Vikram S. Adve | 0e1158f | 2001-08-28 23:07:19 +0000 | [diff] [blame^] | 1 | // $Id$ |
| 2 | //*************************************************************************** |
| 3 | // File: |
| 4 | // InstrScheduling.cpp |
| 5 | // |
| 6 | // Purpose: |
| 7 | // |
| 8 | // History: |
| 9 | // 7/23/01 - Vikram Adve - Created |
| 10 | //*************************************************************************** |
| 11 | |
| 12 | |
| 13 | //************************* System Include Files ***************************/ |
| 14 | |
| 15 | #include <hash_set> |
| 16 | #include <vector> |
| 17 | #include <algorithm> |
| 18 | #include <iterator> |
| 19 | |
| 20 | //*************************** User Include Files ***************************/ |
| 21 | |
| 22 | #include "llvm/Support/CommandLine.h" |
| 23 | #include "llvm/Method.h" |
| 24 | #include "llvm/BasicBlock.h" |
| 25 | #include "llvm/Instruction.h" |
| 26 | #include "llvm/Analysis/LiveVar/BBLiveVar.h" |
| 27 | #include "llvm/CodeGen/TargetMachine.h" |
| 28 | #include "llvm/CodeGen/MachineInstr.h" |
| 29 | #include "llvm/CodeGen/SchedGraph.h" |
| 30 | #include "llvm/CodeGen/SchedPriorities.h" |
| 31 | #include "llvm/CodeGen/InstrScheduling.h" |
| 32 | |
| 33 | cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags, |
| 34 | "enable instruction scheduling debugging information", |
| 35 | clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"), |
| 36 | clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"), |
| 37 | clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"), |
| 38 | clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0); |
| 39 | |
| 40 | |
| 41 | //************************* Forward Declarations ***************************/ |
| 42 | |
| 43 | class InstrSchedule; |
| 44 | class SchedulingManager; |
| 45 | class DelaySlotInfo; |
| 46 | |
| 47 | static void ForwardListSchedule (SchedulingManager& S); |
| 48 | |
| 49 | static void RecordSchedule (const BasicBlock* bb, |
| 50 | const SchedulingManager& S); |
| 51 | |
| 52 | static unsigned ChooseOneGroup (SchedulingManager& S); |
| 53 | |
| 54 | static void MarkSuccessorsReady (SchedulingManager& S, |
| 55 | const SchedGraphNode* node); |
| 56 | |
| 57 | static unsigned FindSlotChoices (SchedulingManager& S, |
| 58 | DelaySlotInfo*& getDelaySlotInfo); |
| 59 | |
| 60 | static void AssignInstructionsToSlots(class SchedulingManager& S, |
| 61 | unsigned maxIssue); |
| 62 | |
| 63 | static void ScheduleInstr (class SchedulingManager& S, |
| 64 | const SchedGraphNode* node, |
| 65 | unsigned int slotNum, |
| 66 | cycles_t curTime); |
| 67 | |
| 68 | static bool ViolatesMinimumGap (const SchedulingManager& S, |
| 69 | MachineOpCode opCode, |
| 70 | const cycles_t inCycle); |
| 71 | |
| 72 | static bool ConflictsWithChoices (const SchedulingManager& S, |
| 73 | MachineOpCode opCode); |
| 74 | |
| 75 | static void ChooseInstructionsForDelaySlots(SchedulingManager& S, |
| 76 | const BasicBlock* bb, |
| 77 | SchedGraph* graph); |
| 78 | |
| 79 | static bool NodeCanFillDelaySlot (const SchedulingManager& S, |
| 80 | const SchedGraphNode* node, |
| 81 | const SchedGraphNode* brNode, |
| 82 | bool nodeIsPredecessor); |
| 83 | |
| 84 | static void MarkNodeForDelaySlot (SchedulingManager& S, |
| 85 | SchedGraphNode* node, |
| 86 | const SchedGraphNode* brNode, |
| 87 | bool nodeIsPredecessor); |
| 88 | |
| 89 | //************************* Internal Data Types *****************************/ |
| 90 | |
| 91 | |
| 92 | //---------------------------------------------------------------------- |
| 93 | // class InstrGroup: |
| 94 | // |
| 95 | // Represents a group of instructions scheduled to be issued |
| 96 | // in a single cycle. |
| 97 | //---------------------------------------------------------------------- |
| 98 | |
| 99 | class InstrGroup: public NonCopyable { |
| 100 | public: |
| 101 | inline const SchedGraphNode* operator[](unsigned int slotNum) const { |
| 102 | assert(slotNum < group.size()); |
| 103 | return group[slotNum]; |
| 104 | } |
| 105 | |
| 106 | private: |
| 107 | friend class InstrSchedule; |
| 108 | |
| 109 | inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) { |
| 110 | assert(slotNum < group.size()); |
| 111 | group[slotNum] = node; |
| 112 | } |
| 113 | |
| 114 | /*ctor*/ InstrGroup(unsigned int nslots) |
| 115 | : group(nslots, NULL) {} |
| 116 | |
| 117 | /*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT |
| 118 | |
| 119 | private: |
| 120 | vector<const SchedGraphNode*> group; |
| 121 | }; |
| 122 | |
| 123 | |
| 124 | //---------------------------------------------------------------------- |
| 125 | // class ScheduleIterator: |
| 126 | // |
| 127 | // Iterates over the machine instructions in the for a single basic block. |
| 128 | // The schedule is represented by an InstrSchedule object. |
| 129 | //---------------------------------------------------------------------- |
| 130 | |
| 131 | template<class _NodeType> |
| 132 | class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> { |
| 133 | private: |
| 134 | unsigned cycleNum; |
| 135 | unsigned slotNum; |
| 136 | const InstrSchedule& S; |
| 137 | public: |
| 138 | typedef ScheduleIterator<_NodeType> _Self; |
| 139 | |
| 140 | /*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule, |
| 141 | unsigned _cycleNum, |
| 142 | unsigned _slotNum) |
| 143 | : cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) { |
| 144 | skipToNextInstr(); |
| 145 | } |
| 146 | |
| 147 | /*ctor*/ inline ScheduleIterator(const _Self& x) |
| 148 | : cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {} |
| 149 | |
| 150 | inline bool operator==(const _Self& x) const { |
| 151 | return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S); |
| 152 | } |
| 153 | |
| 154 | inline bool operator!=(const _Self& x) const { return !operator==(x); } |
| 155 | |
| 156 | inline _NodeType* operator*() const { |
| 157 | assert(cycleNum < S.groups.size()); |
| 158 | return (*S.groups[cycleNum])[slotNum]; |
| 159 | } |
| 160 | inline _NodeType* operator->() const { return operator*(); } |
| 161 | |
| 162 | _Self& operator++(); // Preincrement |
| 163 | inline _Self operator++(int) { // Postincrement |
| 164 | _Self tmp(*this); ++*this; return tmp; |
| 165 | } |
| 166 | |
| 167 | static _Self begin(const InstrSchedule& _schedule); |
| 168 | static _Self end( const InstrSchedule& _schedule); |
| 169 | |
| 170 | private: |
| 171 | inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT |
| 172 | void skipToNextInstr(); |
| 173 | }; |
| 174 | |
| 175 | |
| 176 | //---------------------------------------------------------------------- |
| 177 | // class InstrSchedule: |
| 178 | // |
| 179 | // Represents the schedule of machine instructions for a single basic block. |
| 180 | //---------------------------------------------------------------------- |
| 181 | |
| 182 | class InstrSchedule: public NonCopyable { |
| 183 | private: |
| 184 | const unsigned int nslots; |
| 185 | unsigned int numInstr; |
| 186 | vector<InstrGroup*> groups; // indexed by cycle number |
| 187 | vector<cycles_t> startTime; // indexed by node id |
| 188 | |
| 189 | public: // iterators |
| 190 | typedef ScheduleIterator<SchedGraphNode> iterator; |
| 191 | typedef ScheduleIterator<const SchedGraphNode> const_iterator; |
| 192 | |
| 193 | iterator begin(); |
| 194 | const_iterator begin() const; |
| 195 | iterator end(); |
| 196 | const_iterator end() const; |
| 197 | |
| 198 | public: // constructors and destructor |
| 199 | /*ctor*/ InstrSchedule (unsigned int _nslots, |
| 200 | unsigned int _numNodes); |
| 201 | /*dtor*/ ~InstrSchedule (); |
| 202 | |
| 203 | public: // accessor functions to query chosen schedule |
| 204 | const SchedGraphNode* getInstr (unsigned int slotNum, |
| 205 | cycles_t c) const { |
| 206 | const InstrGroup* igroup = this->getIGroup(c); |
| 207 | return (igroup == NULL)? NULL : (*igroup)[slotNum]; |
| 208 | } |
| 209 | |
| 210 | inline InstrGroup* getIGroup (cycles_t c) { |
| 211 | if (c >= groups.size()) |
| 212 | groups.resize(c+1); |
| 213 | if (groups[c] == NULL) |
| 214 | groups[c] = new InstrGroup(nslots); |
| 215 | return groups[c]; |
| 216 | } |
| 217 | |
| 218 | inline const InstrGroup* getIGroup (cycles_t c) const { |
| 219 | assert(c < groups.size()); |
| 220 | return groups[c]; |
| 221 | } |
| 222 | |
| 223 | inline cycles_t getStartTime (unsigned int nodeId) const { |
| 224 | assert(nodeId < startTime.size()); |
| 225 | return startTime[nodeId]; |
| 226 | } |
| 227 | |
| 228 | unsigned int getNumInstructions() const { |
| 229 | return numInstr; |
| 230 | } |
| 231 | |
| 232 | inline void scheduleInstr (const SchedGraphNode* node, |
| 233 | unsigned int slotNum, |
| 234 | cycles_t cycle) { |
| 235 | InstrGroup* igroup = this->getIGroup(cycle); |
| 236 | assert((*igroup)[slotNum] == NULL && "Slot already filled?"); |
| 237 | igroup->addInstr(node, slotNum); |
| 238 | assert(node->getNodeId() < startTime.size()); |
| 239 | startTime[node->getNodeId()] = cycle; |
| 240 | ++numInstr; |
| 241 | } |
| 242 | |
| 243 | private: |
| 244 | friend class iterator; |
| 245 | friend class const_iterator; |
| 246 | /*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT. |
| 247 | }; |
| 248 | |
| 249 | |
| 250 | /*ctor*/ |
| 251 | InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes) |
| 252 | : nslots(_nslots), |
| 253 | numInstr(0), |
| 254 | groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles |
| 255 | startTime(_numNodes, (cycles_t) -1) // set all to -1 |
| 256 | { |
| 257 | } |
| 258 | |
| 259 | |
| 260 | /*dtor*/ |
| 261 | InstrSchedule::~InstrSchedule() |
| 262 | { |
| 263 | for (unsigned c=0, NC=groups.size(); c < NC; c++) |
| 264 | if (groups[c] != NULL) |
| 265 | delete groups[c]; // delete InstrGroup objects |
| 266 | } |
| 267 | |
| 268 | |
| 269 | template<class _NodeType> |
| 270 | inline |
| 271 | void |
| 272 | ScheduleIterator<_NodeType>::skipToNextInstr() |
| 273 | { |
| 274 | while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) |
| 275 | ++cycleNum; // skip cycles with no instructions |
| 276 | |
| 277 | while (cycleNum < S.groups.size() && |
| 278 | (*S.groups[cycleNum])[slotNum] == NULL) |
| 279 | { |
| 280 | ++slotNum; |
| 281 | if (slotNum == S.nslots) |
| 282 | { |
| 283 | ++cycleNum; |
| 284 | slotNum = 0; |
| 285 | while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL) |
| 286 | ++cycleNum; // skip cycles with no instructions |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | template<class _NodeType> |
| 292 | inline |
| 293 | ScheduleIterator<_NodeType>& |
| 294 | ScheduleIterator<_NodeType>::operator++() // Preincrement |
| 295 | { |
| 296 | ++slotNum; |
| 297 | if (slotNum == S.nslots) |
| 298 | { |
| 299 | ++cycleNum; |
| 300 | slotNum = 0; |
| 301 | } |
| 302 | skipToNextInstr(); |
| 303 | return *this; |
| 304 | } |
| 305 | |
| 306 | template<class _NodeType> |
| 307 | ScheduleIterator<_NodeType> |
| 308 | ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule) |
| 309 | { |
| 310 | return _Self(_schedule, 0, 0); |
| 311 | } |
| 312 | |
| 313 | template<class _NodeType> |
| 314 | ScheduleIterator<_NodeType> |
| 315 | ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule) |
| 316 | { |
| 317 | return _Self(_schedule, _schedule.groups.size(), 0); |
| 318 | } |
| 319 | |
| 320 | InstrSchedule::iterator |
| 321 | InstrSchedule::begin() |
| 322 | { |
| 323 | return iterator::begin(*this); |
| 324 | } |
| 325 | |
| 326 | InstrSchedule::const_iterator |
| 327 | InstrSchedule::begin() const |
| 328 | { |
| 329 | return const_iterator::begin(*this); |
| 330 | } |
| 331 | |
| 332 | InstrSchedule::iterator |
| 333 | InstrSchedule::end() |
| 334 | { |
| 335 | return iterator::end(*this); |
| 336 | } |
| 337 | |
| 338 | InstrSchedule::const_iterator |
| 339 | InstrSchedule::end() const |
| 340 | { |
| 341 | return const_iterator::end( *this); |
| 342 | } |
| 343 | |
| 344 | |
| 345 | //---------------------------------------------------------------------- |
| 346 | // class DelaySlotInfo: |
| 347 | // |
| 348 | // Record information about delay slots for a single branch instruction. |
| 349 | // Delay slots are simply indexed by slot number 1 ... numDelaySlots |
| 350 | //---------------------------------------------------------------------- |
| 351 | |
| 352 | class DelaySlotInfo: public NonCopyable { |
| 353 | private: |
| 354 | const SchedGraphNode* brNode; |
| 355 | unsigned int ndelays; |
| 356 | vector<const SchedGraphNode*> delayNodeVec; |
| 357 | cycles_t delayedNodeCycle; |
| 358 | unsigned int delayedNodeSlotNum; |
| 359 | |
| 360 | public: |
| 361 | /*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode, |
| 362 | unsigned _ndelays) |
| 363 | : brNode(_brNode), ndelays(_ndelays), |
| 364 | delayedNodeCycle(0), delayedNodeSlotNum(0) {} |
| 365 | |
| 366 | inline unsigned getNumDelays () { |
| 367 | return ndelays; |
| 368 | } |
| 369 | |
| 370 | inline const vector<const SchedGraphNode*>& getDelayNodeVec() { |
| 371 | return delayNodeVec; |
| 372 | } |
| 373 | |
| 374 | inline void addDelayNode (const SchedGraphNode* node) { |
| 375 | delayNodeVec.push_back(node); |
| 376 | assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!"); |
| 377 | } |
| 378 | |
| 379 | inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) { |
| 380 | delayedNodeCycle = cycle; |
| 381 | delayedNodeSlotNum = slotNum; |
| 382 | } |
| 383 | |
| 384 | void scheduleDelayedNode (SchedulingManager& S); |
| 385 | }; |
| 386 | |
| 387 | |
| 388 | //---------------------------------------------------------------------- |
| 389 | // class SchedulingManager: |
| 390 | // |
| 391 | // Represents the schedule of machine instructions for a single basic block. |
| 392 | //---------------------------------------------------------------------- |
| 393 | |
| 394 | class SchedulingManager: public NonCopyable { |
| 395 | public: // publicly accessible data members |
| 396 | const unsigned int nslots; |
| 397 | const MachineSchedInfo& schedInfo; |
| 398 | SchedPriorities& schedPrio; |
| 399 | InstrSchedule isched; |
| 400 | |
| 401 | private: |
| 402 | unsigned int totalInstrCount; |
| 403 | cycles_t curTime; |
| 404 | cycles_t nextEarliestIssueTime; // next cycle we can issue |
| 405 | vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot# |
| 406 | vector<const SchedGraphNode*> choiceVec; // indexed by node ptr |
| 407 | vector<int> numInClass; // indexed by sched class |
| 408 | vector<cycles_t> nextEarliestStartTime; // indexed by opCode |
| 409 | hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches; |
| 410 | // indexed by branch node ptr |
| 411 | |
| 412 | public: |
| 413 | /*ctor*/ SchedulingManager (const TargetMachine& _target, |
| 414 | const SchedGraph* graph, |
| 415 | SchedPriorities& schedPrio); |
| 416 | /*dtor*/ ~SchedulingManager () {} |
| 417 | |
| 418 | //---------------------------------------------------------------------- |
| 419 | // Simplify access to the machine instruction info |
| 420 | //---------------------------------------------------------------------- |
| 421 | |
| 422 | inline const MachineInstrInfo& getInstrInfo () const { |
| 423 | return schedInfo.getInstrInfo(); |
| 424 | } |
| 425 | |
| 426 | //---------------------------------------------------------------------- |
| 427 | // Interface for checking and updating the current time |
| 428 | //---------------------------------------------------------------------- |
| 429 | |
| 430 | inline cycles_t getTime () const { |
| 431 | return curTime; |
| 432 | } |
| 433 | |
| 434 | inline cycles_t getEarliestIssueTime() const { |
| 435 | return nextEarliestIssueTime; |
| 436 | } |
| 437 | |
| 438 | inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const { |
| 439 | assert(opCode < (int) nextEarliestStartTime.size()); |
| 440 | return nextEarliestStartTime[opCode]; |
| 441 | } |
| 442 | |
| 443 | // Update current time to specified cycle |
| 444 | inline void updateTime (cycles_t c) { |
| 445 | curTime = c; |
| 446 | schedPrio.updateTime(c); |
| 447 | } |
| 448 | |
| 449 | //---------------------------------------------------------------------- |
| 450 | // Functions to manage the choices for the current cycle including: |
| 451 | // -- a vector of choices by priority (choiceVec) |
| 452 | // -- vectors of the choices for each instruction slot (choicesForSlot[]) |
| 453 | // -- number of choices in each sched class, used to check issue conflicts |
| 454 | // between choices for a single cycle |
| 455 | //---------------------------------------------------------------------- |
| 456 | |
| 457 | inline unsigned int getNumChoices () const { |
| 458 | return choiceVec.size(); |
| 459 | } |
| 460 | |
| 461 | inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const { |
| 462 | assert(sc < (int) numInClass.size() && "Invalid op code or sched class!"); |
| 463 | return numInClass[sc]; |
| 464 | } |
| 465 | |
| 466 | inline const SchedGraphNode* getChoice(unsigned int i) const { |
| 467 | // assert(i < choiceVec.size()); don't check here. |
| 468 | return choiceVec[i]; |
| 469 | } |
| 470 | |
| 471 | inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) { |
| 472 | assert(slotNum < nslots); |
| 473 | return choicesForSlot[slotNum]; |
| 474 | } |
| 475 | |
| 476 | inline void addChoice (const SchedGraphNode* node) { |
| 477 | // Append the instruction to the vector of choices for current cycle. |
| 478 | // Increment numInClass[c] for the sched class to which the instr belongs. |
| 479 | choiceVec.push_back(node); |
| 480 | const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); |
| 481 | assert(sc < (int) numInClass.size()); |
| 482 | numInClass[sc]++; |
| 483 | } |
| 484 | |
| 485 | inline void addChoiceToSlot (unsigned int slotNum, |
| 486 | const SchedGraphNode* node) { |
| 487 | // Add the instruction to the choice set for the specified slot |
| 488 | assert(slotNum < nslots); |
| 489 | choicesForSlot[slotNum].insert(node); |
| 490 | } |
| 491 | |
| 492 | inline void resetChoices () { |
| 493 | choiceVec.clear(); |
| 494 | for (unsigned int s=0; s < nslots; s++) |
| 495 | choicesForSlot[s].clear(); |
| 496 | for (unsigned int c=0; c < numInClass.size(); c++) |
| 497 | numInClass[c] = 0; |
| 498 | } |
| 499 | |
| 500 | //---------------------------------------------------------------------- |
| 501 | // Code to query and manage the partial instruction schedule so far |
| 502 | //---------------------------------------------------------------------- |
| 503 | |
| 504 | inline unsigned int getNumScheduled () const { |
| 505 | return isched.getNumInstructions(); |
| 506 | } |
| 507 | |
| 508 | inline unsigned int getNumUnscheduled() const { |
| 509 | return totalInstrCount - isched.getNumInstructions(); |
| 510 | } |
| 511 | |
| 512 | inline bool isScheduled (const SchedGraphNode* node) const { |
| 513 | return (isched.getStartTime(node->getNodeId()) >= 0); |
| 514 | } |
| 515 | |
| 516 | inline void scheduleInstr (const SchedGraphNode* node, |
| 517 | unsigned int slotNum, |
| 518 | cycles_t cycle) |
| 519 | { |
| 520 | assert(! isScheduled(node) && "Instruction already scheduled?"); |
| 521 | |
| 522 | // add the instruction to the schedule |
| 523 | isched.scheduleInstr(node, slotNum, cycle); |
| 524 | |
| 525 | // update the earliest start times of all nodes that conflict with `node' |
| 526 | // and the next-earliest time anything can issue if `node' causes bubbles |
| 527 | updateEarliestStartTimes(node, cycle); |
| 528 | |
| 529 | // remove the instruction from the choice sets for all slots |
| 530 | for (unsigned s=0; s < nslots; s++) |
| 531 | choicesForSlot[s].erase(node); |
| 532 | |
| 533 | // and decrement the instr count for the sched class to which it belongs |
| 534 | const InstrSchedClass& sc = schedInfo.getSchedClass(node->getOpCode()); |
| 535 | assert(sc < (int) numInClass.size()); |
| 536 | numInClass[sc]--; |
| 537 | } |
| 538 | |
| 539 | //---------------------------------------------------------------------- |
| 540 | // Create and retrieve delay slot info for delayed instructions |
| 541 | //---------------------------------------------------------------------- |
| 542 | |
| 543 | inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn, |
| 544 | bool createIfMissing=false) |
| 545 | { |
| 546 | DelaySlotInfo* dinfo; |
| 547 | hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator |
| 548 | I = delaySlotInfoForBranches.find(bn); |
| 549 | if (I == delaySlotInfoForBranches.end()) |
| 550 | { |
| 551 | if (createIfMissing) |
| 552 | { |
| 553 | dinfo = new DelaySlotInfo(bn, |
| 554 | getInstrInfo().getNumDelaySlots(bn->getOpCode())); |
| 555 | delaySlotInfoForBranches[bn] = dinfo; |
| 556 | } |
| 557 | else |
| 558 | dinfo = NULL; |
| 559 | } |
| 560 | else |
| 561 | dinfo = (*I).second; |
| 562 | |
| 563 | return dinfo; |
| 564 | } |
| 565 | |
| 566 | private: |
| 567 | /*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT. |
| 568 | void updateEarliestStartTimes(const SchedGraphNode* node, |
| 569 | cycles_t schedTime); |
| 570 | }; |
| 571 | |
| 572 | |
| 573 | /*ctor*/ |
| 574 | SchedulingManager::SchedulingManager(const TargetMachine& target, |
| 575 | const SchedGraph* graph, |
| 576 | SchedPriorities& _schedPrio) |
| 577 | : nslots(target.getSchedInfo().getMaxNumIssueTotal()), |
| 578 | schedInfo(target.getSchedInfo()), |
| 579 | schedPrio(_schedPrio), |
| 580 | isched(nslots, graph->getNumNodes()), |
| 581 | totalInstrCount(graph->getNumNodes() - 2), |
| 582 | nextEarliestIssueTime(0), |
| 583 | choicesForSlot(nslots), |
| 584 | numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0 |
| 585 | nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(), |
| 586 | (cycles_t) 0) // set all to 0 |
| 587 | { |
| 588 | updateTime(0); |
| 589 | |
| 590 | // Note that an upper bound on #choices for each slot is = nslots since |
| 591 | // we use this vector to hold a feasible set of instructions, and more |
| 592 | // would be infeasible. Reserve that much memory since it is probably small. |
| 593 | for (unsigned int i=0; i < nslots; i++) |
| 594 | choicesForSlot[i].resize(nslots); |
| 595 | } |
| 596 | |
| 597 | |
| 598 | void |
| 599 | SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node, |
| 600 | cycles_t schedTime) |
| 601 | { |
| 602 | if (schedInfo.numBubblesAfter(node->getOpCode()) > 0) |
| 603 | { // Update next earliest time before which *nothing* can issue. |
| 604 | nextEarliestIssueTime = max(nextEarliestIssueTime, |
| 605 | curTime + 1 + schedInfo.numBubblesAfter(node->getOpCode())); |
| 606 | } |
| 607 | |
| 608 | const vector<MachineOpCode>* |
| 609 | conflictVec = schedInfo.getConflictList(node->getOpCode()); |
| 610 | |
| 611 | if (conflictVec != NULL) |
| 612 | for (unsigned i=0; i < conflictVec->size(); i++) |
| 613 | { |
| 614 | MachineOpCode toOp = (*conflictVec)[i]; |
| 615 | cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getOpCode(), |
| 616 | toOp); |
| 617 | assert(toOp < (int) nextEarliestStartTime.size()); |
| 618 | if (nextEarliestStartTime[toOp] < est) |
| 619 | nextEarliestStartTime[toOp] = est; |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | //************************* External Functions *****************************/ |
| 624 | |
| 625 | |
| 626 | //--------------------------------------------------------------------------- |
| 627 | // Function: ScheduleInstructionsWithSSA |
| 628 | // |
| 629 | // Purpose: |
| 630 | // Entry point for instruction scheduling on SSA form. |
| 631 | // Schedules the machine instructions generated by instruction selection. |
| 632 | // Assumes that register allocation has not been done, i.e., operands |
| 633 | // are still in SSA form. |
| 634 | //--------------------------------------------------------------------------- |
| 635 | |
| 636 | bool |
| 637 | ScheduleInstructionsWithSSA(Method* method, |
| 638 | const TargetMachine &target) |
| 639 | { |
| 640 | SchedGraphSet graphSet(method, target); |
| 641 | |
| 642 | if (SchedDebugLevel >= Sched_PrintSchedGraphs) |
| 643 | { |
| 644 | cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING" |
| 645 | << endl; |
| 646 | graphSet.dump(); |
| 647 | } |
| 648 | |
| 649 | for (SchedGraphSet::const_iterator GI=graphSet.begin(); |
| 650 | GI != graphSet.end(); ++GI) |
| 651 | { |
| 652 | SchedGraph* graph = (*GI).second; |
| 653 | const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks(); |
| 654 | assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks"); |
| 655 | const BasicBlock* bb = bbvec[0]; |
| 656 | |
| 657 | if (SchedDebugLevel >= Sched_PrintSchedTrace) |
| 658 | cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n"; |
| 659 | |
| 660 | SchedPriorities schedPrio(method, graph); // expensive! |
| 661 | SchedulingManager S(target, graph, schedPrio); |
| 662 | |
| 663 | ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph |
| 664 | |
| 665 | ForwardListSchedule(S); // computes schedule in S |
| 666 | |
| 667 | RecordSchedule((*GI).first, S); // records schedule in BB |
| 668 | } |
| 669 | |
| 670 | if (SchedDebugLevel >= Sched_PrintMachineCode) |
| 671 | { |
| 672 | cout << endl |
| 673 | << "*** Machine instructions after INSTRUCTION SCHEDULING" << endl; |
| 674 | PrintMachineInstructions(method); |
| 675 | } |
| 676 | |
| 677 | return false; // no reason to fail yet |
| 678 | } |
| 679 | |
| 680 | |
| 681 | // Check minimum gap requirements relative to instructions scheduled in |
| 682 | // previous cycles. |
| 683 | // Note that we do not need to consider `nextEarliestIssueTime' here because |
| 684 | // that is also captured in the earliest start times for each opcode. |
| 685 | // |
| 686 | static inline bool |
| 687 | ViolatesMinimumGap(const SchedulingManager& S, |
| 688 | MachineOpCode opCode, |
| 689 | const cycles_t inCycle) |
| 690 | { |
| 691 | return (inCycle < S.getEarliestStartTimeForOp(opCode)); |
| 692 | } |
| 693 | |
| 694 | |
| 695 | // Check if the instruction would conflict with instructions already |
| 696 | // chosen for the current cycle |
| 697 | // |
| 698 | static inline bool |
| 699 | ConflictsWithChoices(const SchedulingManager& S, |
| 700 | MachineOpCode opCode) |
| 701 | { |
| 702 | // Check if the instruction must issue by itself, and some feasible |
| 703 | // choices have already been made for this cycle |
| 704 | if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode)) |
| 705 | return true; |
| 706 | |
| 707 | // For each class that opCode belongs to, check if there are too many |
| 708 | // instructions of that class. |
| 709 | // |
| 710 | const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode); |
| 711 | return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc)); |
| 712 | } |
| 713 | |
| 714 | |
| 715 | // Check if any issue restrictions would prevent the instruction from |
| 716 | // being issued in the current cycle |
| 717 | // |
| 718 | bool |
| 719 | instrIsFeasible(const SchedulingManager& S, |
| 720 | MachineOpCode opCode) |
| 721 | { |
| 722 | // skip the instruction if it cannot be issued due to issue restrictions |
| 723 | // caused by previously issued instructions |
| 724 | if (ViolatesMinimumGap(S, opCode, S.getTime())) |
| 725 | return false; |
| 726 | |
| 727 | // skip the instruction if it cannot be issued due to issue restrictions |
| 728 | // caused by previously chosen instructions for the current cycle |
| 729 | if (ConflictsWithChoices(S, opCode)) |
| 730 | return false; |
| 731 | |
| 732 | return true; |
| 733 | } |
| 734 | |
| 735 | //************************* Internal Functions *****************************/ |
| 736 | |
| 737 | |
| 738 | static void |
| 739 | ForwardListSchedule(SchedulingManager& S) |
| 740 | { |
| 741 | unsigned N; |
| 742 | const SchedGraphNode* node; |
| 743 | |
| 744 | S.schedPrio.initialize(); |
| 745 | |
| 746 | while ((N = S.schedPrio.getNumReady()) > 0) |
| 747 | { |
| 748 | // Choose one group of instructions for a cycle. This will |
| 749 | // advance S.getTime() to the first cycle instructions can be issued. |
| 750 | // It may also schedule delay slot instructions in later cycles, |
| 751 | // but those are ignored here because they are outside the graph. |
| 752 | // |
| 753 | unsigned numIssued = ChooseOneGroup(S); |
| 754 | assert(numIssued > 0 && "Deadlock in list scheduling algorithm?"); |
| 755 | |
| 756 | // Notify the priority manager of scheduled instructions and mark |
| 757 | // any successors that may now be ready |
| 758 | // |
| 759 | const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); |
| 760 | for (unsigned int s=0; s < S.nslots; s++) |
| 761 | if ((node = (*igroup)[s]) != NULL) |
| 762 | { |
| 763 | S.schedPrio.issuedReadyNodeAt(S.getTime(), node); |
| 764 | MarkSuccessorsReady(S, node); |
| 765 | } |
| 766 | |
| 767 | // Move to the next the next earliest cycle for which |
| 768 | // an instruction can be issued, or the next earliest in which |
| 769 | // one will be ready, or to the next cycle, whichever is latest. |
| 770 | // |
| 771 | S.updateTime(max(S.getTime() + 1, |
| 772 | max(S.getEarliestIssueTime(), |
| 773 | S.schedPrio.getEarliestReadyTime()))); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | |
| 778 | // |
| 779 | // For now, just assume we are scheduling within a single basic block. |
| 780 | // Get the machine instruction vector for the basic block and clear it, |
| 781 | // then append instructions in scheduled order. |
| 782 | // Also, re-insert the dummy PHI instructions that were at the beginning |
| 783 | // of the basic block, since they are not part of the schedule. |
| 784 | // |
| 785 | static void |
| 786 | RecordSchedule(const BasicBlock* bb, const SchedulingManager& S) |
| 787 | { |
| 788 | if (S.isched.getNumInstructions() == 0) |
| 789 | return; // empty basic block! |
| 790 | |
| 791 | MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec(); |
| 792 | unsigned int oldSize = mvec.size(); |
| 793 | |
| 794 | // First find the dummy instructions at the start of the basic block |
| 795 | const MachineInstrInfo& mii = S.schedInfo.getInstrInfo(); |
| 796 | MachineCodeForBasicBlock::iterator I = mvec.begin(); |
| 797 | for ( ; I != mvec.end(); ++I) |
| 798 | if (! mii.isDummyPhiInstr((*I)->getOpCode())) |
| 799 | break; |
| 800 | |
| 801 | // Erase all except the dummy PHI instructions from mvec, and |
| 802 | // pre-allocate create space for the ones we will be put back in. |
| 803 | mvec.erase(I, mvec.end()); |
| 804 | mvec.reserve(mvec.size() + S.isched.getNumInstructions()); |
| 805 | |
| 806 | InstrSchedule::const_iterator NIend = S.isched.end(); |
| 807 | for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI) |
| 808 | mvec.push_back((*NI)->getMachineInstr()); |
| 809 | } |
| 810 | |
| 811 | |
| 812 | static unsigned |
| 813 | ChooseOneGroup(SchedulingManager& S) |
| 814 | { |
| 815 | assert(S.schedPrio.getNumReady() > 0 |
| 816 | && "Don't get here without ready instructions."); |
| 817 | |
| 818 | DelaySlotInfo* getDelaySlotInfo; |
| 819 | |
| 820 | // Choose up to `nslots' feasible instructions and their possible slots. |
| 821 | unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo); |
| 822 | |
| 823 | while (numIssued == 0) |
| 824 | { |
| 825 | S.updateTime(S.getTime()+1); |
| 826 | numIssued = FindSlotChoices(S, getDelaySlotInfo); |
| 827 | } |
| 828 | |
| 829 | AssignInstructionsToSlots(S, numIssued); |
| 830 | |
| 831 | if (getDelaySlotInfo != NULL) |
| 832 | getDelaySlotInfo->scheduleDelayedNode(S); |
| 833 | |
| 834 | // Print trace of scheduled instructions before newly ready ones |
| 835 | if (SchedDebugLevel >= Sched_PrintSchedTrace) |
| 836 | { |
| 837 | printIndent(2); |
| 838 | cout << "Cycle " << S.getTime() << " : Scheduled instructions:\n"; |
| 839 | const InstrGroup* igroup = S.isched.getIGroup(S.getTime()); |
| 840 | for (unsigned int s=0; s < S.nslots; s++) |
| 841 | { |
| 842 | printIndent(4); |
| 843 | if ((*igroup)[s] != NULL) |
| 844 | cout << * ((*igroup)[s])->getMachineInstr() << endl; |
| 845 | else |
| 846 | cout << "<none>" << endl; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | return numIssued; |
| 851 | } |
| 852 | |
| 853 | |
| 854 | static void |
| 855 | MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node) |
| 856 | { |
| 857 | // Check if any successors are now ready that were not already marked |
| 858 | // ready before, and that have not yet been scheduled. |
| 859 | // |
| 860 | for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI) |
| 861 | if (! (*SI)->isDummyNode() |
| 862 | && ! S.isScheduled(*SI) |
| 863 | && ! S.schedPrio.nodeIsReady(*SI)) |
| 864 | {// successor not scheduled and not marked ready; check *its* preds. |
| 865 | |
| 866 | bool succIsReady = true; |
| 867 | for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P) |
| 868 | if (! (*P)->isDummyNode() |
| 869 | && ! S.isScheduled(*P)) |
| 870 | { |
| 871 | succIsReady = false; |
| 872 | break; |
| 873 | } |
| 874 | |
| 875 | if (succIsReady) // add the successor to the ready list |
| 876 | S.schedPrio.insertReady(*SI); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | |
| 881 | // Choose up to `nslots' FEASIBLE instructions and assign each |
| 882 | // instruction to all possible slots that do not violate feasibility. |
| 883 | // FEASIBLE means it should be guaranteed that the set |
| 884 | // of chosen instructions can be issued in a single group. |
| 885 | // |
| 886 | // Return value: |
| 887 | // maxIssue : total number of feasible instructions |
| 888 | // S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i |
| 889 | // |
| 890 | static unsigned |
| 891 | FindSlotChoices(SchedulingManager& S, |
| 892 | DelaySlotInfo*& getDelaySlotInfo) |
| 893 | { |
| 894 | // initialize result vectors to empty |
| 895 | S.resetChoices(); |
| 896 | |
| 897 | // find the slot to start from, in the current cycle |
| 898 | unsigned int startSlot = 0; |
| 899 | InstrGroup* igroup = S.isched.getIGroup(S.getTime()); |
| 900 | for (int s = S.nslots - 1; s >= 0; s--) |
| 901 | if ((*igroup)[s] != NULL) |
| 902 | { |
| 903 | startSlot = s+1; |
| 904 | break; |
| 905 | } |
| 906 | |
| 907 | // Make sure we pick at most one instruction that would break the group. |
| 908 | // Also, if we do pick one, remember which it was. |
| 909 | unsigned int indexForBreakingNode = S.nslots; |
| 910 | unsigned int indexForDelayedInstr = S.nslots; |
| 911 | DelaySlotInfo* delaySlotInfo = NULL; |
| 912 | |
| 913 | getDelaySlotInfo = NULL; |
| 914 | |
| 915 | // Choose instructions in order of priority. |
| 916 | // Add choices to the choice vector in the SchedulingManager class as |
| 917 | // we choose them so that subsequent choices will be correctly tested |
| 918 | // for feasibility, w.r.t. higher priority choices for the same cycle. |
| 919 | // |
| 920 | while (S.getNumChoices() < S.nslots - startSlot) |
| 921 | { |
| 922 | const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime()); |
| 923 | if (nextNode == NULL) |
| 924 | break; // no more instructions for this cycle |
| 925 | |
| 926 | if (S.getInstrInfo().getNumDelaySlots(nextNode->getOpCode()) > 0) |
| 927 | { |
| 928 | delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode); |
| 929 | if (delaySlotInfo != NULL) |
| 930 | { |
| 931 | if (indexForBreakingNode < S.nslots) |
| 932 | // cannot issue a delayed instr in the same cycle as one |
| 933 | // that breaks the issue group or as another delayed instr |
| 934 | nextNode = NULL; |
| 935 | else |
| 936 | indexForDelayedInstr = S.getNumChoices(); |
| 937 | } |
| 938 | } |
| 939 | else if (S.schedInfo.breaksIssueGroup(nextNode->getOpCode())) |
| 940 | { |
| 941 | if (indexForBreakingNode < S.nslots) |
| 942 | // have a breaking instruction already so throw this one away |
| 943 | nextNode = NULL; |
| 944 | else |
| 945 | indexForBreakingNode = S.getNumChoices(); |
| 946 | } |
| 947 | |
| 948 | if (nextNode != NULL) |
| 949 | S.addChoice(nextNode); |
| 950 | |
| 951 | if (S.schedInfo.isSingleIssue(nextNode->getOpCode())) |
| 952 | { |
| 953 | assert(S.getNumChoices() == 1 && |
| 954 | "Prioritizer returned invalid instr for this cycle!"); |
| 955 | break; |
| 956 | } |
| 957 | |
| 958 | if (indexForDelayedInstr < S.nslots) |
| 959 | break; // leave the rest for delay slots |
| 960 | } |
| 961 | |
| 962 | assert(S.getNumChoices() <= S.nslots); |
| 963 | assert(! (indexForDelayedInstr < S.nslots && |
| 964 | indexForBreakingNode < S.nslots) && "Cannot have both in a cycle"); |
| 965 | |
| 966 | // Assign each chosen instruction to all possible slots for that instr. |
| 967 | // But if only one instruction was chosen, put it only in the first |
| 968 | // feasible slot; no more analysis will be needed. |
| 969 | // |
| 970 | if (indexForDelayedInstr >= S.nslots && |
| 971 | indexForBreakingNode >= S.nslots) |
| 972 | { // No instructions that break the issue group or that have delay slots. |
| 973 | // This is the common case, so handle it separately for efficiency. |
| 974 | |
| 975 | if (S.getNumChoices() == 1) |
| 976 | { |
| 977 | MachineOpCode opCode = S.getChoice(0)->getOpCode(); |
| 978 | unsigned int s; |
| 979 | for (s=startSlot; s < S.nslots; s++) |
| 980 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 981 | break; |
| 982 | assert(s < S.nslots && "No feasible slot for this opCode?"); |
| 983 | S.addChoiceToSlot(s, S.getChoice(0)); |
| 984 | } |
| 985 | else |
| 986 | { |
| 987 | for (unsigned i=0; i < S.getNumChoices(); i++) |
| 988 | { |
| 989 | MachineOpCode opCode = S.getChoice(i)->getOpCode(); |
| 990 | for (unsigned int s=startSlot; s < S.nslots; s++) |
| 991 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 992 | S.addChoiceToSlot(s, S.getChoice(i)); |
| 993 | } |
| 994 | } |
| 995 | } |
| 996 | else if (indexForDelayedInstr < S.nslots) |
| 997 | { |
| 998 | // There is an instruction that needs delay slots. |
| 999 | // Try to assign that instruction to a higher slot than any other |
| 1000 | // instructions in the group, so that its delay slots can go |
| 1001 | // right after it. |
| 1002 | // |
| 1003 | |
| 1004 | assert(indexForDelayedInstr == S.getNumChoices() - 1 && |
| 1005 | "Instruction with delay slots should be last choice!"); |
| 1006 | assert(delaySlotInfo != NULL && "No delay slot info for instr?"); |
| 1007 | |
| 1008 | const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr); |
| 1009 | MachineOpCode delayOpCode = delayedNode->getOpCode(); |
| 1010 | unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode); |
| 1011 | |
| 1012 | unsigned delayedNodeSlot = S.nslots; |
| 1013 | int highestSlotUsed; |
| 1014 | |
| 1015 | // Find the last possible slot for the delayed instruction that leaves |
| 1016 | // at least `d' slots vacant after it (d = #delay slots) |
| 1017 | for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--) |
| 1018 | if (S.schedInfo.instrCanUseSlot(delayOpCode, s)) |
| 1019 | { |
| 1020 | delayedNodeSlot = s; |
| 1021 | break; |
| 1022 | } |
| 1023 | |
| 1024 | highestSlotUsed = -1; |
| 1025 | for (unsigned i=0; i < S.getNumChoices() - 1; i++) |
| 1026 | { |
| 1027 | // Try to assign every other instruction to a lower numbered |
| 1028 | // slot than delayedNodeSlot. |
| 1029 | MachineOpCode opCode = S.getChoice(i)->getOpCode(); |
| 1030 | bool noSlotFound = true; |
| 1031 | unsigned int s; |
| 1032 | for (s=startSlot; s < delayedNodeSlot; s++) |
| 1033 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 1034 | { |
| 1035 | S.addChoiceToSlot(s, S.getChoice(i)); |
| 1036 | noSlotFound = false; |
| 1037 | } |
| 1038 | |
| 1039 | // No slot before `delayedNodeSlot' was found for this opCode |
| 1040 | // Use a later slot, and allow some delay slots to fall in |
| 1041 | // the next cycle. |
| 1042 | if (noSlotFound) |
| 1043 | for ( ; s < S.nslots; s++) |
| 1044 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 1045 | { |
| 1046 | S.addChoiceToSlot(s, S.getChoice(i)); |
| 1047 | break; |
| 1048 | } |
| 1049 | |
| 1050 | assert(s < S.nslots && "No feasible slot for instruction?"); |
| 1051 | |
| 1052 | highestSlotUsed = max(highestSlotUsed, (int) s); |
| 1053 | } |
| 1054 | |
| 1055 | assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?"); |
| 1056 | |
| 1057 | // We will put the delayed node in the first slot after the |
| 1058 | // highest slot used. But we just mark that for now, and |
| 1059 | // schedule it separately because we want to schedule the delay |
| 1060 | // slots for the node at the same time. |
| 1061 | cycles_t dcycle = S.getTime(); |
| 1062 | unsigned int dslot = highestSlotUsed + 1; |
| 1063 | if (dslot == S.nslots) |
| 1064 | { |
| 1065 | dslot = 0; |
| 1066 | ++dcycle; |
| 1067 | } |
| 1068 | delaySlotInfo->recordChosenSlot(dcycle, dslot); |
| 1069 | getDelaySlotInfo = delaySlotInfo; |
| 1070 | } |
| 1071 | else |
| 1072 | { // There is an instruction that breaks the issue group. |
| 1073 | // For such an instruction, assign to the last possible slot in |
| 1074 | // the current group, and then don't assign any other instructions |
| 1075 | // to later slots. |
| 1076 | assert(indexForBreakingNode < S.nslots); |
| 1077 | const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode); |
| 1078 | unsigned breakingSlot = INT_MAX; |
| 1079 | unsigned int nslotsToUse = S.nslots; |
| 1080 | |
| 1081 | // Find the last possible slot for this instruction. |
| 1082 | for (int s = S.nslots-1; s >= (int) startSlot; s--) |
| 1083 | if (S.schedInfo.instrCanUseSlot(breakingNode->getOpCode(), s)) |
| 1084 | { |
| 1085 | breakingSlot = s; |
| 1086 | break; |
| 1087 | } |
| 1088 | assert(breakingSlot < S.nslots && |
| 1089 | "No feasible slot for `breakingNode'?"); |
| 1090 | |
| 1091 | // Higher priority instructions than the one that breaks the group: |
| 1092 | // These can be assigned to all slots, but will be assigned only |
| 1093 | // to earlier slots if possible. |
| 1094 | for (unsigned i=0; |
| 1095 | i < S.getNumChoices() && i < indexForBreakingNode; i++) |
| 1096 | { |
| 1097 | MachineOpCode opCode = S.getChoice(i)->getOpCode(); |
| 1098 | |
| 1099 | // If a higher priority instruction cannot be assigned to |
| 1100 | // any earlier slots, don't schedule the breaking instruction. |
| 1101 | // |
| 1102 | bool foundLowerSlot = false; |
| 1103 | nslotsToUse = S.nslots; // May be modified in the loop |
| 1104 | for (unsigned int s=startSlot; s < nslotsToUse; s++) |
| 1105 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 1106 | { |
| 1107 | if (breakingSlot < S.nslots && s < breakingSlot) |
| 1108 | { |
| 1109 | foundLowerSlot = true; |
| 1110 | nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND! |
| 1111 | } |
| 1112 | |
| 1113 | S.addChoiceToSlot(s, S.getChoice(i)); |
| 1114 | } |
| 1115 | |
| 1116 | if (!foundLowerSlot) |
| 1117 | breakingSlot = INT_MAX; // disable breaking instr |
| 1118 | } |
| 1119 | |
| 1120 | // Assign the breaking instruction (if any) to a single slot |
| 1121 | // Otherwise, just ignore the instruction. It will simply be |
| 1122 | // scheduled in a later cycle. |
| 1123 | if (breakingSlot < S.nslots) |
| 1124 | { |
| 1125 | S.addChoiceToSlot(breakingSlot, breakingNode); |
| 1126 | nslotsToUse = breakingSlot; |
| 1127 | } |
| 1128 | else |
| 1129 | nslotsToUse = S.nslots; |
| 1130 | |
| 1131 | // For lower priority instructions than the one that breaks the |
| 1132 | // group, only assign them to slots lower than the breaking slot. |
| 1133 | // Otherwise, just ignore the instruction. |
| 1134 | for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++) |
| 1135 | { |
| 1136 | bool foundLowerSlot = false; |
| 1137 | MachineOpCode opCode = S.getChoice(i)->getOpCode(); |
| 1138 | for (unsigned int s=startSlot; s < nslotsToUse; s++) |
| 1139 | if (S.schedInfo.instrCanUseSlot(opCode, s)) |
| 1140 | S.addChoiceToSlot(s, S.getChoice(i)); |
| 1141 | } |
| 1142 | } // endif (no delay slots and no breaking slots) |
| 1143 | |
| 1144 | return S.getNumChoices(); |
| 1145 | } |
| 1146 | |
| 1147 | |
| 1148 | static void |
| 1149 | AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue) |
| 1150 | { |
| 1151 | // find the slot to start from, in the current cycle |
| 1152 | unsigned int startSlot = 0; |
| 1153 | cycles_t curTime = S.getTime(); |
| 1154 | |
| 1155 | assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot); |
| 1156 | |
| 1157 | // If only one instruction can be issued, do so. |
| 1158 | if (maxIssue == 1) |
| 1159 | for (unsigned s=startSlot; s < S.nslots; s++) |
| 1160 | if (S.getChoicesForSlot(s).size() > 0) |
| 1161 | {// found the one instruction |
| 1162 | S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime); |
| 1163 | return; |
| 1164 | } |
| 1165 | |
| 1166 | // Otherwise, choose from the choices for each slot |
| 1167 | // |
| 1168 | InstrGroup* igroup = S.isched.getIGroup(S.getTime()); |
| 1169 | assert(igroup != NULL && "Group creation failed?"); |
| 1170 | |
| 1171 | // Find a slot that has only a single choice, and take it. |
| 1172 | // If all slots have 0 or multiple choices, pick the first slot with |
| 1173 | // choices and use its last instruction (just to avoid shifting the vector). |
| 1174 | unsigned numIssued; |
| 1175 | for (numIssued = 0; numIssued < maxIssue; numIssued++) |
| 1176 | { |
| 1177 | int chosenSlot = -1, chosenNodeIndex = -1; |
| 1178 | for (unsigned s=startSlot; s < S.nslots; s++) |
| 1179 | if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1) |
| 1180 | { |
| 1181 | chosenSlot = (int) s; |
| 1182 | break; |
| 1183 | } |
| 1184 | |
| 1185 | if (chosenSlot == -1) |
| 1186 | for (unsigned s=startSlot; s < S.nslots; s++) |
| 1187 | if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0) |
| 1188 | { |
| 1189 | chosenSlot = (int) s; |
| 1190 | break; |
| 1191 | } |
| 1192 | |
| 1193 | if (chosenSlot != -1) |
| 1194 | { // Insert the chosen instr in the chosen slot and |
| 1195 | // erase it from all slots. |
| 1196 | const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin(); |
| 1197 | S.scheduleInstr(node, chosenSlot, curTime); |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | assert(numIssued > 0 && "Should not happen when maxIssue > 0!"); |
| 1202 | } |
| 1203 | |
| 1204 | |
| 1205 | |
| 1206 | //--------------------------------------------------------------------- |
| 1207 | // Code for filling delay slots for delayed terminator instructions |
| 1208 | // (e.g., BRANCH and RETURN). Delay slots for non-terminator |
| 1209 | // instructions (e.g., CALL) are not handled here because they almost |
| 1210 | // always can be filled with instructions from the call sequence code |
| 1211 | // before a call. That's preferable because we incur many tradeoffs here |
| 1212 | // when we cannot find single-cycle instructions that can be reordered. |
| 1213 | //---------------------------------------------------------------------- |
| 1214 | |
| 1215 | static void |
| 1216 | ChooseInstructionsForDelaySlots(SchedulingManager& S, |
| 1217 | const BasicBlock* bb, |
| 1218 | SchedGraph* graph) |
| 1219 | { |
| 1220 | // Look for instructions that can be used for delay slots. |
| 1221 | // Remove them from the graph, and mark them to be used for delay slots. |
| 1222 | const MachineInstrInfo& mii = S.getInstrInfo(); |
| 1223 | const TerminatorInst* term = bb->getTerminator(); |
| 1224 | MachineCodeForVMInstr& termMvec = term->getMachineInstrVec(); |
| 1225 | |
| 1226 | // Find the first branch instr in the sequence of machine instrs for term |
| 1227 | // |
| 1228 | unsigned first = 0; |
| 1229 | while (! mii.isBranch(termMvec[first]->getOpCode())) |
| 1230 | ++first; |
| 1231 | assert(first < termMvec.size() && |
| 1232 | "No branch instructions for BR? Ok, but weird! Delete assertion."); |
| 1233 | if (first == termMvec.size()) |
| 1234 | return; |
| 1235 | |
| 1236 | SchedGraphNode* brNode = graph->getGraphNodeForInstr(termMvec[first]); |
| 1237 | assert(! mii.isCall(brNode->getOpCode()) && "Call used as terminator?"); |
| 1238 | |
| 1239 | unsigned ndelays = mii.getNumDelaySlots(brNode->getOpCode()); |
| 1240 | if (ndelays == 0) |
| 1241 | return; |
| 1242 | |
| 1243 | // Use vectors to remember the nodes chosen for delay slots, and the |
| 1244 | // NOPs that will be unused. We cannot remove them from the graph while |
| 1245 | // walking through the preds and succs of the brNode here, so we |
| 1246 | // remember the nodes in the vectors and remove them later. |
| 1247 | // We use separate vectors for the single-cycle and multi-cycle nodes, |
| 1248 | // so that we can give preference to single-cycle nodes. |
| 1249 | // |
| 1250 | vector<SchedGraphNode*> sdelayNodeVec; |
| 1251 | vector<SchedGraphNode*> mdelayNodeVec; |
| 1252 | vector<SchedGraphNode*> nopNodeVec; |
| 1253 | unsigned numUseful = 0; |
| 1254 | |
| 1255 | sdelayNodeVec.reserve(ndelays); |
| 1256 | |
| 1257 | for (sg_pred_iterator P = pred_begin(brNode); |
| 1258 | P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P) |
| 1259 | if (! (*P)->isDummyNode() && |
| 1260 | ! mii.isNop((*P)->getOpCode()) && |
| 1261 | NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true)) |
| 1262 | { |
| 1263 | ++numUseful; |
| 1264 | if (mii.maxLatency((*P)->getOpCode()) > 1) |
| 1265 | mdelayNodeVec.push_back(*P); |
| 1266 | else |
| 1267 | sdelayNodeVec.push_back(*P); |
| 1268 | } |
| 1269 | |
| 1270 | // If not enough single-cycle instructions were found, select the |
| 1271 | // lowest-latency multi-cycle instructions and use them. |
| 1272 | // Note that this is the most efficient code when only 1 (or even 2) |
| 1273 | // values need to be selected. |
| 1274 | // |
| 1275 | while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0) |
| 1276 | { |
| 1277 | unsigned latency; |
| 1278 | unsigned minLatency = mii.maxLatency(mdelayNodeVec[0]->getOpCode()); |
| 1279 | unsigned minIndex = 0; |
| 1280 | for (unsigned i=1; i < mdelayNodeVec.size(); i++) |
| 1281 | if (minLatency >= |
| 1282 | (latency = mii.maxLatency(mdelayNodeVec[i]->getOpCode()))) |
| 1283 | { |
| 1284 | minLatency = latency; |
| 1285 | minIndex = i; |
| 1286 | } |
| 1287 | sdelayNodeVec.push_back(mdelayNodeVec[minIndex]); |
| 1288 | if (sdelayNodeVec.size() < ndelays) // avoid the last erase! |
| 1289 | mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex); |
| 1290 | } |
| 1291 | |
| 1292 | // Now, remove the NOPs currently in delay slots from the graph. |
| 1293 | // If not enough useful instructions were found, use the NOPs to |
| 1294 | // fill delay slots, otherwise, just discard them. |
| 1295 | for (sg_succ_iterator I=succ_begin(brNode); I != succ_end(brNode); ++I) |
| 1296 | if (! (*I)->isDummyNode() |
| 1297 | && mii.isNop((*I)->getOpCode())) |
| 1298 | { |
| 1299 | if (sdelayNodeVec.size() < ndelays) |
| 1300 | sdelayNodeVec.push_back(*I); |
| 1301 | else |
| 1302 | nopNodeVec.push_back(*I); |
| 1303 | } |
| 1304 | |
| 1305 | // Mark the nodes chosen for delay slots. This removes them from the graph. |
| 1306 | for (unsigned i=0; i < sdelayNodeVec.size(); i++) |
| 1307 | MarkNodeForDelaySlot(S, sdelayNodeVec[i], brNode, true); |
| 1308 | |
| 1309 | // And remove the unused NOPs the graph. |
| 1310 | for (unsigned i=0; i < nopNodeVec.size(); i++) |
| 1311 | nopNodeVec[i]->eraseAllEdges(); |
| 1312 | } |
| 1313 | |
| 1314 | |
| 1315 | bool |
| 1316 | NodeCanFillDelaySlot(const SchedulingManager& S, |
| 1317 | const SchedGraphNode* node, |
| 1318 | const SchedGraphNode* brNode, |
| 1319 | bool nodeIsPredecessor) |
| 1320 | { |
| 1321 | assert(! node->isDummyNode()); |
| 1322 | |
| 1323 | // don't put a branch in the delay slot of another branch |
| 1324 | if (S.getInstrInfo().isBranch(node->getOpCode())) |
| 1325 | return false; |
| 1326 | |
| 1327 | // don't put a single-issue instruction in the delay slot of a branch |
| 1328 | if (S.schedInfo.isSingleIssue(node->getOpCode())) |
| 1329 | return false; |
| 1330 | |
| 1331 | // don't put a load-use dependence in the delay slot of a branch |
| 1332 | const MachineInstrInfo& mii = S.getInstrInfo(); |
| 1333 | |
| 1334 | for (SchedGraphNode::const_iterator EI = node->beginInEdges(); |
| 1335 | EI != node->endInEdges(); ++EI) |
| 1336 | if (! (*EI)->getSrc()->isDummyNode() |
| 1337 | && mii.isLoad((*EI)->getSrc()->getOpCode()) |
| 1338 | && (*EI)->getDepType() == SchedGraphEdge::CtrlDep) |
| 1339 | return false; |
| 1340 | |
| 1341 | // for now, don't put an instruction that does not have operand |
| 1342 | // interlocks in the delay slot of a branch |
| 1343 | if (! S.getInstrInfo().hasOperandInterlock(node->getOpCode())) |
| 1344 | return false; |
| 1345 | |
| 1346 | // Finally, if the instruction preceeds the branch, we make sure the |
| 1347 | // instruction can be reordered relative to the branch. We simply check |
| 1348 | // if the instr. has only 1 outgoing edge, viz., a CD edge to the branch. |
| 1349 | // |
| 1350 | if (nodeIsPredecessor) |
| 1351 | { |
| 1352 | bool onlyCDEdgeToBranch = true; |
| 1353 | for (SchedGraphNode::const_iterator OEI = node->beginOutEdges(); |
| 1354 | OEI != node->endOutEdges(); ++OEI) |
| 1355 | if (! (*OEI)->getSink()->isDummyNode() |
| 1356 | && ((*OEI)->getSink() != brNode |
| 1357 | || (*OEI)->getDepType() != SchedGraphEdge::CtrlDep)) |
| 1358 | { |
| 1359 | onlyCDEdgeToBranch = false; |
| 1360 | break; |
| 1361 | } |
| 1362 | |
| 1363 | if (!onlyCDEdgeToBranch) |
| 1364 | return false; |
| 1365 | } |
| 1366 | |
| 1367 | return true; |
| 1368 | } |
| 1369 | |
| 1370 | |
| 1371 | void |
| 1372 | MarkNodeForDelaySlot(SchedulingManager& S, |
| 1373 | SchedGraphNode* node, |
| 1374 | const SchedGraphNode* brNode, |
| 1375 | bool nodeIsPredecessor) |
| 1376 | { |
| 1377 | if (nodeIsPredecessor) |
| 1378 | { // If node is in the same basic block (i.e., preceeds brNode), |
| 1379 | // remove it and all its incident edges from the graph. |
| 1380 | node->eraseAllEdges(); |
| 1381 | } |
| 1382 | else |
| 1383 | { // If the node was from a target block, add the node to the graph |
| 1384 | // and add a CD edge from brNode to node. |
| 1385 | assert(0 && "NOT IMPLEMENTED YET"); |
| 1386 | } |
| 1387 | |
| 1388 | DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true); |
| 1389 | dinfo->addDelayNode(node); |
| 1390 | } |
| 1391 | |
| 1392 | |
| 1393 | // |
| 1394 | // Schedule the delayed branch and its delay slots |
| 1395 | // |
| 1396 | void |
| 1397 | DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S) |
| 1398 | { |
| 1399 | assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch"); |
| 1400 | assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL |
| 1401 | && "Slot for branch should be empty"); |
| 1402 | |
| 1403 | unsigned int nextSlot = delayedNodeSlotNum; |
| 1404 | cycles_t nextTime = delayedNodeCycle; |
| 1405 | |
| 1406 | S.scheduleInstr(brNode, nextSlot, nextTime); |
| 1407 | |
| 1408 | for (unsigned d=0; d < ndelays; d++) |
| 1409 | { |
| 1410 | ++nextSlot; |
| 1411 | if (nextSlot == S.nslots) |
| 1412 | { |
| 1413 | nextSlot = 0; |
| 1414 | nextTime++; |
| 1415 | } |
| 1416 | |
| 1417 | // Find the first feasible instruction for this delay slot |
| 1418 | // Note that we only check for issue restrictions here. |
| 1419 | // We do *not* check for flow dependences but rely on pipeline |
| 1420 | // interlocks to resolve them. Machines without interlocks |
| 1421 | // will require this code to be modified. |
| 1422 | for (unsigned i=0; i < delayNodeVec.size(); i++) |
| 1423 | { |
| 1424 | const SchedGraphNode* dnode = delayNodeVec[i]; |
| 1425 | if ( ! S.isScheduled(dnode) |
| 1426 | && S.schedInfo.instrCanUseSlot(dnode->getOpCode(), nextSlot) |
| 1427 | && instrIsFeasible(S, dnode->getOpCode())) |
| 1428 | { |
| 1429 | assert(S.getInstrInfo().hasOperandInterlock(dnode->getOpCode()) |
| 1430 | && "Instructions without interlocks not yet supported " |
| 1431 | "when filling branch delay slots"); |
| 1432 | S.scheduleInstr(dnode, nextSlot, nextTime); |
| 1433 | break; |
| 1434 | } |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | // Update current time if delay slots overflowed into later cycles. |
| 1439 | // Do this here because we know exactly which cycle is the last cycle |
| 1440 | // that contains delay slots. The next loop doesn't compute that. |
| 1441 | if (nextTime > S.getTime()) |
| 1442 | S.updateTime(nextTime); |
| 1443 | |
| 1444 | // Now put any remaining instructions in the unfilled delay slots. |
| 1445 | // This could lead to suboptimal performance but needed for correctness. |
| 1446 | nextSlot = delayedNodeSlotNum; |
| 1447 | nextTime = delayedNodeCycle; |
| 1448 | for (unsigned i=0; i < delayNodeVec.size(); i++) |
| 1449 | if (! S.isScheduled(delayNodeVec[i])) |
| 1450 | { |
| 1451 | do { // find the next empty slot |
| 1452 | ++nextSlot; |
| 1453 | if (nextSlot == S.nslots) |
| 1454 | { |
| 1455 | nextSlot = 0; |
| 1456 | nextTime++; |
| 1457 | } |
| 1458 | } while (S.isched.getInstr(nextSlot, nextTime) != NULL); |
| 1459 | |
| 1460 | S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime); |
| 1461 | break; |
| 1462 | } |
| 1463 | } |
| 1464 | |