blob: 69e9cbe26b8a405b262da5ec5f0cbec5b035f4a7 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the post-dominator construction algorithms.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/PostDominators.h"
15#include "llvm/Instructions.h"
16#include "llvm/Support/CFG.h"
17#include "llvm/ADT/DepthFirstIterator.h"
18#include "llvm/ADT/SetOperations.h"
19using namespace llvm;
20
21//===----------------------------------------------------------------------===//
22// PostDominatorTree Implementation
23//===----------------------------------------------------------------------===//
24
25char PostDominatorTree::ID = 0;
26char PostDominanceFrontier::ID = 0;
27static RegisterPass<PostDominatorTree>
28F("postdomtree", "Post-Dominator Tree Construction", true);
29
Chris Lattnere2649cb2007-08-05 00:02:00 +000030unsigned PostDominatorTree::DFSPass(BasicBlock *V, unsigned N) {
31 std::vector<BasicBlock *> workStack;
Chris Lattner33607b02007-08-05 00:15:57 +000032 SmallPtrSet<BasicBlock *, 32> Visited;
Chris Lattnere2649cb2007-08-05 00:02:00 +000033 workStack.push_back(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034
35 do {
Chris Lattnere2649cb2007-08-05 00:02:00 +000036 BasicBlock *currentBB = workStack.back();
37 InfoRec &CurVInfo = Info[currentBB];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038
39 // Visit each block only once.
Chris Lattner33607b02007-08-05 00:15:57 +000040 if (Visited.insert(currentBB)) {
Chris Lattnere2649cb2007-08-05 00:02:00 +000041 CurVInfo.Semi = ++N;
42 CurVInfo.Label = currentBB;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043
44 Vertex.push_back(currentBB); // Vertex[n] = current;
45 // Info[currentBB].Ancestor = 0;
46 // Ancestor[n] = 0
47 // Child[currentBB] = 0;
Chris Lattnere2649cb2007-08-05 00:02:00 +000048 CurVInfo.Size = 1; // Size[currentBB] = 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 }
50
51 // Visit children
52 bool visitChild = false;
53 for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB);
54 PI != PE && !visitChild; ++PI) {
55 InfoRec &SuccVInfo = Info[*PI];
56 if (SuccVInfo.Semi == 0) {
57 SuccVInfo.Parent = currentBB;
Chris Lattner33607b02007-08-05 00:15:57 +000058 if (!Visited.count(*PI)) {
Chris Lattnere2649cb2007-08-05 00:02:00 +000059 workStack.push_back(*PI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000060 visitChild = true;
61 }
62 }
63 }
64
65 // If all children are visited or if this block has no child then pop this
66 // block out of workStack.
67 if (!visitChild)
68 workStack.pop_back();
69
70 } while (!workStack.empty());
71
72 return N;
73}
74
75void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
76 BasicBlock *VAncestor = VInfo.Ancestor;
77 InfoRec &VAInfo = Info[VAncestor];
78 if (VAInfo.Ancestor == 0)
79 return;
80
81 Compress(VAncestor, VAInfo);
82
83 BasicBlock *VAncestorLabel = VAInfo.Label;
84 BasicBlock *VLabel = VInfo.Label;
85 if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
86 VInfo.Label = VAncestorLabel;
87
88 VInfo.Ancestor = VAInfo.Ancestor;
89}
90
91BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
92 InfoRec &VInfo = Info[V];
93
94 // Higher-complexity but faster implementation
95 if (VInfo.Ancestor == 0)
96 return V;
97 Compress(V, VInfo);
98 return VInfo.Label;
99}
100
101void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W,
102 InfoRec &WInfo) {
103 // Higher-complexity but faster implementation
104 WInfo.Ancestor = V;
105}
106
107void PostDominatorTree::calculate(Function &F) {
108 // Step #0: Scan the function looking for the root nodes of the post-dominance
109 // relationships. These blocks, which have no successors, end with return and
110 // unwind instructions.
Chris Lattner59653532007-08-04 23:48:07 +0000111 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
112 TerminatorInst *Insn = I->getTerminator();
113 if (Insn->getNumSuccessors() == 0) {
Devang Patel34ef1442007-07-24 01:02:25 +0000114 // Unreachable block is not a root node.
115 if (!isa<UnreachableInst>(Insn))
116 Roots.push_back(I);
117 }
Chris Lattner59653532007-08-04 23:48:07 +0000118
119 // Prepopulate maps so that we don't get iterator invalidation issues later.
120 IDoms[I] = 0;
121 DomTreeNodes[I] = 0;
122 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123
124 Vertex.push_back(0);
125
126 // Step #1: Number blocks in depth-first order and initialize variables used
127 // in later stages of the algorithm.
128 unsigned N = 0;
129 for (unsigned i = 0, e = Roots.size(); i != e; ++i)
Chris Lattnere2649cb2007-08-05 00:02:00 +0000130 N = DFSPass(Roots[i], N);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000131
132 for (unsigned i = N; i >= 2; --i) {
133 BasicBlock *W = Vertex[i];
134 InfoRec &WInfo = Info[W];
135
136 // Step #2: Calculate the semidominators of all vertices
137 for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
138 if (Info.count(*SI)) { // Only if this predecessor is reachable!
139 unsigned SemiU = Info[Eval(*SI)].Semi;
140 if (SemiU < WInfo.Semi)
141 WInfo.Semi = SemiU;
142 }
143
144 Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
145
146 BasicBlock *WParent = WInfo.Parent;
147 Link(WParent, W, WInfo);
148
149 // Step #3: Implicitly define the immediate dominator of vertices
150 std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
151 while (!WParentBucket.empty()) {
152 BasicBlock *V = WParentBucket.back();
153 WParentBucket.pop_back();
154 BasicBlock *U = Eval(V);
155 IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
156 }
157 }
158
159 // Step #4: Explicitly define the immediate dominator of each vertex
160 for (unsigned i = 2; i <= N; ++i) {
161 BasicBlock *W = Vertex[i];
162 BasicBlock *&WIDom = IDoms[W];
163 if (WIDom != Vertex[Info[W].Semi])
164 WIDom = IDoms[WIDom];
165 }
166
167 if (Roots.empty()) return;
168
169 // Add a node for the root. This node might be the actual root, if there is
170 // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
171 // which postdominates all real exits if there are multiple exit blocks.
172 BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
173 DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
174
175 // Loop over all of the reachable blocks in the function...
176 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
177 if (BasicBlock *ImmPostDom = getIDom(I)) { // Reachable block.
178 DomTreeNode *&BBNode = DomTreeNodes[I];
179 if (!BBNode) { // Haven't calculated this node yet?
180 // Get or calculate the node for the immediate dominator
181 DomTreeNode *IPDomNode = getNodeForBlock(ImmPostDom);
182
183 // Add a new tree node for this BasicBlock, and link it as a child of
184 // IDomNode
185 DomTreeNode *C = new DomTreeNode(I, IPDomNode);
186 DomTreeNodes[I] = C;
187 BBNode = IPDomNode->addChild(C);
188 }
189 }
190
191 // Free temporary memory used to construct idom's
192 IDoms.clear();
193 Info.clear();
194 std::vector<BasicBlock*>().swap(Vertex);
195
Chris Lattnerfae1ecc2007-08-08 05:51:24 +0000196 // Start out with the DFS numbers being invalid. Let them be computed if
197 // demanded.
198 DFSInfoValid = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199}
200
201
202DomTreeNode *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
203 DomTreeNode *&BBNode = DomTreeNodes[BB];
204 if (BBNode) return BBNode;
205
206 // Haven't calculated this node yet? Get or calculate the node for the
207 // immediate postdominator.
208 BasicBlock *IPDom = getIDom(BB);
209 DomTreeNode *IPDomNode = getNodeForBlock(IPDom);
210
211 // Add a new tree node for this BasicBlock, and link it as a child of
212 // IDomNode
213 DomTreeNode *C = new DomTreeNode(BB, IPDomNode);
Chris Lattner8be9adb2007-08-05 00:24:30 +0000214 return DomTreeNodes[BB] = IPDomNode->addChild(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215}
216
217//===----------------------------------------------------------------------===//
218// PostDominanceFrontier Implementation
219//===----------------------------------------------------------------------===//
220
221static RegisterPass<PostDominanceFrontier>
222H("postdomfrontier", "Post-Dominance Frontier Construction", true);
223
224const DominanceFrontier::DomSetType &
225PostDominanceFrontier::calculate(const PostDominatorTree &DT,
226 const DomTreeNode *Node) {
227 // Loop over CFG successors to calculate DFlocal[Node]
228 BasicBlock *BB = Node->getBlock();
229 DomSetType &S = Frontiers[BB]; // The new set to fill in...
230 if (getRoots().empty()) return S;
231
232 if (BB)
233 for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
234 SI != SE; ++SI) {
235 // Does Node immediately dominate this predecessor?
236 DomTreeNode *SINode = DT[*SI];
237 if (SINode && SINode->getIDom() != Node)
238 S.insert(*SI);
239 }
240
241 // At this point, S is DFlocal. Now we union in DFup's of our children...
242 // Loop through and visit the nodes that Node immediately dominates (Node's
243 // children in the IDomTree)
244 //
245 for (DomTreeNode::const_iterator
246 NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
247 DomTreeNode *IDominee = *NI;
248 const DomSetType &ChildDF = calculate(DT, IDominee);
249
250 DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
251 for (; CDFI != CDFE; ++CDFI) {
252 if (!DT.properlyDominates(Node, DT[*CDFI]))
253 S.insert(*CDFI);
254 }
255 }
256
257 return S;
258}
259
260// Ensure that this .cpp file gets linked when PostDominators.h is used.
261DEFINING_FILE_FOR(PostDominanceFrontier)