 llvm_unreachable("unexpected type");
1327 break;
1328 case Type::IntegerTyID: {
1329 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1330 if (NumBits == 1)
1331 return "pred";
1332 else if (NumBits <= 64) {
1333 std::string name = "u";
1334 return name + utostr(NumBits);
1335 } else {
1336 llvm_unreachable("Integer too large");
1337 break;
1338 }
1339 break;
1340 }
1341 case Type::FloatTyID:
1342 return "f32";
1343 case Type::DoubleTyID:
1344 return "f64";
1345 case Type::PointerTyID:
1346 if (nvptxSubtarget.is64Bit())
1347 if (useB4PTR) return "b64";
1348 else return "u64";
1349 else
1350 if (useB4PTR) return "b32";
1351 else return "u32";
1352 }
1353 llvm_unreachable("unexpected type");
1354 return NULL;
1355}
1356
1357void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar,
1358 raw_ostream &O) {
1359
Micah Villmow3574eca2012-10-08 16:38:25 +00001360 const DataLayout *TD = TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +00001361
1362 // GlobalVariables are always constant pointers themselves.
1363 const PointerType *PTy = GVar->getType();
1364 Type *ETy = PTy->getElementType();
1365
1366 O << ".";
1367 emitPTXAddressSpace(PTy->getAddressSpace(), O);
1368 if (GVar->getAlignment() == 0)
1369 O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1370 else
1371 O << " .align " << GVar->getAlignment();
1372
1373 if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1374 O << " .";
1375 O << getPTXFundamentalTypeStr(ETy);
1376 O << " ";
1377 O << *Mang->getSymbol(GVar);
1378 return;
1379 }
1380
1381 int64_t ElementSize =0;
1382
1383 // Although PTX has direct support for struct type and array type and LLVM IR
1384 // is very similar to PTX, the LLVM CodeGen does not support for targets that
1385 // support these high level field accesses. Structs and arrays are lowered
1386 // into arrays of bytes.
1387 switch (ETy->getTypeID()) {
1388 case Type::StructTyID:
1389 case Type::ArrayTyID:
1390 case Type::VectorTyID:
1391 ElementSize = TD->getTypeStoreSize(ETy);
1392 O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1393 if (ElementSize) {
1394 O << itostr(ElementSize) ;
1395 }
1396 O << "]";
1397 break;
1398 default:
1399 assert( 0 && "type not supported yet");
1400 }
1401 return ;
1402}
1403
1404
1405static unsigned int
Micah Villmow3574eca2012-10-08 16:38:25 +00001406getOpenCLAlignment(const DataLayout *TD,
Justin Holewinski49683f32012-05-04 20:18:50 +00001407 Type *Ty) {
1408 if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
1409 return TD->getPrefTypeAlignment(Ty);
1410
1411 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1412 if (ATy)
1413 return getOpenCLAlignment(TD, ATy->getElementType());
1414
1415 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1416 if (VTy) {
1417 Type *ETy = VTy->getElementType();
1418 unsigned int numE = VTy->getNumElements();
1419 unsigned int alignE = TD->getPrefTypeAlignment(ETy);
1420 if (numE == 3)
1421 return 4*alignE;
1422 else
1423 return numE*alignE;
1424 }
1425
1426 const StructType *STy = dyn_cast<StructType>(Ty);
1427 if (STy) {
1428 unsigned int alignStruct = 1;
1429 // Go through each element of the struct and find the
1430 // largest alignment.
1431 for (unsigned i=0, e=STy->getNumElements(); i != e; i++) {
1432 Type *ETy = STy->getElementType(i);
1433 unsigned int align = getOpenCLAlignment(TD, ETy);
1434 if (align > alignStruct)
1435 alignStruct = align;
1436 }
1437 return alignStruct;
1438 }
1439
1440 const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
1441 if (FTy)
Chandler Carruth426c2bf2012-11-01 09:14:31 +00001442 return TD->getPointerPrefAlignment();
Justin Holewinski49683f32012-05-04 20:18:50 +00001443 return TD->getPrefTypeAlignment(Ty);
1444}
1445
1446void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1447 int paramIndex, raw_ostream &O) {
1448 if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1449 (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
1450 O << *CurrentFnSym << "_param_" << paramIndex;
1451 else {
1452 std::string argName = I->getName();
1453 const char *p = argName.c_str();
1454 while (*p) {
1455 if (*p == '.')
1456 O << "_";
1457 else
1458 O << *p;
1459 p++;
1460 }
1461 }
1462}
1463
1464void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
1465 Function::const_arg_iterator I, E;
1466 int i = 0;
1467
1468 if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1469 (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
1470 O << *CurrentFnSym << "_param_" << paramIndex;
1471 return;
1472 }
1473
1474 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
1475 if (i==paramIndex) {
1476 printParamName(I, paramIndex, O);
1477 return;
1478 }
1479 }
1480 llvm_unreachable("paramIndex out of bound");
1481}
1482
1483void NVPTXAsmPrinter::emitFunctionParamList(const Function *F,
1484 raw_ostream &O) {
Micah Villmow3574eca2012-10-08 16:38:25 +00001485 const DataLayout *TD = TM.getDataLayout();
Bill Wendling99faa3b2012-12-07 23:16:57 +00001486 const AttributeSet &PAL = F->getAttributes();
Justin Holewinski49683f32012-05-04 20:18:50 +00001487 const TargetLowering *TLI = TM.getTargetLowering();
1488 Function::const_arg_iterator I, E;
1489 unsigned paramIndex = 0;
1490 bool first = true;
1491 bool isKernelFunc = llvm::isKernelFunction(*F);
1492 bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
1493 MVT thePointerTy = TLI->getPointerTy();
1494
1495 O << "(\n";
1496
1497 for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1498 const Type *Ty = I->getType();
1499
1500 if (!first)
1501 O << ",\n";
1502
1503 first = false;
1504
1505 // Handle image/sampler parameters
1506 if (llvm::isSampler(*I) || llvm::isImage(*I)) {
1507 if (llvm::isImage(*I)) {
1508 std::string sname = I->getName();
1509 if (llvm::isImageWriteOnly(*I))
1510 O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex;
1511 else // Default image is read_only
1512 O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex;
1513 }
1514 else // Should be llvm::isSampler(*I)
1515 O << "\t.param .samplerref " << *CurrentFnSym << "_param_"
1516 << paramIndex;
1517 continue;
1518 }
1519
Bill Wendling94e94b32012-12-30 13:50:49 +00001520 if (PAL.hasAttribute(paramIndex+1, Attribute::ByVal) == false) {
Justin Holewinski49683f32012-05-04 20:18:50 +00001521 // Just a scalar
1522 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1523 if (isKernelFunc) {
1524 if (PTy) {
1525 // Special handling for pointer arguments to kernel
1526 O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1527
1528 if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
1529 Type *ETy = PTy->getElementType();
1530 int addrSpace = PTy->getAddressSpace();
1531 switch(addrSpace) {
1532 default:
1533 O << ".ptr ";
1534 break;
1535 case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1536 O << ".ptr .const ";
1537 break;
1538 case llvm::ADDRESS_SPACE_SHARED:
1539 O << ".ptr .shared ";
1540 break;
1541 case llvm::ADDRESS_SPACE_GLOBAL:
1542 case llvm::ADDRESS_SPACE_CONST:
1543 O << ".ptr .global ";
1544 break;
1545 }
1546 O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " ";
1547 }
1548 printParamName(I, paramIndex, O);
1549 continue;
1550 }
1551
1552 // non-pointer scalar to kernel func
1553 O << "\t.param ."
1554 << getPTXFundamentalTypeStr(Ty) << " ";
1555 printParamName(I, paramIndex, O);
1556 continue;
1557 }
1558 // Non-kernel function, just print .param .b<size> for ABI
1559 // and .reg .b<size> for non ABY
1560 unsigned sz = 0;
1561 if (isa<IntegerType>(Ty)) {
1562 sz = cast<IntegerType>(Ty)->getBitWidth();
1563 if (sz < 32) sz = 32;
1564 }
1565 else if (isa<PointerType>(Ty))
1566 sz = thePointerTy.getSizeInBits();
1567 else
1568 sz = Ty->getPrimitiveSizeInBits();
1569 if (isABI)
1570 O << "\t.param .b" << sz << " ";
1571 else
1572 O << "\t.reg .b" << sz << " ";
1573 printParamName(I, paramIndex, O);
1574 continue;
1575 }
1576
1577 // param has byVal attribute. So should be a pointer
1578 const PointerType *PTy = dyn_cast<PointerType>(Ty);
1579 assert(PTy &&
1580 "Param with byval attribute should be a pointer type");
1581 Type *ETy = PTy->getElementType();
1582
1583 if (isABI || isKernelFunc) {
1584 // Just print .param .b8 .align <a> .param[size];
1585 // <a> = PAL.getparamalignment
1586 // size = typeallocsize of element type
1587 unsigned align = PAL.getParamAlignment(paramIndex+1);
Justin Holewinski89443ff2012-11-09 23:50:24 +00001588 if (align == 0)
1589 align = TD->getABITypeAlignment(ETy);
1590
Justin Holewinski49683f32012-05-04 20:18:50 +00001591 unsigned sz = TD->getTypeAllocSize(ETy);
1592 O << "\t.param .align " << align
1593 << " .b8 ";
1594 printParamName(I, paramIndex, O);
1595 O << "[" << sz << "]";
1596 continue;
1597 } else {
1598 // Split the ETy into constituent parts and
1599 // print .param .b<size> <name> for each part.
1600 // Further, if a part is vector, print the above for
1601 // each vector element.
1602 SmallVector<EVT, 16> vtparts;
1603 ComputeValueVTs(*TLI, ETy, vtparts);
1604 for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
1605 unsigned elems = 1;
1606 EVT elemtype = vtparts[i];
1607 if (vtparts[i].isVector()) {
1608 elems = vtparts[i].getVectorNumElements();
1609 elemtype = vtparts[i].getVectorElementType();
1610 }
1611
1612 for (unsigned j=0,je=elems; j!=je; ++j) {
1613 unsigned sz = elemtype.getSizeInBits();
1614 if (elemtype.isInteger() && (sz < 32)) sz = 32;
1615 O << "\t.reg .b" << sz << " ";
1616 printParamName(I, paramIndex, O);
1617 if (j<je-1) O << ",\n";
1618 ++paramIndex;
1619 }
1620 if (i<e-1)
1621 O << ",\n";
1622 }
1623 --paramIndex;
1624 continue;
1625 }
1626 }
1627
1628 O << "\n)\n";
1629}
1630
1631void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1632 raw_ostream &O) {
1633 const Function *F = MF.getFunction();
1634 emitFunctionParamList(F, O);
1635}
1636
1637
1638void NVPTXAsmPrinter::
1639setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) {
1640 SmallString<128> Str;
1641 raw_svector_ostream O(Str);
1642
1643 // Map the global virtual register number to a register class specific
1644 // virtual register number starting from 1 with that class.
1645 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
1646 //unsigned numRegClasses = TRI->getNumRegClasses();
1647
1648 // Emit the Fake Stack Object
1649 const MachineFrameInfo *MFI = MF.getFrameInfo();
1650 int NumBytes = (int) MFI->getStackSize();
1651 if (NumBytes) {
1652 O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t"
1653 << DEPOTNAME
1654 << getFunctionNumber() << "[" << NumBytes << "];\n";
1655 if (nvptxSubtarget.is64Bit()) {
1656 O << "\t.reg .b64 \t%SP;\n";
1657 O << "\t.reg .b64 \t%SPL;\n";
1658 }
1659 else {
1660 O << "\t.reg .b32 \t%SP;\n";
1661 O << "\t.reg .b32 \t%SPL;\n";
1662 }
1663 }
1664
1665 // Go through all virtual registers to establish the mapping between the
1666 // global virtual
1667 // register number and the per class virtual register number.
1668 // We use the per class virtual register number in the ptx output.
1669 unsigned int numVRs = MRI->getNumVirtRegs();
1670 for (unsigned i=0; i< numVRs; i++) {
1671 unsigned int vr = TRI->index2VirtReg(i);
1672 const TargetRegisterClass *RC = MRI->getRegClass(vr);
1673 std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[RC->getID()];
1674 int n = regmap.size();
1675 regmap.insert(std::make_pair(vr, n+1));
1676 }
1677
1678 // Emit register declarations
1679 // @TODO: Extract out the real register usage
1680 O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1681 O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1682 O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1683 O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1684 O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
1685 O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1686 O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
1687
1688 // Emit declaration of the virtual registers or 'physical' registers for
1689 // each register class
1690 //for (unsigned i=0; i< numRegClasses; i++) {
1691 // std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[i];
1692 // const TargetRegisterClass *RC = TRI->getRegClass(i);
1693 // std::string rcname = getNVPTXRegClassName(RC);
1694 // std::string rcStr = getNVPTXRegClassStr(RC);
1695 // //int n = regmap.size();
1696 // if (!isNVPTXVectorRegClass(RC)) {
1697 // O << "\t.reg " << rcname << " \t" << rcStr << "<"
1698 // << NVPTXNumRegisters << ">;\n";
1699 // }
1700
1701 // Only declare those registers that may be used. And do not emit vector
1702 // registers as
1703 // they are all elementized to scalar registers.
1704 //if (n && !isNVPTXVectorRegClass(RC)) {
1705 // if (RegAllocNilUsed) {
1706 // O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1707 // << ">;\n";
1708 // }
1709 // else {
1710 // O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr)
1711 // << "<" << 32 << ">;\n";
1712 // }
1713 //}
1714 //}
1715
1716 OutStreamer.EmitRawText(O.str());
1717}
1718
1719
1720void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1721 APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1722 bool ignored;
1723 unsigned int numHex;
1724 const char *lead;
1725
1726 if (Fp->getType()->getTypeID()==Type::FloatTyID) {
1727 numHex = 8;
1728 lead = "0f";
1729 APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1730 &ignored);
1731 } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1732 numHex = 16;
1733 lead = "0d";
1734 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1735 &ignored);
1736 } else
1737 llvm_unreachable("unsupported fp type");
1738
1739 APInt API = APF.bitcastToAPInt();
1740 std::string hexstr(utohexstr(API.getZExtValue()));
1741 O << lead;
1742 if (hexstr.length() < numHex)
1743 O << std::string(numHex - hexstr.length(), '0');
1744 O << utohexstr(API.getZExtValue());
1745}
1746
1747void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) {
1748 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1749 O << CI->getValue();
1750 return;
1751 }
1752 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1753 printFPConstant(CFP, O);
1754 return;
1755 }
1756 if (isa<ConstantPointerNull>(CPV)) {
1757 O << "0";
1758 return;
1759 }
1760 if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1761 O << *Mang->getSymbol(GVar);
1762 return;
1763 }
1764 if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1765 Value *v = Cexpr->stripPointerCasts();
1766 if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1767 O << *Mang->getSymbol(GVar);
1768 return;
1769 } else {
1770 O << *LowerConstant(CPV, *this);
1771 return;
1772 }
1773 }
1774 llvm_unreachable("Not scalar type found in printScalarConstant()");
1775}
1776
1777
1778void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes,
1779 AggBuffer *aggBuffer) {
1780
Micah Villmow3574eca2012-10-08 16:38:25 +00001781 const DataLayout *TD = TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +00001782
1783 if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1784 int s = TD->getTypeAllocSize(CPV->getType());
1785 if (s<Bytes)
1786 s = Bytes;
1787 aggBuffer->addZeros(s);
1788 return;
1789 }
1790
1791 unsigned char *ptr;
1792 switch (CPV->getType()->getTypeID()) {
1793
1794 case Type::IntegerTyID: {
1795 const Type *ETy = CPV->getType();
1796 if ( ETy == Type::getInt8Ty(CPV->getContext()) ){
1797 unsigned char c =
1798 (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1799 ptr = &c;
1800 aggBuffer->addBytes(ptr, 1, Bytes);
1801 } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) {
1802 short int16 =
1803 (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1804 ptr = (unsigned char*)&int16;
1805 aggBuffer->addBytes(ptr, 2, Bytes);
1806 } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) {
1807 if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1808 int int32 =(int)(constInt->getZExtValue());
1809 ptr = (unsigned char*)&int32;
1810 aggBuffer->addBytes(ptr, 4, Bytes);
1811 break;
Craig Topper63663612012-05-24 07:02:50 +00001812 } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Justin Holewinski49683f32012-05-04 20:18:50 +00001813 if (ConstantInt *constInt =
1814 dyn_cast<ConstantInt>(ConstantFoldConstantExpression(
1815 Cexpr, TD))) {
1816 int int32 =(int)(constInt->getZExtValue());
1817 ptr = (unsigned char*)&int32;
1818 aggBuffer->addBytes(ptr, 4, Bytes);
1819 break;
1820 }
1821 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1822 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1823 aggBuffer->addSymbol(v);
1824 aggBuffer->addZeros(4);
1825 break;
1826 }
1827 }
Craig Topper63663612012-05-24 07:02:50 +00001828 llvm_unreachable("unsupported integer const type");
Justin Holewinski49683f32012-05-04 20:18:50 +00001829 } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) {
1830 if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1831 long long int64 =(long long)(constInt->getZExtValue());
1832 ptr = (unsigned char*)&int64;
1833 aggBuffer->addBytes(ptr, 8, Bytes);
1834 break;
Craig Topper63663612012-05-24 07:02:50 +00001835 } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Justin Holewinski49683f32012-05-04 20:18:50 +00001836 if (ConstantInt *constInt = dyn_cast<ConstantInt>(
1837 ConstantFoldConstantExpression(Cexpr, TD))) {
1838 long long int64 =(long long)(constInt->getZExtValue());
1839 ptr = (unsigned char*)&int64;
1840 aggBuffer->addBytes(ptr, 8, Bytes);
1841 break;
1842 }
1843 if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1844 Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1845 aggBuffer->addSymbol(v);
1846 aggBuffer->addZeros(8);
1847 break;
1848 }
1849 }
1850 llvm_unreachable("unsupported integer const type");
Craig Topper63663612012-05-24 07:02:50 +00001851 } else
Justin Holewinski49683f32012-05-04 20:18:50 +00001852 llvm_unreachable("unsupported integer const type");
1853 break;
1854 }
1855 case Type::FloatTyID:
1856 case Type::DoubleTyID: {
1857 ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1858 const Type* Ty = CFP->getType();
1859 if (Ty == Type::getFloatTy(CPV->getContext())) {
1860 float float32 = (float)CFP->getValueAPF().convertToFloat();
1861 ptr = (unsigned char*)&float32;
1862 aggBuffer->addBytes(ptr, 4, Bytes);
1863 } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1864 double float64 = CFP->getValueAPF().convertToDouble();
1865 ptr = (unsigned char*)&float64;
1866 aggBuffer->addBytes(ptr, 8, Bytes);
1867 }
1868 else {
1869 llvm_unreachable("unsupported fp const type");
1870 }
1871 break;
1872 }
1873 case Type::PointerTyID: {
1874 if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1875 aggBuffer->addSymbol(GVar);
1876 }
1877 else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1878 Value *v = Cexpr->stripPointerCasts();
1879 aggBuffer->addSymbol(v);
1880 }
1881 unsigned int s = TD->getTypeAllocSize(CPV->getType());
1882 aggBuffer->addZeros(s);
1883 break;
1884 }
1885
1886 case Type::ArrayTyID:
1887 case Type::VectorTyID:
1888 case Type::StructTyID: {
1889 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1890 isa<ConstantStruct>(CPV)) {
1891 int ElementSize = TD->getTypeAllocSize(CPV->getType());
1892 bufferAggregateConstant(CPV, aggBuffer);
1893 if ( Bytes > ElementSize )
1894 aggBuffer->addZeros(Bytes-ElementSize);
1895 }
1896 else if (isa<ConstantAggregateZero>(CPV))
1897 aggBuffer->addZeros(Bytes);
1898 else
1899 llvm_unreachable("Unexpected Constant type");
1900 break;
1901 }
1902
1903 default:
1904 llvm_unreachable("unsupported type");
1905 }
1906}
1907
1908void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV,
1909 AggBuffer *aggBuffer) {
Micah Villmow3574eca2012-10-08 16:38:25 +00001910 const DataLayout *TD = TM.getDataLayout();
Justin Holewinski49683f32012-05-04 20:18:50 +00001911 int Bytes;
1912
1913 // Old constants
1914 if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1915 if (CPV->getNumOperands())
1916 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1917 bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1918 return;
1919 }
1920
1921 if (const ConstantDataSequential *CDS =
1922 dyn_cast<ConstantDataSequential>(CPV)) {
1923 if (CDS->getNumElements())
1924 for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1925 bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1926 aggBuffer);
1927 return;
1928 }
1929
1930
1931 if (isa<ConstantStruct>(CPV)) {
1932 if (CPV->getNumOperands()) {
1933 StructType *ST = cast<StructType>(CPV->getType());
1934 for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1935 if ( i == (e - 1))
1936 Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
1937 TD->getTypeAllocSize(ST)
1938 - TD->getStructLayout(ST)->getElementOffset(i);
1939 else
1940 Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) -
1941 TD->getStructLayout(ST)->getElementOffset(i);
1942 bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes,
1943 aggBuffer);
1944 }
1945 }
1946 return;
1947 }
Craig Topper63663612012-05-24 07:02:50 +00001948 llvm_unreachable("unsupported constant type in printAggregateConstant()");
Justin Holewinski49683f32012-05-04 20:18:50 +00001949}
1950
1951// buildTypeNameMap - Run through symbol table looking for type names.
1952//
1953
1954
1955bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
1956
1957 std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
1958
1959 if (PI != TypeNameMap.end() &&
1960 (!PI->second.compare("struct._image1d_t") ||
1961 !PI->second.compare("struct._image2d_t") ||
1962 !PI->second.compare("struct._image3d_t")))
1963 return true;
1964
1965 return false;
1966}
1967
1968/// PrintAsmOperand - Print out an operand for an inline asm expression.
1969///
1970bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1971 unsigned AsmVariant,
1972 const char *ExtraCode,
1973 raw_ostream &O) {
1974 if (ExtraCode && ExtraCode[0]) {
1975 if (ExtraCode[1] != 0) return true; // Unknown modifier.
1976
1977 switch (ExtraCode[0]) {
Jack Carter0518fca2012-06-26 13:49:27 +00001978 default:
1979 // See if this is a generic print operand
1980 return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
Justin Holewinski49683f32012-05-04 20:18:50 +00001981 case 'r':
1982 break;
1983 }
1984 }
1985
1986 printOperand(MI, OpNo, O);
1987
1988 return false;
1989}
1990
1991bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
1992 unsigned OpNo,
1993 unsigned AsmVariant,
1994 const char *ExtraCode,
1995 raw_ostream &O) {
1996 if (ExtraCode && ExtraCode[0])
1997 return true; // Unknown modifier
1998
1999 O << '[';
2000 printMemOperand(MI, OpNo, O);
2001 O << ']';
2002
2003 return false;
2004}
2005
2006bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI)
2007{
2008 switch(MI.getOpcode()) {
2009 default:
2010 return false;
2011 case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0:
2012 case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32:
2013 case NVPTX::CallArgF64: case NVPTX::CallArgI16:
2014 case NVPTX::CallArgI32: case NVPTX::CallArgI32imm:
2015 case NVPTX::CallArgI64: case NVPTX::CallArgI8:
2016 case NVPTX::CallArgParam: case NVPTX::CallVoidInst:
2017 case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End:
2018 case NVPTX::CallVoidInstReg64:
2019 case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst:
2020 case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst:
2021 case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst:
2022 case NVPTX::StoreParamF32: case NVPTX::StoreParamF64:
2023 case NVPTX::StoreParamI16: case NVPTX::StoreParamI32:
2024 case NVPTX::StoreParamI64: case NVPTX::StoreParamI8:
2025 case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8:
2026 case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16:
2027 case NVPTX::StoreParamScalar2F32: case NVPTX::StoreParamScalar2F64:
2028 case NVPTX::StoreParamScalar2I16: case NVPTX::StoreParamScalar2I32:
2029 case NVPTX::StoreParamScalar2I64: case NVPTX::StoreParamScalar2I8:
2030 case NVPTX::StoreParamScalar4F32: case NVPTX::StoreParamScalar4I16:
2031 case NVPTX::StoreParamScalar4I32: case NVPTX::StoreParamScalar4I8:
2032 case NVPTX::StoreParamV2F32: case NVPTX::StoreParamV2F64:
2033 case NVPTX::StoreParamV2I16: case NVPTX::StoreParamV2I32:
2034 case NVPTX::StoreParamV2I64: case NVPTX::StoreParamV2I8:
2035 case NVPTX::StoreParamV4F32: case NVPTX::StoreParamV4I16:
2036 case NVPTX::StoreParamV4I32: case NVPTX::StoreParamV4I8:
2037 case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64:
2038 case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32:
2039 case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8:
2040 case NVPTX::StoreRetvalScalar2F32: case NVPTX::StoreRetvalScalar2F64:
2041 case NVPTX::StoreRetvalScalar2I16: case NVPTX::StoreRetvalScalar2I32:
2042 case NVPTX::StoreRetvalScalar2I64: case NVPTX::StoreRetvalScalar2I8:
2043 case NVPTX::StoreRetvalScalar4F32: case NVPTX::StoreRetvalScalar4I16:
2044 case NVPTX::StoreRetvalScalar4I32: case NVPTX::StoreRetvalScalar4I8:
2045 case NVPTX::StoreRetvalV2F32: case NVPTX::StoreRetvalV2F64:
2046 case NVPTX::StoreRetvalV2I16: case NVPTX::StoreRetvalV2I32:
2047 case NVPTX::StoreRetvalV2I64: case NVPTX::StoreRetvalV2I8:
2048 case NVPTX::StoreRetvalV4F32: case NVPTX::StoreRetvalV4I16:
2049 case NVPTX::StoreRetvalV4I32: case NVPTX::StoreRetvalV4I8:
2050 case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64:
2051 case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32:
2052 case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64:
2053 case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam:
2054 case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64:
2055 case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32:
2056 case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8:
2057 case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64:
2058 case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32:
2059 case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8:
2060 case NVPTX::LoadParamScalar2F32: case NVPTX::LoadParamScalar2F64:
2061 case NVPTX::LoadParamScalar2I16: case NVPTX::LoadParamScalar2I32:
2062 case NVPTX::LoadParamScalar2I64: case NVPTX::LoadParamScalar2I8:
2063 case NVPTX::LoadParamScalar4F32: case NVPTX::LoadParamScalar4I16:
2064 case NVPTX::LoadParamScalar4I32: case NVPTX::LoadParamScalar4I8:
2065 case NVPTX::LoadParamV2F32: case NVPTX::LoadParamV2F64:
2066 case NVPTX::LoadParamV2I16: case NVPTX::LoadParamV2I32:
2067 case NVPTX::LoadParamV2I64: case NVPTX::LoadParamV2I8:
2068 case NVPTX::LoadParamV4F32: case NVPTX::LoadParamV4I16:
2069 case NVPTX::LoadParamV4I32: case NVPTX::LoadParamV4I8:
2070 case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE:
2071 return true;
2072 }
2073 return false;
2074}
2075
2076// Force static initialization.
2077extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
2078 RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2079 RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2080}
2081
2082
2083void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2084 std::stringstream temp;
2085 LineReader * reader = this->getReader(filename.str());
2086 temp << "\n//";
2087 temp << filename.str();
2088 temp << ":";
2089 temp << line;
2090 temp << " ";
2091 temp << reader->readLine(line);
2092 temp << "\n";
2093 this->OutStreamer.EmitRawText(Twine(temp.str()));
2094}
2095
2096
2097LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2098 if (reader == NULL) {
2099 reader = new LineReader(filename);
2100 }
2101
2102 if (reader->fileName() != filename) {
2103 delete reader;
2104 reader = new LineReader(filename);
2105 }
2106
2107 return reader;
2108}
2109
2110
2111std::string
2112LineReader::readLine(unsigned lineNum) {
2113 if (lineNum < theCurLine) {
2114 theCurLine = 0;
2115 fstr.seekg(0,std::ios::beg);
2116 }
2117 while (theCurLine < lineNum) {
2118 fstr.getline(buff,500);
2119 theCurLine++;
2120 }
2121 return buff;
2122}
2123
2124// Force static initialization.
2125extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2126 RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2127 RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2128}