blob: 7955a916d15f0cb3e390f9b054982f27ae290d83 [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner8af88ef2010-10-05 06:10:16 +000015// PIC base construction. This expands to code that looks like this:
16// call $next_inst
17// popl %destreg"
18let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
19 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
20 "", []>;
21
22
23// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
24// a stack adjustment and the codegen must know that they may modify the stack
25// pointer before prolog-epilog rewriting occurs.
26// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
27// sub / add which can clobber EFLAGS.
28let Defs = [ESP, EFLAGS], Uses = [ESP] in {
29def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
30 "#ADJCALLSTACKDOWN",
31 [(X86callseq_start timm:$amt)]>,
32 Requires<[In32BitMode]>;
33def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
34 "#ADJCALLSTACKUP",
35 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
36 Requires<[In32BitMode]>;
37}
38
39// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
40// a stack adjustment and the codegen must know that they may modify the stack
41// pointer before prolog-epilog rewriting occurs.
42// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
43// sub / add which can clobber EFLAGS.
44let Defs = [RSP, EFLAGS], Uses = [RSP] in {
45def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
46 "#ADJCALLSTACKDOWN",
47 [(X86callseq_start timm:$amt)]>,
48 Requires<[In64BitMode]>;
49def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
50 "#ADJCALLSTACKUP",
51 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
52 Requires<[In64BitMode]>;
53}
54
55
56
57// x86-64 va_start lowering magic.
58let usesCustomInserter = 1 in {
59def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
60 (outs),
61 (ins GR8:$al,
62 i64imm:$regsavefi, i64imm:$offset,
63 variable_ops),
64 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
65 [(X86vastart_save_xmm_regs GR8:$al,
66 imm:$regsavefi,
67 imm:$offset)]>;
68
69// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
70// to _alloca is needed to probe the stack when allocating more than 4k bytes in
71// one go. Touching the stack at 4K increments is necessary to ensure that the
72// guard pages used by the OS virtual memory manager are allocated in correct
73// sequence.
74// The main point of having separate instruction are extra unmodelled effects
75// (compared to ordinary calls) like stack pointer change.
76
77let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
78 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
79 "# dynamic stack allocation",
80 [(X86MingwAlloca)]>;
81}
82
83
Chris Lattner87be16a2010-10-05 06:04:14 +000084
85//===----------------------------------------------------------------------===//
86// EH Pseudo Instructions
87//
88let isTerminator = 1, isReturn = 1, isBarrier = 1,
89 hasCtrlDep = 1, isCodeGenOnly = 1 in {
90def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
91 "ret\t#eh_return, addr: $addr",
92 [(X86ehret GR32:$addr)]>;
93
94}
95
96let isTerminator = 1, isReturn = 1, isBarrier = 1,
97 hasCtrlDep = 1, isCodeGenOnly = 1 in {
98def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
99 "ret\t#eh_return, addr: $addr",
100 [(X86ehret GR64:$addr)]>;
101
102}
103
Chris Lattner8af88ef2010-10-05 06:10:16 +0000104//===----------------------------------------------------------------------===//
105// Alias Instructions
106//===----------------------------------------------------------------------===//
107
108// Alias instructions that map movr0 to xor.
109// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
110// FIXME: Set encoding to pseudo.
111let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
112 isCodeGenOnly = 1 in {
113def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
114 [(set GR8:$dst, 0)]>;
115
116// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
117// encoding and avoids a partial-register update sometimes, but doing so
118// at isel time interferes with rematerialization in the current register
119// allocator. For now, this is rewritten when the instruction is lowered
120// to an MCInst.
121def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
122 "",
123 [(set GR16:$dst, 0)]>, OpSize;
124
125// FIXME: Set encoding to pseudo.
126def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
127 [(set GR32:$dst, 0)]>;
128}
129
Chris Lattner010496c2010-10-05 06:22:35 +0000130// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
131// smaller encoding, but doing so at isel time interferes with rematerialization
132// in the current register allocator. For now, this is rewritten when the
133// instruction is lowered to an MCInst.
134// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
135// when we have a better way to specify isel priority.
136let Defs = [EFLAGS],
137 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
138def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
139 [(set GR64:$dst, 0)]>;
140
141// Materialize i64 constant where top 32-bits are zero. This could theoretically
142// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
143// that would make it more difficult to rematerialize.
144let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
145def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
146 "", [(set GR64:$dst, i64immZExt32:$src)]>;
147
148
149
150
Chris Lattner8af88ef2010-10-05 06:10:16 +0000151//===----------------------------------------------------------------------===//
152// Thread Local Storage Instructions
153//
154
155// ELF TLS Support
156// All calls clobber the non-callee saved registers. ESP is marked as
157// a use to prevent stack-pointer assignments that appear immediately
158// before calls from potentially appearing dead.
159let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
160 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
161 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
162 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
163 Uses = [ESP] in
164def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
165 "leal\t$sym, %eax; "
166 "call\t___tls_get_addr@PLT",
167 [(X86tlsaddr tls32addr:$sym)]>,
168 Requires<[In32BitMode]>;
169
170// All calls clobber the non-callee saved registers. RSP is marked as
171// a use to prevent stack-pointer assignments that appear immediately
172// before calls from potentially appearing dead.
173let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
174 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
175 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
176 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
177 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
178 Uses = [RSP] in
179def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
180 ".byte\t0x66; "
181 "leaq\t$sym(%rip), %rdi; "
182 ".word\t0x6666; "
183 "rex64; "
184 "call\t__tls_get_addr@PLT",
185 [(X86tlsaddr tls64addr:$sym)]>,
186 Requires<[In64BitMode]>;
187
188// Darwin TLS Support
189// For i386, the address of the thunk is passed on the stack, on return the
190// address of the variable is in %eax. %ecx is trashed during the function
191// call. All other registers are preserved.
192let Defs = [EAX, ECX],
193 Uses = [ESP],
194 usesCustomInserter = 1 in
195def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
196 "# TLSCall_32",
197 [(X86TLSCall addr:$sym)]>,
198 Requires<[In32BitMode]>;
199
200// For x86_64, the address of the thunk is passed in %rdi, on return
201// the address of the variable is in %rax. All other registers are preserved.
202let Defs = [RAX],
203 Uses = [RDI],
204 usesCustomInserter = 1 in
205def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
206 "# TLSCall_64",
207 [(X86TLSCall addr:$sym)]>,
208 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000209
210//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000211// Atomic Instruction Pseudo Instructions
212//===----------------------------------------------------------------------===//
213
214// Atomic exchange, and, or, xor
215let Constraints = "$val = $dst", Defs = [EFLAGS],
216 usesCustomInserter = 1 in {
217
218def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
219 "#ATOMAND8 PSEUDO!",
220 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
221def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
222 "#ATOMOR8 PSEUDO!",
223 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
224def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
225 "#ATOMXOR8 PSEUDO!",
226 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
227def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
228 "#ATOMNAND8 PSEUDO!",
229 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
230
231def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
232 "#ATOMAND16 PSEUDO!",
233 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
234def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
235 "#ATOMOR16 PSEUDO!",
236 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
237def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
238 "#ATOMXOR16 PSEUDO!",
239 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
240def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
241 "#ATOMNAND16 PSEUDO!",
242 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
243def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
244 "#ATOMMIN16 PSEUDO!",
245 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
246def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
247 "#ATOMMAX16 PSEUDO!",
248 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
249def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
250 "#ATOMUMIN16 PSEUDO!",
251 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
252def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
253 "#ATOMUMAX16 PSEUDO!",
254 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
255
256
257def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
258 "#ATOMAND32 PSEUDO!",
259 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
260def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
261 "#ATOMOR32 PSEUDO!",
262 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
263def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
264 "#ATOMXOR32 PSEUDO!",
265 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
266def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
267 "#ATOMNAND32 PSEUDO!",
268 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
269def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
270 "#ATOMMIN32 PSEUDO!",
271 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
272def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
273 "#ATOMMAX32 PSEUDO!",
274 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
275def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
276 "#ATOMUMIN32 PSEUDO!",
277 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
278def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
279 "#ATOMUMAX32 PSEUDO!",
280 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
281
282
283
284def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
285 "#ATOMAND64 PSEUDO!",
286 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
287def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
288 "#ATOMOR64 PSEUDO!",
289 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
290def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
291 "#ATOMXOR64 PSEUDO!",
292 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
293def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
294 "#ATOMNAND64 PSEUDO!",
295 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
296def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
297 "#ATOMMIN64 PSEUDO!",
298 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
299def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
300 "#ATOMMAX64 PSEUDO!",
301 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
302def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
303 "#ATOMUMIN64 PSEUDO!",
304 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
305def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
306 "#ATOMUMAX64 PSEUDO!",
307 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
308}
309
310let Constraints = "$val1 = $dst1, $val2 = $dst2",
311 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
312 Uses = [EAX, EBX, ECX, EDX],
313 mayLoad = 1, mayStore = 1,
314 usesCustomInserter = 1 in {
315def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
316 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
317 "#ATOMAND6432 PSEUDO!", []>;
318def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
319 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
320 "#ATOMOR6432 PSEUDO!", []>;
321def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
322 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
323 "#ATOMXOR6432 PSEUDO!", []>;
324def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
325 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
326 "#ATOMNAND6432 PSEUDO!", []>;
327def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
328 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
329 "#ATOMADD6432 PSEUDO!", []>;
330def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
331 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
332 "#ATOMSUB6432 PSEUDO!", []>;
333def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
334 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
335 "#ATOMSWAP6432 PSEUDO!", []>;
336}
337
338//===----------------------------------------------------------------------===//
339// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
340//===----------------------------------------------------------------------===//
341
342// FIXME: Use normal instructions and add lock prefix dynamically.
343
344// Memory barriers
345
346// TODO: Get this to fold the constant into the instruction.
347def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
348 "lock\n\t"
349 "or{l}\t{$zero, $dst|$dst, $zero}",
350 []>, Requires<[In32BitMode]>, LOCK;
351
352let hasSideEffects = 1 in
353def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
354 "#MEMBARRIER",
355 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
356
357// TODO: Get this to fold the constant into the instruction.
358let hasSideEffects = 1, Defs = [ESP] in
359def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
360 "lock\n\t"
361 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
362 [(X86MemBarrierNoSSE GR64:$zero)]>,
363 Requires<[In64BitMode]>, LOCK;
364
365
366// Optimized codegen when the non-memory output is not used.
367let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
368def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
369 "lock\n\t"
370 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
371def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
372 "lock\n\t"
373 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
374def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
375 "lock\n\t"
376 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
377def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
378 "lock\n\t"
379 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
380
381def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
382 "lock\n\t"
383 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
384def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
385 "lock\n\t"
386 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
387def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
388 "lock\n\t"
389 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
390def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
391 (ins i64mem:$dst, i64i32imm :$src2),
392 "lock\n\t"
393 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
394
395def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
396 "lock\n\t"
397 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
398def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
399 "lock\n\t"
400 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
401def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
402 (ins i64mem:$dst, i64i8imm :$src2),
403 "lock\n\t"
404 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
405
406def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
407 "lock\n\t"
408 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
409def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
410 "lock\n\t"
411 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
412def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
413 "lock\n\t"
414 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
415def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
416 "lock\n\t"
417 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
418
419
420def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
421 "lock\n\t"
422 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
423def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
424 "lock\n\t"
425 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
426def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
427 "lock\n\t"
428 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
429def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
430 (ins i64mem:$dst, i64i32imm:$src2),
431 "lock\n\t"
432 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
433
434
435def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
436 "lock\n\t"
437 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
438def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
439 "lock\n\t"
440 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
441def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
442 (ins i64mem:$dst, i64i8imm :$src2),
443 "lock\n\t"
444 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
445
446def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
447 "lock\n\t"
448 "inc{b}\t$dst", []>, LOCK;
449def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
450 "lock\n\t"
451 "inc{w}\t$dst", []>, OpSize, LOCK;
452def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
453 "lock\n\t"
454 "inc{l}\t$dst", []>, LOCK;
455def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
456 "lock\n\t"
457 "inc{q}\t$dst", []>, LOCK;
458
459def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
460 "lock\n\t"
461 "dec{b}\t$dst", []>, LOCK;
462def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
463 "lock\n\t"
464 "dec{w}\t$dst", []>, OpSize, LOCK;
465def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
466 "lock\n\t"
467 "dec{l}\t$dst", []>, LOCK;
468def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
469 "lock\n\t"
470 "dec{q}\t$dst", []>, LOCK;
471}
472
473// Atomic compare and swap.
474let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
475def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
476 "lock\n\t"
477 "cmpxchg8b\t$ptr",
478 [(X86cas8 addr:$ptr)]>, TB, LOCK;
479}
480let Defs = [AL, EFLAGS], Uses = [AL] in {
481def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
482 "lock\n\t"
483 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
484 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
485}
486
487let Defs = [AX, EFLAGS], Uses = [AX] in {
488def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
489 "lock\n\t"
490 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
491 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
492}
493
494let Defs = [EAX, EFLAGS], Uses = [EAX] in {
495def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
496 "lock\n\t"
497 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
498 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
499}
500
501let Defs = [RAX, EFLAGS], Uses = [RAX] in {
502def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
503 "lock\n\t"
504 "cmpxchgq\t$swap,$ptr",
505 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
506}
507
508// Atomic exchange and add
509let Constraints = "$val = $dst", Defs = [EFLAGS] in {
510def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
511 "lock\n\t"
512 "xadd{b}\t{$val, $ptr|$ptr, $val}",
513 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
514 TB, LOCK;
515def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
516 "lock\n\t"
517 "xadd{w}\t{$val, $ptr|$ptr, $val}",
518 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
519 TB, OpSize, LOCK;
520def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
521 "lock\n\t"
522 "xadd{l}\t{$val, $ptr|$ptr, $val}",
523 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
524 TB, LOCK;
525def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
526 "lock\n\t"
527 "xadd\t$val, $ptr",
528 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
529 TB, LOCK;
530}
531
532
533//===----------------------------------------------------------------------===//
534// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000535//===----------------------------------------------------------------------===//
536
537// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
538def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
539def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
540def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
541def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
542def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
543def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
544
545def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
546 (ADD32ri GR32:$src1, tconstpool:$src2)>;
547def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
548 (ADD32ri GR32:$src1, tjumptable:$src2)>;
549def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
550 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
551def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
552 (ADD32ri GR32:$src1, texternalsym:$src2)>;
553def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
554 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
555
556def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
557 (MOV32mi addr:$dst, tglobaladdr:$src)>;
558def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
559 (MOV32mi addr:$dst, texternalsym:$src)>;
560def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
561 (MOV32mi addr:$dst, tblockaddress:$src)>;
562
563
564
565// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
566// code model mode, should use 'movabs'. FIXME: This is really a hack, the
567// 'movabs' predicate should handle this sort of thing.
568def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
569 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
570def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
571 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
572def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
573 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
574def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
575 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
576def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
577 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
578
579// In static codegen with small code model, we can get the address of a label
580// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
581// the MOV64ri64i32 should accept these.
582def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
583 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
584def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
585 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
586def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
587 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
588def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
589 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
590def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
591 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
592
593// In kernel code model, we can get the address of a label
594// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
595// the MOV64ri32 should accept these.
596def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
597 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
598def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
599 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
600def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
601 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
602def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
603 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
604def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
605 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
606
607// If we have small model and -static mode, it is safe to store global addresses
608// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
609// for MOV64mi32 should handle this sort of thing.
610def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
611 (MOV64mi32 addr:$dst, tconstpool:$src)>,
612 Requires<[NearData, IsStatic]>;
613def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
614 (MOV64mi32 addr:$dst, tjumptable:$src)>,
615 Requires<[NearData, IsStatic]>;
616def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
617 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
618 Requires<[NearData, IsStatic]>;
619def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
620 (MOV64mi32 addr:$dst, texternalsym:$src)>,
621 Requires<[NearData, IsStatic]>;
622def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
623 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
624 Requires<[NearData, IsStatic]>;
625
626
627
628// Calls
629
630// tls has some funny stuff here...
631// This corresponds to movabs $foo@tpoff, %rax
632def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
633 (MOV64ri tglobaltlsaddr :$dst)>;
634// This corresponds to add $foo@tpoff, %rax
635def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
636 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
637// This corresponds to mov foo@tpoff(%rbx), %eax
638def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
639 (MOV64rm tglobaltlsaddr :$dst)>;
640
641
642// Direct PC relative function call for small code model. 32-bit displacement
643// sign extended to 64-bit.
644def : Pat<(X86call (i64 tglobaladdr:$dst)),
645 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
646def : Pat<(X86call (i64 texternalsym:$dst)),
647 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
648
649def : Pat<(X86call (i64 tglobaladdr:$dst)),
650 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
651def : Pat<(X86call (i64 texternalsym:$dst)),
652 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
653
654// tailcall stuff
655def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
656 (TCRETURNri GR32_TC:$dst, imm:$off)>,
657 Requires<[In32BitMode]>;
658
659// FIXME: This is disabled for 32-bit PIC mode because the global base
660// register which is part of the address mode may be assigned a
661// callee-saved register.
662def : Pat<(X86tcret (load addr:$dst), imm:$off),
663 (TCRETURNmi addr:$dst, imm:$off)>,
664 Requires<[In32BitMode, IsNotPIC]>;
665
666def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
667 (TCRETURNdi texternalsym:$dst, imm:$off)>,
668 Requires<[In32BitMode]>;
669
670def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
671 (TCRETURNdi texternalsym:$dst, imm:$off)>,
672 Requires<[In32BitMode]>;
673
674def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
675 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
676 Requires<[In64BitMode]>;
677
678def : Pat<(X86tcret (load addr:$dst), imm:$off),
679 (TCRETURNmi64 addr:$dst, imm:$off)>,
680 Requires<[In64BitMode]>;
681
682def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
683 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
684 Requires<[In64BitMode]>;
685
686def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
687 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
688 Requires<[In64BitMode]>;
689
690// Normal calls, with various flavors of addresses.
691def : Pat<(X86call (i32 tglobaladdr:$dst)),
692 (CALLpcrel32 tglobaladdr:$dst)>;
693def : Pat<(X86call (i32 texternalsym:$dst)),
694 (CALLpcrel32 texternalsym:$dst)>;
695def : Pat<(X86call (i32 imm:$dst)),
696 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
697
698// X86 specific add which produces a flag.
699def : Pat<(addc GR32:$src1, GR32:$src2),
700 (ADD32rr GR32:$src1, GR32:$src2)>;
701def : Pat<(addc GR32:$src1, (load addr:$src2)),
702 (ADD32rm GR32:$src1, addr:$src2)>;
703def : Pat<(addc GR32:$src1, imm:$src2),
704 (ADD32ri GR32:$src1, imm:$src2)>;
705def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
706 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
707
708def : Pat<(addc GR64:$src1, GR64:$src2),
709 (ADD64rr GR64:$src1, GR64:$src2)>;
710def : Pat<(addc GR64:$src1, (load addr:$src2)),
711 (ADD64rm GR64:$src1, addr:$src2)>;
712def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
713 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
714def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
715 (ADD64ri32 GR64:$src1, imm:$src2)>;
716
717def : Pat<(subc GR32:$src1, GR32:$src2),
718 (SUB32rr GR32:$src1, GR32:$src2)>;
719def : Pat<(subc GR32:$src1, (load addr:$src2)),
720 (SUB32rm GR32:$src1, addr:$src2)>;
721def : Pat<(subc GR32:$src1, imm:$src2),
722 (SUB32ri GR32:$src1, imm:$src2)>;
723def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
724 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
725
726def : Pat<(subc GR64:$src1, GR64:$src2),
727 (SUB64rr GR64:$src1, GR64:$src2)>;
728def : Pat<(subc GR64:$src1, (load addr:$src2)),
729 (SUB64rm GR64:$src1, addr:$src2)>;
730def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
731 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
732def : Pat<(subc GR64:$src1, imm:$src2),
733 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
734
735// Comparisons.
736
737// TEST R,R is smaller than CMP R,0
738def : Pat<(X86cmp GR8:$src1, 0),
739 (TEST8rr GR8:$src1, GR8:$src1)>;
740def : Pat<(X86cmp GR16:$src1, 0),
741 (TEST16rr GR16:$src1, GR16:$src1)>;
742def : Pat<(X86cmp GR32:$src1, 0),
743 (TEST32rr GR32:$src1, GR32:$src1)>;
744def : Pat<(X86cmp GR64:$src1, 0),
745 (TEST64rr GR64:$src1, GR64:$src1)>;
746
747// Conditional moves with folded loads with operands swapped and conditions
748// inverted.
749def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS),
750 (CMOVAE16rm GR16:$src2, addr:$src1)>;
751def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS),
752 (CMOVAE32rm GR32:$src2, addr:$src1)>;
753def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS),
754 (CMOVB16rm GR16:$src2, addr:$src1)>;
755def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS),
756 (CMOVB32rm GR32:$src2, addr:$src1)>;
757def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS),
758 (CMOVNE16rm GR16:$src2, addr:$src1)>;
759def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS),
760 (CMOVNE32rm GR32:$src2, addr:$src1)>;
761def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS),
762 (CMOVE16rm GR16:$src2, addr:$src1)>;
763def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS),
764 (CMOVE32rm GR32:$src2, addr:$src1)>;
765def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS),
766 (CMOVA16rm GR16:$src2, addr:$src1)>;
767def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS),
768 (CMOVA32rm GR32:$src2, addr:$src1)>;
769def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS),
770 (CMOVBE16rm GR16:$src2, addr:$src1)>;
771def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS),
772 (CMOVBE32rm GR32:$src2, addr:$src1)>;
773def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS),
774 (CMOVGE16rm GR16:$src2, addr:$src1)>;
775def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS),
776 (CMOVGE32rm GR32:$src2, addr:$src1)>;
777def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS),
778 (CMOVL16rm GR16:$src2, addr:$src1)>;
779def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS),
780 (CMOVL32rm GR32:$src2, addr:$src1)>;
781def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS),
782 (CMOVG16rm GR16:$src2, addr:$src1)>;
783def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS),
784 (CMOVG32rm GR32:$src2, addr:$src1)>;
785def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS),
786 (CMOVLE16rm GR16:$src2, addr:$src1)>;
787def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS),
788 (CMOVLE32rm GR32:$src2, addr:$src1)>;
789def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS),
790 (CMOVNP16rm GR16:$src2, addr:$src1)>;
791def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS),
792 (CMOVNP32rm GR32:$src2, addr:$src1)>;
793def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS),
794 (CMOVP16rm GR16:$src2, addr:$src1)>;
795def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS),
796 (CMOVP32rm GR32:$src2, addr:$src1)>;
797def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS),
798 (CMOVNS16rm GR16:$src2, addr:$src1)>;
799def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS),
800 (CMOVNS32rm GR32:$src2, addr:$src1)>;
801def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS),
802 (CMOVS16rm GR16:$src2, addr:$src1)>;
803def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS),
804 (CMOVS32rm GR32:$src2, addr:$src1)>;
805def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS),
806 (CMOVNO16rm GR16:$src2, addr:$src1)>;
807def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS),
808 (CMOVNO32rm GR32:$src2, addr:$src1)>;
809def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS),
810 (CMOVO16rm GR16:$src2, addr:$src1)>;
811def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS),
812 (CMOVO32rm GR32:$src2, addr:$src1)>;
813
814def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
815 (CMOVAE64rm GR64:$src2, addr:$src1)>;
816def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
817 (CMOVB64rm GR64:$src2, addr:$src1)>;
818def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
819 (CMOVNE64rm GR64:$src2, addr:$src1)>;
820def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
821 (CMOVE64rm GR64:$src2, addr:$src1)>;
822def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
823 (CMOVA64rm GR64:$src2, addr:$src1)>;
824def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
825 (CMOVBE64rm GR64:$src2, addr:$src1)>;
826def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
827 (CMOVGE64rm GR64:$src2, addr:$src1)>;
828def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
829 (CMOVL64rm GR64:$src2, addr:$src1)>;
830def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
831 (CMOVG64rm GR64:$src2, addr:$src1)>;
832def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
833 (CMOVLE64rm GR64:$src2, addr:$src1)>;
834def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
835 (CMOVNP64rm GR64:$src2, addr:$src1)>;
836def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
837 (CMOVP64rm GR64:$src2, addr:$src1)>;
838def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
839 (CMOVNS64rm GR64:$src2, addr:$src1)>;
840def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
841 (CMOVS64rm GR64:$src2, addr:$src1)>;
842def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
843 (CMOVNO64rm GR64:$src2, addr:$src1)>;
844def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
845 (CMOVO64rm GR64:$src2, addr:$src1)>;
846
847
848// zextload bool -> zextload byte
849def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
850def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
851def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
852def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
853
854// extload bool -> extload byte
855// When extloading from 16-bit and smaller memory locations into 64-bit
856// registers, use zero-extending loads so that the entire 64-bit register is
857// defined, avoiding partial-register updates.
858
859def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
860def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
861def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
862def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
863def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
864def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
865
866def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
867def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
868def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
869// For other extloads, use subregs, since the high contents of the register are
870// defined after an extload.
871def : Pat<(extloadi64i32 addr:$src),
872 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
873 sub_32bit)>;
874
875// anyext. Define these to do an explicit zero-extend to
876// avoid partial-register updates.
877def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
878def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
879
880// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
881def : Pat<(i32 (anyext GR16:$src)),
882 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
883
884def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
885def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
886def : Pat<(i64 (anyext GR32:$src)),
887 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
888
889//===----------------------------------------------------------------------===//
890// Some peepholes
891//===----------------------------------------------------------------------===//
892
893// Odd encoding trick: -128 fits into an 8-bit immediate field while
894// +128 doesn't, so in this special case use a sub instead of an add.
895def : Pat<(add GR16:$src1, 128),
896 (SUB16ri8 GR16:$src1, -128)>;
897def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
898 (SUB16mi8 addr:$dst, -128)>;
899
900def : Pat<(add GR32:$src1, 128),
901 (SUB32ri8 GR32:$src1, -128)>;
902def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
903 (SUB32mi8 addr:$dst, -128)>;
904
905def : Pat<(add GR64:$src1, 128),
906 (SUB64ri8 GR64:$src1, -128)>;
907def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
908 (SUB64mi8 addr:$dst, -128)>;
909
910// The same trick applies for 32-bit immediate fields in 64-bit
911// instructions.
912def : Pat<(add GR64:$src1, 0x0000000080000000),
913 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
914def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
915 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
916
917// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
918// has an immediate with at least 32 bits of leading zeros, to avoid needing to
919// materialize that immediate in a register first.
920def : Pat<(and GR64:$src, i64immZExt32:$imm),
921 (SUBREG_TO_REG
922 (i64 0),
923 (AND32ri
924 (EXTRACT_SUBREG GR64:$src, sub_32bit),
925 (i32 (GetLo32XForm imm:$imm))),
926 sub_32bit)>;
927
928
929// r & (2^16-1) ==> movz
930def : Pat<(and GR32:$src1, 0xffff),
931 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
932// r & (2^8-1) ==> movz
933def : Pat<(and GR32:$src1, 0xff),
934 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
935 GR32_ABCD)),
936 sub_8bit))>,
937 Requires<[In32BitMode]>;
938// r & (2^8-1) ==> movz
939def : Pat<(and GR16:$src1, 0xff),
940 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
941 GR16_ABCD)),
942 sub_8bit))>,
943 Requires<[In32BitMode]>;
944
945// r & (2^32-1) ==> movz
946def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
947 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
948// r & (2^16-1) ==> movz
949def : Pat<(and GR64:$src, 0xffff),
950 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
951// r & (2^8-1) ==> movz
952def : Pat<(and GR64:$src, 0xff),
953 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
954// r & (2^8-1) ==> movz
955def : Pat<(and GR32:$src1, 0xff),
956 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
957 Requires<[In64BitMode]>;
958// r & (2^8-1) ==> movz
959def : Pat<(and GR16:$src1, 0xff),
960 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
961 Requires<[In64BitMode]>;
962
963
964// sext_inreg patterns
965def : Pat<(sext_inreg GR32:$src, i16),
966 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
967def : Pat<(sext_inreg GR32:$src, i8),
968 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
969 GR32_ABCD)),
970 sub_8bit))>,
971 Requires<[In32BitMode]>;
972def : Pat<(sext_inreg GR16:$src, i8),
973 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
974 GR16_ABCD)),
975 sub_8bit))>,
976 Requires<[In32BitMode]>;
977
978def : Pat<(sext_inreg GR64:$src, i32),
979 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
980def : Pat<(sext_inreg GR64:$src, i16),
981 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
982def : Pat<(sext_inreg GR64:$src, i8),
983 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
984def : Pat<(sext_inreg GR32:$src, i8),
985 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
986 Requires<[In64BitMode]>;
987def : Pat<(sext_inreg GR16:$src, i8),
988 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
989 Requires<[In64BitMode]>;
990
991
992// trunc patterns
993def : Pat<(i16 (trunc GR32:$src)),
994 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
995def : Pat<(i8 (trunc GR32:$src)),
996 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
997 sub_8bit)>,
998 Requires<[In32BitMode]>;
999def : Pat<(i8 (trunc GR16:$src)),
1000 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1001 sub_8bit)>,
1002 Requires<[In32BitMode]>;
1003def : Pat<(i32 (trunc GR64:$src)),
1004 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1005def : Pat<(i16 (trunc GR64:$src)),
1006 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1007def : Pat<(i8 (trunc GR64:$src)),
1008 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1009def : Pat<(i8 (trunc GR32:$src)),
1010 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1011 Requires<[In64BitMode]>;
1012def : Pat<(i8 (trunc GR16:$src)),
1013 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1014 Requires<[In64BitMode]>;
1015
1016// h-register tricks
1017def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1018 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1019 sub_8bit_hi)>,
1020 Requires<[In32BitMode]>;
1021def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1022 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1023 sub_8bit_hi)>,
1024 Requires<[In32BitMode]>;
1025def : Pat<(srl GR16:$src, (i8 8)),
1026 (EXTRACT_SUBREG
1027 (MOVZX32rr8
1028 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1029 sub_8bit_hi)),
1030 sub_16bit)>,
1031 Requires<[In32BitMode]>;
1032def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1033 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1034 GR16_ABCD)),
1035 sub_8bit_hi))>,
1036 Requires<[In32BitMode]>;
1037def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1038 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1039 GR16_ABCD)),
1040 sub_8bit_hi))>,
1041 Requires<[In32BitMode]>;
1042def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1043 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1044 GR32_ABCD)),
1045 sub_8bit_hi))>,
1046 Requires<[In32BitMode]>;
1047def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1048 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1049 GR32_ABCD)),
1050 sub_8bit_hi))>,
1051 Requires<[In32BitMode]>;
1052
1053// h-register tricks.
1054// For now, be conservative on x86-64 and use an h-register extract only if the
1055// value is immediately zero-extended or stored, which are somewhat common
1056// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1057// from being allocated in the same instruction as the h register, as there's
1058// currently no way to describe this requirement to the register allocator.
1059
1060// h-register extract and zero-extend.
1061def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1062 (SUBREG_TO_REG
1063 (i64 0),
1064 (MOVZX32_NOREXrr8
1065 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1066 sub_8bit_hi)),
1067 sub_32bit)>;
1068def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1069 (MOVZX32_NOREXrr8
1070 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1071 sub_8bit_hi))>,
1072 Requires<[In64BitMode]>;
1073def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1074 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1075 GR32_ABCD)),
1076 sub_8bit_hi))>,
1077 Requires<[In64BitMode]>;
1078def : Pat<(srl GR16:$src, (i8 8)),
1079 (EXTRACT_SUBREG
1080 (MOVZX32_NOREXrr8
1081 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1082 sub_8bit_hi)),
1083 sub_16bit)>,
1084 Requires<[In64BitMode]>;
1085def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1086 (MOVZX32_NOREXrr8
1087 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1088 sub_8bit_hi))>,
1089 Requires<[In64BitMode]>;
1090def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1091 (MOVZX32_NOREXrr8
1092 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1093 sub_8bit_hi))>,
1094 Requires<[In64BitMode]>;
1095def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1096 (SUBREG_TO_REG
1097 (i64 0),
1098 (MOVZX32_NOREXrr8
1099 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1100 sub_8bit_hi)),
1101 sub_32bit)>;
1102def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1103 (SUBREG_TO_REG
1104 (i64 0),
1105 (MOVZX32_NOREXrr8
1106 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1107 sub_8bit_hi)),
1108 sub_32bit)>;
1109
1110// h-register extract and store.
1111def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1112 (MOV8mr_NOREX
1113 addr:$dst,
1114 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1115 sub_8bit_hi))>;
1116def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1117 (MOV8mr_NOREX
1118 addr:$dst,
1119 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1120 sub_8bit_hi))>,
1121 Requires<[In64BitMode]>;
1122def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1123 (MOV8mr_NOREX
1124 addr:$dst,
1125 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1126 sub_8bit_hi))>,
1127 Requires<[In64BitMode]>;
1128
1129
1130// (shl x, 1) ==> (add x, x)
1131def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1132def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1133def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1134def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1135
1136// (shl x (and y, 31)) ==> (shl x, y)
1137def : Pat<(shl GR8:$src1, (and CL, 31)),
1138 (SHL8rCL GR8:$src1)>;
1139def : Pat<(shl GR16:$src1, (and CL, 31)),
1140 (SHL16rCL GR16:$src1)>;
1141def : Pat<(shl GR32:$src1, (and CL, 31)),
1142 (SHL32rCL GR32:$src1)>;
1143def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1144 (SHL8mCL addr:$dst)>;
1145def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1146 (SHL16mCL addr:$dst)>;
1147def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1148 (SHL32mCL addr:$dst)>;
1149
1150def : Pat<(srl GR8:$src1, (and CL, 31)),
1151 (SHR8rCL GR8:$src1)>;
1152def : Pat<(srl GR16:$src1, (and CL, 31)),
1153 (SHR16rCL GR16:$src1)>;
1154def : Pat<(srl GR32:$src1, (and CL, 31)),
1155 (SHR32rCL GR32:$src1)>;
1156def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1157 (SHR8mCL addr:$dst)>;
1158def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1159 (SHR16mCL addr:$dst)>;
1160def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1161 (SHR32mCL addr:$dst)>;
1162
1163def : Pat<(sra GR8:$src1, (and CL, 31)),
1164 (SAR8rCL GR8:$src1)>;
1165def : Pat<(sra GR16:$src1, (and CL, 31)),
1166 (SAR16rCL GR16:$src1)>;
1167def : Pat<(sra GR32:$src1, (and CL, 31)),
1168 (SAR32rCL GR32:$src1)>;
1169def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1170 (SAR8mCL addr:$dst)>;
1171def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1172 (SAR16mCL addr:$dst)>;
1173def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1174 (SAR32mCL addr:$dst)>;
1175
1176// (shl x (and y, 63)) ==> (shl x, y)
1177def : Pat<(shl GR64:$src1, (and CL, 63)),
1178 (SHL64rCL GR64:$src1)>;
1179def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1180 (SHL64mCL addr:$dst)>;
1181
1182def : Pat<(srl GR64:$src1, (and CL, 63)),
1183 (SHR64rCL GR64:$src1)>;
1184def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1185 (SHR64mCL addr:$dst)>;
1186
1187def : Pat<(sra GR64:$src1, (and CL, 63)),
1188 (SAR64rCL GR64:$src1)>;
1189def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1190 (SAR64mCL addr:$dst)>;
1191
1192
1193// (anyext (setcc_carry)) -> (setcc_carry)
1194def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1195 (SETB_C16r)>;
1196def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1197 (SETB_C32r)>;
1198def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1199 (SETB_C32r)>;
1200
1201// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1202let AddedComplexity = 5 in { // Try this before the selecting to OR
1203def : Pat<(or_is_add GR16:$src1, imm:$src2),
1204 (ADD16ri GR16:$src1, imm:$src2)>;
1205def : Pat<(or_is_add GR32:$src1, imm:$src2),
1206 (ADD32ri GR32:$src1, imm:$src2)>;
1207def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2),
1208 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1209def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2),
1210 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1211def : Pat<(or_is_add GR16:$src1, GR16:$src2),
1212 (ADD16rr GR16:$src1, GR16:$src2)>;
1213def : Pat<(or_is_add GR32:$src1, GR32:$src2),
1214 (ADD32rr GR32:$src1, GR32:$src2)>;
1215def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
1216 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1217def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
1218 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1219def : Pat<(or_is_add GR64:$src1, GR64:$src2),
1220 (ADD64rr GR64:$src1, GR64:$src2)>;
1221} // AddedComplexity
1222
1223//===----------------------------------------------------------------------===//
1224// EFLAGS-defining Patterns
1225//===----------------------------------------------------------------------===//
1226
1227// add reg, reg
1228def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1229def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1230def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1231
1232// add reg, mem
1233def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1234 (ADD8rm GR8:$src1, addr:$src2)>;
1235def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1236 (ADD16rm GR16:$src1, addr:$src2)>;
1237def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1238 (ADD32rm GR32:$src1, addr:$src2)>;
1239
1240// add reg, imm
1241def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1242def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1243def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1244def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1245 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1246def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1247 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1248
1249// sub reg, reg
1250def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1251def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1252def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1253
1254// sub reg, mem
1255def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1256 (SUB8rm GR8:$src1, addr:$src2)>;
1257def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1258 (SUB16rm GR16:$src1, addr:$src2)>;
1259def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1260 (SUB32rm GR32:$src1, addr:$src2)>;
1261
1262// sub reg, imm
1263def : Pat<(sub GR8:$src1, imm:$src2),
1264 (SUB8ri GR8:$src1, imm:$src2)>;
1265def : Pat<(sub GR16:$src1, imm:$src2),
1266 (SUB16ri GR16:$src1, imm:$src2)>;
1267def : Pat<(sub GR32:$src1, imm:$src2),
1268 (SUB32ri GR32:$src1, imm:$src2)>;
1269def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1270 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1271def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1272 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1273
1274// mul reg, reg
1275def : Pat<(mul GR16:$src1, GR16:$src2),
1276 (IMUL16rr GR16:$src1, GR16:$src2)>;
1277def : Pat<(mul GR32:$src1, GR32:$src2),
1278 (IMUL32rr GR32:$src1, GR32:$src2)>;
1279
1280// mul reg, mem
1281def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1282 (IMUL16rm GR16:$src1, addr:$src2)>;
1283def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1284 (IMUL32rm GR32:$src1, addr:$src2)>;
1285
1286// mul reg, imm
1287def : Pat<(mul GR16:$src1, imm:$src2),
1288 (IMUL16rri GR16:$src1, imm:$src2)>;
1289def : Pat<(mul GR32:$src1, imm:$src2),
1290 (IMUL32rri GR32:$src1, imm:$src2)>;
1291def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1292 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1293def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1294 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1295
1296// reg = mul mem, imm
1297def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1298 (IMUL16rmi addr:$src1, imm:$src2)>;
1299def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1300 (IMUL32rmi addr:$src1, imm:$src2)>;
1301def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1302 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1303def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1304 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1305
1306// Optimize multiply by 2 with EFLAGS result.
1307let AddedComplexity = 2 in {
1308def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1309def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1310}
1311
1312// Patterns for nodes that do not produce flags, for instructions that do.
1313
1314// addition
1315def : Pat<(add GR64:$src1, GR64:$src2),
1316 (ADD64rr GR64:$src1, GR64:$src2)>;
1317def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1318 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1319def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1320 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1321def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1322 (ADD64rm GR64:$src1, addr:$src2)>;
1323
1324// subtraction
1325def : Pat<(sub GR64:$src1, GR64:$src2),
1326 (SUB64rr GR64:$src1, GR64:$src2)>;
1327def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1328 (SUB64rm GR64:$src1, addr:$src2)>;
1329def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1330 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1331def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1332 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1333
1334// Multiply
1335def : Pat<(mul GR64:$src1, GR64:$src2),
1336 (IMUL64rr GR64:$src1, GR64:$src2)>;
1337def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1338 (IMUL64rm GR64:$src1, addr:$src2)>;
1339def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1340 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1341def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1342 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1343def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1344 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1345def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1346 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1347
1348// Increment reg.
1349def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1350def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1351def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1352def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1353def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1354def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1355
1356// Decrement reg.
1357def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1358def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1359def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1360def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1361def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1362def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1363
1364// or reg/reg.
1365def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1366def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1367def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1368def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1369
1370// or reg/mem
1371def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1372 (OR8rm GR8:$src1, addr:$src2)>;
1373def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1374 (OR16rm GR16:$src1, addr:$src2)>;
1375def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1376 (OR32rm GR32:$src1, addr:$src2)>;
1377def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1378 (OR64rm GR64:$src1, addr:$src2)>;
1379
1380// or reg/imm
1381def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1382def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1383def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1384def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1385 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1386def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1387 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1388def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1389 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1390def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1391 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1392
1393// xor reg/reg
1394def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1395def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1396def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1397def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1398
1399// xor reg/mem
1400def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1401 (XOR8rm GR8:$src1, addr:$src2)>;
1402def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1403 (XOR16rm GR16:$src1, addr:$src2)>;
1404def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1405 (XOR32rm GR32:$src1, addr:$src2)>;
1406def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1407 (XOR64rm GR64:$src1, addr:$src2)>;
1408
1409// xor reg/imm
1410def : Pat<(xor GR8:$src1, imm:$src2),
1411 (XOR8ri GR8:$src1, imm:$src2)>;
1412def : Pat<(xor GR16:$src1, imm:$src2),
1413 (XOR16ri GR16:$src1, imm:$src2)>;
1414def : Pat<(xor GR32:$src1, imm:$src2),
1415 (XOR32ri GR32:$src1, imm:$src2)>;
1416def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1417 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1418def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1419 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1420def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1421 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1422def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1423 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1424
1425// and reg/reg
1426def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1427def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1428def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1429def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1430
1431// and reg/mem
1432def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1433 (AND8rm GR8:$src1, addr:$src2)>;
1434def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1435 (AND16rm GR16:$src1, addr:$src2)>;
1436def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1437 (AND32rm GR32:$src1, addr:$src2)>;
1438def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1439 (AND64rm GR64:$src1, addr:$src2)>;
1440
1441// and reg/imm
1442def : Pat<(and GR8:$src1, imm:$src2),
1443 (AND8ri GR8:$src1, imm:$src2)>;
1444def : Pat<(and GR16:$src1, imm:$src2),
1445 (AND16ri GR16:$src1, imm:$src2)>;
1446def : Pat<(and GR32:$src1, imm:$src2),
1447 (AND32ri GR32:$src1, imm:$src2)>;
1448def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1449 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1450def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1451 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1452def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1453 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1454def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1455 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001456