Chris Lattner | 0d8c2db | 2004-05-23 21:02:20 +0000 | [diff] [blame^] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| 2 | "http://www.w3.org/TR/html4/strict.dtd"> |
| 3 | <html> |
| 4 | <head> |
| 5 | <title>Accurate Garbage Collection with LLVM</title> |
| 6 | <link rel="stylesheet" href="llvm.css" type="text/css"> |
| 7 | </head> |
| 8 | <body> |
| 9 | |
| 10 | <div class="doc_title"> |
| 11 | Accurate Garbage Collection with LLVM |
| 12 | </div> |
| 13 | |
| 14 | <ol> |
| 15 | <li><a href="#introduction">Introduction</a> |
| 16 | <ul> |
| 17 | <li><a href="#feature">GC features provided and algorithms supported</a></li> |
| 18 | </ul> |
| 19 | </li> |
| 20 | |
| 21 | <li><a href="#interfaces">Interfaces for user programs</a> |
| 22 | <ul> |
| 23 | <li><a href="#roots">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a></li> |
| 24 | <li><a href="#gcdescriptors">GC descriptor format for heap objects</a></li> |
| 25 | <li><a href="#allocate">Allocating memory from the GC</a></li> |
| 26 | <li><a href="#barriers">Reading and writing references to the heap</a></li> |
| 27 | <li><a href="#explicit">Explicit invocation of the garbage collector</a></li> |
| 28 | </ul> |
| 29 | </li> |
| 30 | |
| 31 | <li><a href="#gcimpl">Implementing a garbage collector</a> |
| 32 | <ul> |
| 33 | <li><a href="#llvm_gc_readwrite">Implementing <tt>llvm_gc_read</tt> and <tt>llvm_gc_write</tt></a></li> |
| 34 | <li><a href="#traceroots">Tracing the GC roots from the program stack</a></li> |
| 35 | <li><a href="#gcimpls">GC implementations available</a></li> |
| 36 | </ul> |
| 37 | </li> |
| 38 | |
| 39 | <!-- |
| 40 | <li><a href="#codegen">Implementing GC support in a code generator</a></li> |
| 41 | --> |
| 42 | </ol> |
| 43 | |
| 44 | <div class="doc_author"> |
| 45 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| 46 | </div> |
| 47 | |
| 48 | <!-- *********************************************************************** --> |
| 49 | <div class="doc_section"> |
| 50 | <a name="introduction">Introduction</a> |
| 51 | </div> |
| 52 | <!-- *********************************************************************** --> |
| 53 | |
| 54 | <div class="doc_text"> |
| 55 | |
| 56 | <p>Garbage collection is a widely used technique that frees the programmer from |
| 57 | having to know the life-times of heap objects, making software easier to produce |
| 58 | and maintain. Many programming languages rely on garbage collection for |
| 59 | automatic memory management. There are two primary forms of garbage collection: |
| 60 | conservative and accurate.</p> |
| 61 | |
| 62 | <p>Conservative garbage collection often does not require any special support |
| 63 | from either the language or the compiler: it can handle non-type-safe |
| 64 | programming languages (such as C/C++) and does not require any special |
| 65 | information from the compiler. The [LINK] Boehm collector is an example of a |
| 66 | state-of-the-art conservative collector.</p> |
| 67 | |
| 68 | <p>Accurate garbage collection requires the ability to identify all pointers in |
| 69 | the program at run-time (which requires that the source-language be type-safe in |
| 70 | most cases). Identifying pointers at run-time requires compiler support to |
| 71 | locate all places that hold live pointer variables at run-time, including the |
| 72 | <a href="#roots">processor stack and registers</a>.</p> |
| 73 | |
| 74 | <p> |
| 75 | Conservative garbage collection is attractive because it does not require any |
| 76 | special compiler support, but it does have problems. In particular, because the |
| 77 | conservative garbage collector cannot <i>know</i> that a particular word in the |
| 78 | machine is a pointer, it cannot move live objects in the heap (preventing the |
| 79 | use of compacting and generational GC algorithms) and it can occasionally suffer |
| 80 | from memory leaks due to integer values that happen to point to objects in the |
| 81 | program. In addition, some aggressive compiler transformations can break |
| 82 | conservative garbage collectors (though these seem rare in practice). |
| 83 | </p> |
| 84 | |
| 85 | <p> |
| 86 | Accurate garbage collectors do not suffer from any of these problems, but they |
| 87 | can suffer from degraded scalar optimization of the program. In particular, |
| 88 | because the runtime must be able to identify and update all pointers active in |
| 89 | the program, some optimizations are less effective. In practice, however, the |
| 90 | locality and performance benefits of using aggressive garbage allocation |
| 91 | techniques dominates any low-level losses. |
| 92 | </p> |
| 93 | |
| 94 | <p> |
| 95 | This document describes the mechanisms and interfaces provided by LLVM to |
| 96 | support accurate garbage collection. |
| 97 | </p> |
| 98 | |
| 99 | </div> |
| 100 | |
| 101 | <!-- ======================================================================= --> |
| 102 | <div class="doc_subsection"> |
| 103 | <a name="feature">GC features provided and algorithms supported</a> |
| 104 | </div> |
| 105 | |
| 106 | <div class="doc_text"> |
| 107 | |
| 108 | <p> |
| 109 | LLVM provides support for a broad class of garbage collection algorithms, |
| 110 | including compacting semi-space collectors, mark-sweep collectors, generational |
| 111 | collectors, and even reference counting implementations. It includes support |
| 112 | for <a href="#barriers">read and write barriers</a>, and associating <a |
| 113 | href="#roots">meta-data with stack objects</a> (used for tagless garbage |
| 114 | collection). All LLVM code generators support garbage collection, including the |
| 115 | C backend. |
| 116 | </p> |
| 117 | |
| 118 | <p> |
| 119 | We hope that the primitive support built into LLVM is sufficient to support a |
| 120 | broad class of garbage collected languages, including Scheme, ML, scripting |
| 121 | languages, Java, C#, etc. That said, the implemented garbage collectors may |
| 122 | need to be extended to support language-specific features such as finalization, |
| 123 | weak references, or other features. As these needs are identified and |
| 124 | implemented, they should be added to this specification. |
| 125 | </p> |
| 126 | |
| 127 | <p> |
| 128 | LLVM does not currently support garbage collection of multi-threaded programs or |
| 129 | GC-safe points other than function calls, but these will be added in the future |
| 130 | as there is interest. |
| 131 | </p> |
| 132 | |
| 133 | </div> |
| 134 | |
| 135 | <!-- *********************************************************************** --> |
| 136 | <div class="doc_section"> |
| 137 | <a name="interfaces">Interfaces for user programs</a> |
| 138 | </div> |
| 139 | <!-- *********************************************************************** --> |
| 140 | |
| 141 | <div class="doc_text"> |
| 142 | |
| 143 | <p>This section describes the interfaces provided by LLVM and by the garbage |
| 144 | collector run-time that should be used by user programs. As such, this is the |
| 145 | interface that front-end authors should generate code for. |
| 146 | </p> |
| 147 | |
| 148 | </div> |
| 149 | |
| 150 | <!-- ======================================================================= --> |
| 151 | <div class="doc_subsection"> |
| 152 | <a name="roots">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a> |
| 153 | </div> |
| 154 | |
| 155 | <div class="doc_text"> |
| 156 | |
| 157 | <div class="doc_code"><tt> |
| 158 | void %llvm.gcroot(<ty>** %ptrloc, <ty2>* %metadata) |
| 159 | </tt></div> |
| 160 | |
| 161 | <p> |
| 162 | The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM of a pointer variable |
| 163 | on the stack. The first argument contains the address of the variable on the |
| 164 | stack, and the second contains a pointer to metadata that should be associated |
| 165 | with the pointer (which <b>must</b> be a constant or global value address). At |
| 166 | runtime, the <tt>llvm.gcroot</tt> intrinsic stores a null pointer into the |
| 167 | specified location to initialize the pointer.</p> |
| 168 | |
| 169 | <p> |
| 170 | Consider the following fragment of Java code: |
| 171 | </p> |
| 172 | |
| 173 | <pre> |
| 174 | { |
| 175 | Object X; // A null-initialized reference to an object |
| 176 | ... |
| 177 | } |
| 178 | </pre> |
| 179 | |
| 180 | <p> |
| 181 | This block (which may be located in the middle of a function or in a loop nest), |
| 182 | could be compiled to this LLVM code: |
| 183 | </p> |
| 184 | |
| 185 | <pre> |
| 186 | Entry: |
| 187 | ;; In the entry block for the function, allocate the |
| 188 | ;; stack space for X, which is an LLVM pointer. |
| 189 | %X = alloca %Object* |
| 190 | ... |
| 191 | |
| 192 | ;; "CodeBlock" is the block corresponding to the start |
| 193 | ;; of the scope scope above. |
| 194 | CodeBlock: |
| 195 | ;; Initialize the object, telling LLVM that it is now live. |
| 196 | ;; Java has type-tags on objects, so it doesn't need any |
| 197 | ;; metadata. |
| 198 | call void %llvm.gcroot(%Object** %X, sbyte* null) |
| 199 | ... |
| 200 | |
| 201 | ;; As the pointer goes out of scope, store a null value into |
| 202 | ;; it, to indicate that the value is no longer live. |
| 203 | store %Object* null, %Object** %X |
| 204 | ... |
| 205 | </pre> |
| 206 | |
| 207 | </div> |
| 208 | |
| 209 | <!-- ======================================================================= --> |
| 210 | <div class="doc_subsection"> |
| 211 | <a name="gcdescriptors">GC descriptor format for heap objects</a> |
| 212 | </div> |
| 213 | |
| 214 | <div class="doc_text"> |
| 215 | |
| 216 | <p> |
| 217 | Either from root meta data, or from object headers. Front-end can provide a |
| 218 | call-back to get descriptor from object without meta-data. |
| 219 | </p> |
| 220 | |
| 221 | </div> |
| 222 | |
| 223 | <!-- ======================================================================= --> |
| 224 | <div class="doc_subsection"> |
| 225 | <a name="allocate">Allocating memory from the GC</a> |
| 226 | </div> |
| 227 | |
| 228 | <div class="doc_text"> |
| 229 | |
| 230 | <div class="doc_code"><tt> |
| 231 | sbyte *%llvm_gc_allocate(unsigned %Size) |
| 232 | </tt></div> |
| 233 | |
| 234 | <p>The <tt>llvm_gc_allocate</tt> function is a global function defined by the |
| 235 | garbage collector implementation to allocate memory. It should return a |
| 236 | zeroed-out block of memory of the appropriate size.</p> |
| 237 | |
| 238 | </div> |
| 239 | |
| 240 | <!-- ======================================================================= --> |
| 241 | <div class="doc_subsection"> |
| 242 | <a name="barriers">Reading and writing references to the heap</a> |
| 243 | </div> |
| 244 | |
| 245 | <div class="doc_text"> |
| 246 | |
| 247 | <div class="doc_code"><tt> |
| 248 | sbyte *%llvm.gcread(sbyte **)<br> |
| 249 | void %llvm.gcwrite(sbyte*, sbyte**) |
| 250 | </tt></div> |
| 251 | |
| 252 | <p>Several of the more interesting garbage collectors (e.g., generational |
| 253 | collectors) need to be informed when the mutator (the program that needs garbage |
| 254 | collection) reads or writes object references into the heap. In the case of a |
| 255 | generational collector, it needs to keep track of which "old" generation objects |
| 256 | have references stored into them. The amount of code that typically needs to be |
| 257 | executed is usually quite small, so the overall performance impact of the |
| 258 | inserted code is tolerable.</p> |
| 259 | |
| 260 | <p>To support garbage collectors that use read or write barriers, LLVM provides |
| 261 | the <tt>llvm.gcread</tt> and <tt>llvm.gcwrite</tt> intrinsics. The first |
| 262 | intrinsic has exactly the same semantics as a non-volatile LLVM load and the |
| 263 | second has the same semantics as a non-volatile LLVM store. At code generation |
| 264 | time, these intrinsics are replaced with calls into the garbage collector |
| 265 | (<tt><a href="#llvm_gc_readwrite">llvm_gc_read</a></tt> and <tt><a |
| 266 | href="#llvm_gc_readwrite">llvm_gc_write</a></tt> respectively), which are then |
| 267 | inlined into the code. |
| 268 | </p> |
| 269 | |
| 270 | <p> |
| 271 | If you are writing a front-end for a garbage collected language, every load or |
| 272 | store of a reference from or to the heap should use these intrinsics instead of |
| 273 | normal LLVM loads/stores.</p> |
| 274 | |
| 275 | </div> |
| 276 | |
| 277 | <!-- ======================================================================= --> |
| 278 | <div class="doc_subsection"> |
| 279 | <a name="initialize">Garbage collector startup and initialization</a> |
| 280 | </div> |
| 281 | |
| 282 | <div class="doc_text"> |
| 283 | |
| 284 | <div class="doc_code"><tt> |
| 285 | void %llvm_gc_initialize() |
| 286 | </tt></div> |
| 287 | |
| 288 | <p> |
| 289 | The <tt>llvm_gc_initialize</tt> function should be called once before any other |
| 290 | garbage collection functions are called. This gives the garbage collector the |
| 291 | chance to initialize itself and allocate the heap spaces. |
| 292 | </p> |
| 293 | |
| 294 | </div> |
| 295 | |
| 296 | <!-- ======================================================================= --> |
| 297 | <div class="doc_subsection"> |
| 298 | <a name="explicit">Explicit invocation of the garbage collector</a> |
| 299 | </div> |
| 300 | |
| 301 | <div class="doc_text"> |
| 302 | |
| 303 | <div class="doc_code"><tt> |
| 304 | void %llvm_gc_collect() |
| 305 | </tt></div> |
| 306 | |
| 307 | <p> |
| 308 | The <tt>llvm_gc_collect</tt> function is exported by the garbage collector |
| 309 | implementations to provide a full collection, even when the heap is not |
| 310 | exhausted. This can be used by end-user code as a hint, and may be ignored by |
| 311 | the garbage collector. |
| 312 | </p> |
| 313 | |
| 314 | </div> |
| 315 | |
| 316 | |
| 317 | <!-- *********************************************************************** --> |
| 318 | <div class="doc_section"> |
| 319 | <a name="gcimpl">Implementing a garbage collector</a> |
| 320 | </div> |
| 321 | <!-- *********************************************************************** --> |
| 322 | |
| 323 | <div class="doc_text"> |
| 324 | |
| 325 | <p> |
| 326 | Implementing a garbage collector for LLVM is fairly straight-forward. The |
| 327 | implementation must include the <a |
| 328 | href="#allocate"><tt>llvm_gc_allocate</tt></a> and <a |
| 329 | href="#explicit"><tt>llvm_gc_collect</tt></a> functions, and it must implement |
| 330 | the <a href="#llvm_gc_readwrite">read/write barrier</a> functions as well. To |
| 331 | do this, it will probably have to <a href="#traceroots">trace through the roots |
| 332 | from the stack</a> and understand the <a href="#gcdescriptors">GC descriptors |
| 333 | for heap objects</a>. Luckily, there are some <a href="#gcimpls">example |
| 334 | implementations</a> available. |
| 335 | </p> |
| 336 | </div> |
| 337 | |
| 338 | |
| 339 | <!-- ======================================================================= --> |
| 340 | <div class="doc_subsection"> |
| 341 | <a name="llvm_gc_readwrite">Implementing <tt>llvm_gc_read</tt> and <tt>llvm_gc_write</tt></a> |
| 342 | </div> |
| 343 | |
| 344 | <div class="doc_text"> |
| 345 | <div class="doc_code"><tt> |
| 346 | void *llvm_gc_read(void **)<br> |
| 347 | void llvm_gc_write(void*, void**) |
| 348 | </tt></div> |
| 349 | |
| 350 | <p> |
| 351 | These functions <i>must</i> be implemented in every garbage collector, even if |
| 352 | they do not need read/write barriers. In this case, just load or store the |
| 353 | pointer, then return. |
| 354 | </p> |
| 355 | |
| 356 | <p> |
| 357 | If an actual read or write barrier is needed, it should be straight-forward to |
| 358 | implement it. Note that we may add a pointer to the start of the memory object |
| 359 | as a parameter in the future, if needed. |
| 360 | </p> |
| 361 | |
| 362 | </div> |
| 363 | |
| 364 | <!-- ======================================================================= --> |
| 365 | <div class="doc_subsection"> |
| 366 | <a name="traceroots">Tracing the GC roots from the program stack</a> |
| 367 | </div> |
| 368 | |
| 369 | <div class="doc_text"> |
| 370 | <div class="doc_code"><tt> |
| 371 | void llvm_cg_walk_gcroots(void (*FP)(void **Root, void *Meta)); |
| 372 | </tt></div> |
| 373 | |
| 374 | <p> |
| 375 | The <tt>llvm_cg_walk_gcroots</tt> function is a function provided by the code |
| 376 | generator that iterates through all of the GC roots on the stack, calling the |
| 377 | specified function pointer with each record. For each GC root, the address of |
| 378 | the pointer and the meta-data (from the <a |
| 379 | href="#gcroot"><tt>llvm.gcroot</tt></a> intrinsic) are provided. |
| 380 | </p> |
| 381 | </div> |
| 382 | |
| 383 | |
| 384 | <!-- ======================================================================= --> |
| 385 | <div class="doc_subsection"> |
| 386 | <a name="gcimpls">GC implementations available</a> |
| 387 | </div> |
| 388 | |
| 389 | <div class="doc_text"> |
| 390 | |
| 391 | <p> |
| 392 | To make this more concrete, the currently implemented LLVM garbage collectors |
| 393 | all live in the llvm/runtime/GC directory in the LLVM source-base. |
| 394 | </p> |
| 395 | |
| 396 | <p> |
| 397 | TODO: Brief overview of each. |
| 398 | </p> |
| 399 | |
| 400 | </div> |
| 401 | |
| 402 | |
| 403 | <!-- *********************************************************************** --> |
| 404 | |
| 405 | <hr> |
| 406 | <address> |
| 407 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| 408 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| 409 | <a href="http://validator.w3.org/check/referer"><img |
| 410 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| 411 | |
| 412 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| 413 | <a href="http://llvm.cs.uiuc.edu">LLVM Compiler Infrastructure</a><br> |
| 414 | Last modified: $Date$ |
| 415 | </address> |
| 416 | |
| 417 | </body> |
| 418 | </html> |