blob: 7c7a1dd7037dd954923b634a5cc34f06b46e46f3 [file] [log] [blame]
Owen Anderson1ed5b712009-03-11 22:31:21 +00001//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "spiller"
11#include "Spiller.h"
12
13#include <algorithm>
14using namespace llvm;
15
16STATISTIC(NumDSE , "Number of dead stores elided");
17STATISTIC(NumDSS , "Number of dead spill slots removed");
18STATISTIC(NumCommutes, "Number of instructions commuted");
19STATISTIC(NumDRM , "Number of re-materializable defs elided");
20STATISTIC(NumStores , "Number of stores added");
21STATISTIC(NumPSpills , "Number of physical register spills");
22STATISTIC(NumOmitted , "Number of reloads omited");
23STATISTIC(NumCopified, "Number of available reloads turned into copies");
24STATISTIC(NumReMats , "Number of re-materialization");
25STATISTIC(NumLoads , "Number of loads added");
26STATISTIC(NumReused , "Number of values reused");
27STATISTIC(NumDCE , "Number of copies elided");
28
29namespace {
30 enum SpillerName { simple, local };
31}
32
33static cl::opt<SpillerName>
34SpillerOpt("spiller",
35 cl::desc("Spiller to use: (default: local)"),
36 cl::Prefix,
37 cl::values(clEnumVal(simple, "simple spiller"),
38 clEnumVal(local, "local spiller"),
39 clEnumValEnd),
40 cl::init(local));
41
42// ****************************** //
43// Simple Spiller Implementation //
44// ****************************** //
45
46Spiller::~Spiller() {}
47
48bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
49 DOUT << "********** REWRITE MACHINE CODE **********\n";
50 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
51 const TargetMachine &TM = MF.getTarget();
52 const TargetInstrInfo &TII = *TM.getInstrInfo();
53 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
54
55
56 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
57 // each vreg once (in the case where a spilled vreg is used by multiple
58 // operands). This is always smaller than the number of operands to the
59 // current machine instr, so it should be small.
60 std::vector<unsigned> LoadedRegs;
61
62 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
63 MBBI != E; ++MBBI) {
64 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
65 MachineBasicBlock &MBB = *MBBI;
66 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
67 MII != E; ++MII) {
68 MachineInstr &MI = *MII;
69 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
70 MachineOperand &MO = MI.getOperand(i);
71 if (MO.isReg() && MO.getReg()) {
72 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
73 unsigned VirtReg = MO.getReg();
74 unsigned SubIdx = MO.getSubReg();
75 unsigned PhysReg = VRM.getPhys(VirtReg);
76 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
77 if (!VRM.isAssignedReg(VirtReg)) {
78 int StackSlot = VRM.getStackSlot(VirtReg);
79 const TargetRegisterClass* RC =
80 MF.getRegInfo().getRegClass(VirtReg);
81
82 if (MO.isUse() &&
83 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
84 == LoadedRegs.end()) {
85 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
86 MachineInstr *LoadMI = prior(MII);
87 VRM.addSpillSlotUse(StackSlot, LoadMI);
88 LoadedRegs.push_back(VirtReg);
89 ++NumLoads;
90 DOUT << '\t' << *LoadMI;
91 }
92
93 if (MO.isDef()) {
94 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
95 StackSlot, RC);
96 MachineInstr *StoreMI = next(MII);
97 VRM.addSpillSlotUse(StackSlot, StoreMI);
98 ++NumStores;
99 }
100 }
101 MF.getRegInfo().setPhysRegUsed(RReg);
102 MI.getOperand(i).setReg(RReg);
103 } else {
104 MF.getRegInfo().setPhysRegUsed(MO.getReg());
105 }
106 }
107 }
108
109 DOUT << '\t' << MI;
110 LoadedRegs.clear();
111 }
112 }
113 return true;
114}
115
116// ****************** //
117// Utility Functions //
118// ****************** //
119
120/// InvalidateKill - A MI that defines the specified register is being deleted,
121/// invalidate the register kill information.
122static void InvalidateKill(unsigned Reg, BitVector &RegKills,
123 std::vector<MachineOperand*> &KillOps) {
124 if (RegKills[Reg]) {
125 KillOps[Reg]->setIsKill(false);
126 KillOps[Reg] = NULL;
127 RegKills.reset(Reg);
128 }
129}
130
131/// findSinglePredSuccessor - Return via reference a vector of machine basic
132/// blocks each of which is a successor of the specified BB and has no other
133/// predecessor.
134static void findSinglePredSuccessor(MachineBasicBlock *MBB,
135 SmallVectorImpl<MachineBasicBlock *> &Succs) {
136 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
137 SE = MBB->succ_end(); SI != SE; ++SI) {
138 MachineBasicBlock *SuccMBB = *SI;
139 if (SuccMBB->pred_size() == 1)
140 Succs.push_back(SuccMBB);
141 }
142}
143
144/// InvalidateKills - MI is going to be deleted. If any of its operands are
145/// marked kill, then invalidate the information.
146static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
147 std::vector<MachineOperand*> &KillOps,
148 SmallVector<unsigned, 2> *KillRegs = NULL) {
149 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
150 MachineOperand &MO = MI.getOperand(i);
151 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
152 continue;
153 unsigned Reg = MO.getReg();
154 if (TargetRegisterInfo::isVirtualRegister(Reg))
155 continue;
156 if (KillRegs)
157 KillRegs->push_back(Reg);
158 assert(Reg < KillOps.size());
159 if (KillOps[Reg] == &MO) {
160 RegKills.reset(Reg);
161 KillOps[Reg] = NULL;
162 }
163 }
164}
165
166/// InvalidateRegDef - If the def operand of the specified def MI is now dead
167/// (since it's spill instruction is removed), mark it isDead. Also checks if
168/// the def MI has other definition operands that are not dead. Returns it by
169/// reference.
170static bool InvalidateRegDef(MachineBasicBlock::iterator I,
171 MachineInstr &NewDef, unsigned Reg,
172 bool &HasLiveDef) {
173 // Due to remat, it's possible this reg isn't being reused. That is,
174 // the def of this reg (by prev MI) is now dead.
175 MachineInstr *DefMI = I;
176 MachineOperand *DefOp = NULL;
177 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
178 MachineOperand &MO = DefMI->getOperand(i);
179 if (MO.isReg() && MO.isDef()) {
180 if (MO.getReg() == Reg)
181 DefOp = &MO;
182 else if (!MO.isDead())
183 HasLiveDef = true;
184 }
185 }
186 if (!DefOp)
187 return false;
188
189 bool FoundUse = false, Done = false;
190 MachineBasicBlock::iterator E = &NewDef;
191 ++I; ++E;
192 for (; !Done && I != E; ++I) {
193 MachineInstr *NMI = I;
194 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
195 MachineOperand &MO = NMI->getOperand(j);
196 if (!MO.isReg() || MO.getReg() != Reg)
197 continue;
198 if (MO.isUse())
199 FoundUse = true;
200 Done = true; // Stop after scanning all the operands of this MI.
201 }
202 }
203 if (!FoundUse) {
204 // Def is dead!
205 DefOp->setIsDead();
206 return true;
207 }
208 return false;
209}
210
211/// UpdateKills - Track and update kill info. If a MI reads a register that is
212/// marked kill, then it must be due to register reuse. Transfer the kill info
213/// over.
214static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
215 std::vector<MachineOperand*> &KillOps,
216 const TargetRegisterInfo* TRI) {
217 const TargetInstrDesc &TID = MI.getDesc();
218 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
219 MachineOperand &MO = MI.getOperand(i);
220 if (!MO.isReg() || !MO.isUse())
221 continue;
222 unsigned Reg = MO.getReg();
223 if (Reg == 0)
224 continue;
225
226 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
227 // That can't be right. Register is killed but not re-defined and it's
228 // being reused. Let's fix that.
229 KillOps[Reg]->setIsKill(false);
230 KillOps[Reg] = NULL;
231 RegKills.reset(Reg);
232 if (i < TID.getNumOperands() &&
233 TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
234 // Unless it's a two-address operand, this is the new kill.
235 MO.setIsKill();
236 }
237 if (MO.isKill()) {
238 RegKills.set(Reg);
239 KillOps[Reg] = &MO;
240 }
241 }
242
243 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
244 const MachineOperand &MO = MI.getOperand(i);
245 if (!MO.isReg() || !MO.isDef())
246 continue;
247 unsigned Reg = MO.getReg();
248 RegKills.reset(Reg);
249 KillOps[Reg] = NULL;
250 // It also defines (or partially define) aliases.
251 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
252 RegKills.reset(*AS);
253 KillOps[*AS] = NULL;
254 }
255 }
256}
257
258/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
259///
260static void ReMaterialize(MachineBasicBlock &MBB,
261 MachineBasicBlock::iterator &MII,
262 unsigned DestReg, unsigned Reg,
263 const TargetInstrInfo *TII,
264 const TargetRegisterInfo *TRI,
265 VirtRegMap &VRM) {
266 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
267 MachineInstr *NewMI = prior(MII);
268 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
269 MachineOperand &MO = NewMI->getOperand(i);
270 if (!MO.isReg() || MO.getReg() == 0)
271 continue;
272 unsigned VirtReg = MO.getReg();
273 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
274 continue;
275 assert(MO.isUse());
276 unsigned SubIdx = MO.getSubReg();
277 unsigned Phys = VRM.getPhys(VirtReg);
278 assert(Phys);
279 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
280 MO.setReg(RReg);
281 }
282 ++NumReMats;
283}
284
285/// findSuperReg - Find the SubReg's super-register of given register class
286/// where its SubIdx sub-register is SubReg.
287static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
288 unsigned SubIdx, const TargetRegisterInfo *TRI) {
289 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
290 I != E; ++I) {
291 unsigned Reg = *I;
292 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
293 return Reg;
294 }
295 return 0;
296}
297
298// ******************************** //
299// Available Spills Implementation //
300// ******************************** //
301
302/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
303/// stackslot register. The register is still available but is no longer
304/// allowed to be modifed.
305void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
306 std::multimap<unsigned, int>::iterator I =
307 PhysRegsAvailable.lower_bound(PhysReg);
308 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
309 int SlotOrReMat = I->second;
310 I++;
311 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
312 "Bidirectional map mismatch!");
313 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
314 DOUT << "PhysReg " << TRI->getName(PhysReg)
315 << " copied, it is available for use but can no longer be modified\n";
316 }
317}
318
319/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
320/// stackslot register and its aliases. The register and its aliases may
321/// still available but is no longer allowed to be modifed.
322void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
323 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
324 disallowClobberPhysRegOnly(*AS);
325 disallowClobberPhysRegOnly(PhysReg);
326}
327
328/// ClobberPhysRegOnly - This is called when the specified physreg changes
329/// value. We use this to invalidate any info about stuff we thing lives in it.
330void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
331 std::multimap<unsigned, int>::iterator I =
332 PhysRegsAvailable.lower_bound(PhysReg);
333 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
334 int SlotOrReMat = I->second;
335 PhysRegsAvailable.erase(I++);
336 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
337 "Bidirectional map mismatch!");
338 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
339 DOUT << "PhysReg " << TRI->getName(PhysReg)
340 << " clobbered, invalidating ";
341 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
342 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
343 else
344 DOUT << "SS#" << SlotOrReMat << "\n";
345 }
346}
347
348/// ClobberPhysReg - This is called when the specified physreg changes
349/// value. We use this to invalidate any info about stuff we thing lives in
350/// it and any of its aliases.
351void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
352 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
353 ClobberPhysRegOnly(*AS);
354 ClobberPhysRegOnly(PhysReg);
355}
356
357/// AddAvailableRegsToLiveIn - Availability information is being kept coming
358/// into the specified MBB. Add available physical registers as potential
359/// live-in's. If they are reused in the MBB, they will be added to the
360/// live-in set to make register scavenger and post-allocation scheduler.
361void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
362 BitVector &RegKills,
363 std::vector<MachineOperand*> &KillOps) {
364 std::set<unsigned> NotAvailable;
365 for (std::multimap<unsigned, int>::iterator
366 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
367 I != E; ++I) {
368 unsigned Reg = I->first;
369 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
370 // FIXME: A temporary workaround. We can't reuse available value if it's
371 // not safe to move the def of the virtual register's class. e.g.
372 // X86::RFP* register classes. Do not add it as a live-in.
373 if (!TII->isSafeToMoveRegClassDefs(RC))
374 // This is no longer available.
375 NotAvailable.insert(Reg);
376 else {
377 MBB.addLiveIn(Reg);
378 InvalidateKill(Reg, RegKills, KillOps);
379 }
380
381 // Skip over the same register.
382 std::multimap<unsigned, int>::iterator NI = next(I);
383 while (NI != E && NI->first == Reg) {
384 ++I;
385 ++NI;
386 }
387 }
388
389 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
390 E = NotAvailable.end(); I != E; ++I) {
391 ClobberPhysReg(*I);
392 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
393 *SubRegs; ++SubRegs)
394 ClobberPhysReg(*SubRegs);
395 }
396}
397
398/// ModifyStackSlotOrReMat - This method is called when the value in a stack
399/// slot changes. This removes information about which register the previous
400/// value for this slot lives in (as the previous value is dead now).
401void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
402 std::map<int, unsigned>::iterator It =
403 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
404 if (It == SpillSlotsOrReMatsAvailable.end()) return;
405 unsigned Reg = It->second >> 1;
406 SpillSlotsOrReMatsAvailable.erase(It);
407
408 // This register may hold the value of multiple stack slots, only remove this
409 // stack slot from the set of values the register contains.
410 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
411 for (; ; ++I) {
412 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
413 "Map inverse broken!");
414 if (I->second == SlotOrReMat) break;
415 }
416 PhysRegsAvailable.erase(I);
417}
418
419// ************************** //
420// Reuse Info Implementation //
421// ************************** //
422
423/// GetRegForReload - We are about to emit a reload into PhysReg. If there
424/// is some other operand that is using the specified register, either pick
425/// a new register to use, or evict the previous reload and use this reg.
426unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
427 AvailableSpills &Spills,
428 std::vector<MachineInstr*> &MaybeDeadStores,
429 SmallSet<unsigned, 8> &Rejected,
430 BitVector &RegKills,
431 std::vector<MachineOperand*> &KillOps,
432 VirtRegMap &VRM) {
433 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
434 .getInstrInfo();
435
436 if (Reuses.empty()) return PhysReg; // This is most often empty.
437
438 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
439 ReusedOp &Op = Reuses[ro];
440 // If we find some other reuse that was supposed to use this register
441 // exactly for its reload, we can change this reload to use ITS reload
442 // register. That is, unless its reload register has already been
443 // considered and subsequently rejected because it has also been reused
444 // by another operand.
445 if (Op.PhysRegReused == PhysReg &&
446 Rejected.count(Op.AssignedPhysReg) == 0) {
447 // Yup, use the reload register that we didn't use before.
448 unsigned NewReg = Op.AssignedPhysReg;
449 Rejected.insert(PhysReg);
450 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
451 RegKills, KillOps, VRM);
452 } else {
453 // Otherwise, we might also have a problem if a previously reused
454 // value aliases the new register. If so, codegen the previous reload
455 // and use this one.
456 unsigned PRRU = Op.PhysRegReused;
457 const TargetRegisterInfo *TRI = Spills.getRegInfo();
458 if (TRI->areAliases(PRRU, PhysReg)) {
459 // Okay, we found out that an alias of a reused register
460 // was used. This isn't good because it means we have
461 // to undo a previous reuse.
462 MachineBasicBlock *MBB = MI->getParent();
463 const TargetRegisterClass *AliasRC =
464 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
465
466 // Copy Op out of the vector and remove it, we're going to insert an
467 // explicit load for it.
468 ReusedOp NewOp = Op;
469 Reuses.erase(Reuses.begin()+ro);
470
471 // Ok, we're going to try to reload the assigned physreg into the
472 // slot that we were supposed to in the first place. However, that
473 // register could hold a reuse. Check to see if it conflicts or
474 // would prefer us to use a different register.
475 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
476 MI, Spills, MaybeDeadStores,
477 Rejected, RegKills, KillOps, VRM);
478
479 MachineBasicBlock::iterator MII = MI;
480 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
481 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
482 } else {
483 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
484 NewOp.StackSlotOrReMat, AliasRC);
485 MachineInstr *LoadMI = prior(MII);
486 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
487 // Any stores to this stack slot are not dead anymore.
488 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
489 ++NumLoads;
490 }
491 Spills.ClobberPhysReg(NewPhysReg);
492 Spills.ClobberPhysReg(NewOp.PhysRegReused);
493
494 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
495 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
496 MI->getOperand(NewOp.Operand).setReg(RReg);
497
498 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
499 --MII;
500 UpdateKills(*MII, RegKills, KillOps, TRI);
501 DOUT << '\t' << *MII;
502
503 DOUT << "Reuse undone!\n";
504 --NumReused;
505
506 // Finally, PhysReg is now available, go ahead and use it.
507 return PhysReg;
508 }
509 }
510 }
511 return PhysReg;
512}
513
514// ***************************** //
515// Local Spiller Implementation //
516// ***************************** //
517
518bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
519 RegInfo = &MF.getRegInfo();
520 TRI = MF.getTarget().getRegisterInfo();
521 TII = MF.getTarget().getInstrInfo();
522 DOUT << "\n**** Local spiller rewriting function '"
523 << MF.getFunction()->getName() << "':\n";
524 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
525 " ****\n";
526 DEBUG(MF.dump());
527
528 // Spills - Keep track of which spilled values are available in physregs
529 // so that we can choose to reuse the physregs instead of emitting
530 // reloads. This is usually refreshed per basic block.
531 AvailableSpills Spills(TRI, TII);
532
533 // Keep track of kill information.
534 BitVector RegKills(TRI->getNumRegs());
535 std::vector<MachineOperand*> KillOps;
536 KillOps.resize(TRI->getNumRegs(), NULL);
537
538 // SingleEntrySuccs - Successor blocks which have a single predecessor.
539 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
540 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
541
542 // Traverse the basic blocks depth first.
543 MachineBasicBlock *Entry = MF.begin();
544 SmallPtrSet<MachineBasicBlock*,16> Visited;
545 for (df_ext_iterator<MachineBasicBlock*,
546 SmallPtrSet<MachineBasicBlock*,16> >
547 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
548 DFI != E; ++DFI) {
549 MachineBasicBlock *MBB = *DFI;
550 if (!EarlyVisited.count(MBB))
551 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
552
553 // If this MBB is the only predecessor of a successor. Keep the
554 // availability information and visit it next.
555 do {
556 // Keep visiting single predecessor successor as long as possible.
557 SinglePredSuccs.clear();
558 findSinglePredSuccessor(MBB, SinglePredSuccs);
559 if (SinglePredSuccs.empty())
560 MBB = 0;
561 else {
562 // FIXME: More than one successors, each of which has MBB has
563 // the only predecessor.
564 MBB = SinglePredSuccs[0];
565 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
566 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
567 RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
568 }
569 }
570 } while (MBB);
571
572 // Clear the availability info.
573 Spills.clear();
574 }
575
576 DOUT << "**** Post Machine Instrs ****\n";
577 DEBUG(MF.dump());
578
579 // Mark unused spill slots.
580 MachineFrameInfo *MFI = MF.getFrameInfo();
581 int SS = VRM.getLowSpillSlot();
582 if (SS != VirtRegMap::NO_STACK_SLOT)
583 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
584 if (!VRM.isSpillSlotUsed(SS)) {
585 MFI->RemoveStackObject(SS);
586 ++NumDSS;
587 }
588
589 return true;
590}
591
592
593/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
594/// instruction. e.g.
595/// xorl %edi, %eax
596/// movl %eax, -32(%ebp)
597/// movl -36(%ebp), %eax
598/// orl %eax, -32(%ebp)
599/// ==>
600/// xorl %edi, %eax
601/// orl -36(%ebp), %eax
602/// mov %eax, -32(%ebp)
603/// This enables unfolding optimization for a subsequent instruction which will
604/// also eliminate the newly introduced store instruction.
605bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
606 MachineBasicBlock::iterator &MII,
607 std::vector<MachineInstr*> &MaybeDeadStores,
608 AvailableSpills &Spills,
609 BitVector &RegKills,
610 std::vector<MachineOperand*> &KillOps,
611 VirtRegMap &VRM) {
612 MachineFunction &MF = *MBB.getParent();
613 MachineInstr &MI = *MII;
614 unsigned UnfoldedOpc = 0;
615 unsigned UnfoldPR = 0;
616 unsigned UnfoldVR = 0;
617 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
618 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
619 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
620 // Only transform a MI that folds a single register.
621 if (UnfoldedOpc)
622 return false;
623 UnfoldVR = I->second.first;
624 VirtRegMap::ModRef MR = I->second.second;
625 // MI2VirtMap be can updated which invalidate the iterator.
626 // Increment the iterator first.
627 ++I;
628 if (VRM.isAssignedReg(UnfoldVR))
629 continue;
630 // If this reference is not a use, any previous store is now dead.
631 // Otherwise, the store to this stack slot is not dead anymore.
632 FoldedSS = VRM.getStackSlot(UnfoldVR);
633 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
634 if (DeadStore && (MR & VirtRegMap::isModRef)) {
635 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
636 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
637 continue;
638 UnfoldPR = PhysReg;
639 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
640 false, true);
641 }
642 }
643
644 if (!UnfoldedOpc)
645 return false;
646
647 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
648 MachineOperand &MO = MI.getOperand(i);
649 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
650 continue;
651 unsigned VirtReg = MO.getReg();
652 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
653 continue;
654 if (VRM.isAssignedReg(VirtReg)) {
655 unsigned PhysReg = VRM.getPhys(VirtReg);
656 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
657 return false;
658 } else if (VRM.isReMaterialized(VirtReg))
659 continue;
660 int SS = VRM.getStackSlot(VirtReg);
661 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
662 if (PhysReg) {
663 if (TRI->regsOverlap(PhysReg, UnfoldPR))
664 return false;
665 continue;
666 }
667 if (VRM.hasPhys(VirtReg)) {
668 PhysReg = VRM.getPhys(VirtReg);
669 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
670 continue;
671 }
672
673 // Ok, we'll need to reload the value into a register which makes
674 // it impossible to perform the store unfolding optimization later.
675 // Let's see if it is possible to fold the load if the store is
676 // unfolded. This allows us to perform the store unfolding
677 // optimization.
678 SmallVector<MachineInstr*, 4> NewMIs;
679 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
680 assert(NewMIs.size() == 1);
681 MachineInstr *NewMI = NewMIs.back();
682 NewMIs.clear();
683 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
684 assert(Idx != -1);
685 SmallVector<unsigned, 1> Ops;
686 Ops.push_back(Idx);
687 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
688 if (FoldedMI) {
689 VRM.addSpillSlotUse(SS, FoldedMI);
690 if (!VRM.hasPhys(UnfoldVR))
691 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
692 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
693 MII = MBB.insert(MII, FoldedMI);
694 InvalidateKills(MI, RegKills, KillOps);
695 VRM.RemoveMachineInstrFromMaps(&MI);
696 MBB.erase(&MI);
697 MF.DeleteMachineInstr(NewMI);
698 return true;
699 }
700 MF.DeleteMachineInstr(NewMI);
701 }
702 }
703 return false;
704}
705
706/// CommuteToFoldReload -
707/// Look for
708/// r1 = load fi#1
709/// r1 = op r1, r2<kill>
710/// store r1, fi#1
711///
712/// If op is commutable and r2 is killed, then we can xform these to
713/// r2 = op r2, fi#1
714/// store r2, fi#1
715bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
716 MachineBasicBlock::iterator &MII,
717 unsigned VirtReg, unsigned SrcReg, int SS,
718 AvailableSpills &Spills,
719 BitVector &RegKills,
720 std::vector<MachineOperand*> &KillOps,
721 const TargetRegisterInfo *TRI,
722 VirtRegMap &VRM) {
723 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
724 return false;
725
726 MachineFunction &MF = *MBB.getParent();
727 MachineInstr &MI = *MII;
728 MachineBasicBlock::iterator DefMII = prior(MII);
729 MachineInstr *DefMI = DefMII;
730 const TargetInstrDesc &TID = DefMI->getDesc();
731 unsigned NewDstIdx;
732 if (DefMII != MBB.begin() &&
733 TID.isCommutable() &&
734 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
735 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
736 unsigned NewReg = NewDstMO.getReg();
737 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
738 return false;
739 MachineInstr *ReloadMI = prior(DefMII);
740 int FrameIdx;
741 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
742 if (DestReg != SrcReg || FrameIdx != SS)
743 return false;
744 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
745 if (UseIdx == -1)
746 return false;
747 int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
748 if (DefIdx == -1)
749 return false;
750 assert(DefMI->getOperand(DefIdx).isReg() &&
751 DefMI->getOperand(DefIdx).getReg() == SrcReg);
752
753 // Now commute def instruction.
754 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
755 if (!CommutedMI)
756 return false;
757 SmallVector<unsigned, 1> Ops;
758 Ops.push_back(NewDstIdx);
759 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
760 // Not needed since foldMemoryOperand returns new MI.
761 MF.DeleteMachineInstr(CommutedMI);
762 if (!FoldedMI)
763 return false;
764
765 VRM.addSpillSlotUse(SS, FoldedMI);
766 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
767 // Insert new def MI and spill MI.
768 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
769 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
770 MII = prior(MII);
771 MachineInstr *StoreMI = MII;
772 VRM.addSpillSlotUse(SS, StoreMI);
773 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
774 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
775
776 // Delete all 3 old instructions.
777 InvalidateKills(*ReloadMI, RegKills, KillOps);
778 VRM.RemoveMachineInstrFromMaps(ReloadMI);
779 MBB.erase(ReloadMI);
780 InvalidateKills(*DefMI, RegKills, KillOps);
781 VRM.RemoveMachineInstrFromMaps(DefMI);
782 MBB.erase(DefMI);
783 InvalidateKills(MI, RegKills, KillOps);
784 VRM.RemoveMachineInstrFromMaps(&MI);
785 MBB.erase(&MI);
786
787 // If NewReg was previously holding value of some SS, it's now clobbered.
788 // This has to be done now because it's a physical register. When this
789 // instruction is re-visited, it's ignored.
790 Spills.ClobberPhysReg(NewReg);
791
792 ++NumCommutes;
793 return true;
794 }
795
796 return false;
797}
798
799/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
800/// the last store to the same slot is now dead. If so, remove the last store.
801void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
802 MachineBasicBlock::iterator &MII,
803 int Idx, unsigned PhysReg, int StackSlot,
804 const TargetRegisterClass *RC,
805 bool isAvailable, MachineInstr *&LastStore,
806 AvailableSpills &Spills,
807 SmallSet<MachineInstr*, 4> &ReMatDefs,
808 BitVector &RegKills,
809 std::vector<MachineOperand*> &KillOps,
810 VirtRegMap &VRM) {
811 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
812 MachineInstr *StoreMI = next(MII);
813 VRM.addSpillSlotUse(StackSlot, StoreMI);
814 DOUT << "Store:\t" << *StoreMI;
815
816 // If there is a dead store to this stack slot, nuke it now.
817 if (LastStore) {
818 DOUT << "Removed dead store:\t" << *LastStore;
819 ++NumDSE;
820 SmallVector<unsigned, 2> KillRegs;
821 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
822 MachineBasicBlock::iterator PrevMII = LastStore;
823 bool CheckDef = PrevMII != MBB.begin();
824 if (CheckDef)
825 --PrevMII;
826 VRM.RemoveMachineInstrFromMaps(LastStore);
827 MBB.erase(LastStore);
828 if (CheckDef) {
829 // Look at defs of killed registers on the store. Mark the defs
830 // as dead since the store has been deleted and they aren't
831 // being reused.
832 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
833 bool HasOtherDef = false;
834 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
835 MachineInstr *DeadDef = PrevMII;
836 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
837 // FIXME: This assumes a remat def does not have side
838 // effects.
839 VRM.RemoveMachineInstrFromMaps(DeadDef);
840 MBB.erase(DeadDef);
841 ++NumDRM;
842 }
843 }
844 }
845 }
846 }
847
848 LastStore = next(MII);
849
850 // If the stack slot value was previously available in some other
851 // register, change it now. Otherwise, make the register available,
852 // in PhysReg.
853 Spills.ModifyStackSlotOrReMat(StackSlot);
854 Spills.ClobberPhysReg(PhysReg);
855 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
856 ++NumStores;
857}
858
859/// TransferDeadness - A identity copy definition is dead and it's being
860/// removed. Find the last def or use and mark it as dead / kill.
861void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
862 unsigned Reg, BitVector &RegKills,
863 std::vector<MachineOperand*> &KillOps) {
864 int LastUDDist = -1;
865 MachineInstr *LastUDMI = NULL;
866 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
867 RE = RegInfo->reg_end(); RI != RE; ++RI) {
868 MachineInstr *UDMI = &*RI;
869 if (UDMI->getParent() != MBB)
870 continue;
871 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
872 if (DI == DistanceMap.end() || DI->second > CurDist)
873 continue;
874 if ((int)DI->second < LastUDDist)
875 continue;
876 LastUDDist = DI->second;
877 LastUDMI = UDMI;
878 }
879
880 if (LastUDMI) {
881 const TargetInstrDesc &TID = LastUDMI->getDesc();
882 MachineOperand *LastUD = NULL;
883 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
884 MachineOperand &MO = LastUDMI->getOperand(i);
885 if (!MO.isReg() || MO.getReg() != Reg)
886 continue;
887 if (!LastUD || (LastUD->isUse() && MO.isDef()))
888 LastUD = &MO;
889 if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
890 return;
891 }
892 if (LastUD->isDef())
893 LastUD->setIsDead();
894 else {
895 LastUD->setIsKill();
896 RegKills.set(Reg);
897 KillOps[Reg] = LastUD;
898 }
899 }
900}
901
902/// rewriteMBB - Keep track of which spills are available even after the
903/// register allocator is done with them. If possible, avid reloading vregs.
904void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
905 AvailableSpills &Spills, BitVector &RegKills,
906 std::vector<MachineOperand*> &KillOps) {
907 DOUT << "\n**** Local spiller rewriting MBB '"
908 << MBB.getBasicBlock()->getName() << ":\n";
909
910 MachineFunction &MF = *MBB.getParent();
911
912 // MaybeDeadStores - When we need to write a value back into a stack slot,
913 // keep track of the inserted store. If the stack slot value is never read
914 // (because the value was used from some available register, for example), and
915 // subsequently stored to, the original store is dead. This map keeps track
916 // of inserted stores that are not used. If we see a subsequent store to the
917 // same stack slot, the original store is deleted.
918 std::vector<MachineInstr*> MaybeDeadStores;
919 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
920
921 // ReMatDefs - These are rematerializable def MIs which are not deleted.
922 SmallSet<MachineInstr*, 4> ReMatDefs;
923
924 // Clear kill info.
925 SmallSet<unsigned, 2> KilledMIRegs;
926 RegKills.reset();
927 KillOps.clear();
928 KillOps.resize(TRI->getNumRegs(), NULL);
929
930 unsigned Dist = 0;
931 DistanceMap.clear();
932 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
933 MII != E; ) {
934 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
935
936 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
937 bool Erased = false;
938 bool BackTracked = false;
939 if (PrepForUnfoldOpti(MBB, MII,
940 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
941 NextMII = next(MII);
942
943 MachineInstr &MI = *MII;
944 const TargetInstrDesc &TID = MI.getDesc();
945
946 if (VRM.hasEmergencySpills(&MI)) {
947 // Spill physical register(s) in the rare case the allocator has run out
948 // of registers to allocate.
949 SmallSet<int, 4> UsedSS;
950 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
951 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
952 unsigned PhysReg = EmSpills[i];
953 const TargetRegisterClass *RC =
954 TRI->getPhysicalRegisterRegClass(PhysReg);
955 assert(RC && "Unable to determine register class!");
956 int SS = VRM.getEmergencySpillSlot(RC);
957 if (UsedSS.count(SS))
958 assert(0 && "Need to spill more than one physical registers!");
959 UsedSS.insert(SS);
960 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
961 MachineInstr *StoreMI = prior(MII);
962 VRM.addSpillSlotUse(SS, StoreMI);
963 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
964 MachineInstr *LoadMI = next(MII);
965 VRM.addSpillSlotUse(SS, LoadMI);
966 ++NumPSpills;
967 }
968 NextMII = next(MII);
969 }
970
971 // Insert restores here if asked to.
972 if (VRM.isRestorePt(&MI)) {
973 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
974 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
975 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
976 if (!VRM.getPreSplitReg(VirtReg))
977 continue; // Split interval spilled again.
978 unsigned Phys = VRM.getPhys(VirtReg);
979 RegInfo->setPhysRegUsed(Phys);
980
981 // Check if the value being restored if available. If so, it must be
982 // from a predecessor BB that fallthrough into this BB. We do not
983 // expect:
984 // BB1:
985 // r1 = load fi#1
986 // ...
987 // = r1<kill>
988 // ... # r1 not clobbered
989 // ...
990 // = load fi#1
991 bool DoReMat = VRM.isReMaterialized(VirtReg);
992 int SSorRMId = DoReMat
993 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
994 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
995 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
996 if (InReg == Phys) {
997 // If the value is already available in the expected register, save
998 // a reload / remat.
999 if (SSorRMId)
1000 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1001 else
1002 DOUT << "Reusing SS#" << SSorRMId;
1003 DOUT << " from physreg "
1004 << TRI->getName(InReg) << " for vreg"
1005 << VirtReg <<" instead of reloading into physreg "
1006 << TRI->getName(Phys) << "\n";
1007 ++NumOmitted;
1008 continue;
1009 } else if (InReg && InReg != Phys) {
1010 if (SSorRMId)
1011 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1012 else
1013 DOUT << "Reusing SS#" << SSorRMId;
1014 DOUT << " from physreg "
1015 << TRI->getName(InReg) << " for vreg"
1016 << VirtReg <<" by copying it into physreg "
1017 << TRI->getName(Phys) << "\n";
1018
1019 // If the reloaded / remat value is available in another register,
1020 // copy it to the desired register.
1021 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1022
1023 // This invalidates Phys.
1024 Spills.ClobberPhysReg(Phys);
1025 // Remember it's available.
1026 Spills.addAvailable(SSorRMId, Phys);
1027
1028 // Mark is killed.
1029 MachineInstr *CopyMI = prior(MII);
1030 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1031 KillOpnd->setIsKill();
1032 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1033
1034 DOUT << '\t' << *CopyMI;
1035 ++NumCopified;
1036 continue;
1037 }
1038
1039 if (VRM.isReMaterialized(VirtReg)) {
1040 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1041 } else {
1042 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1043 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1044 MachineInstr *LoadMI = prior(MII);
1045 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1046 ++NumLoads;
1047 }
1048
1049 // This invalidates Phys.
1050 Spills.ClobberPhysReg(Phys);
1051 // Remember it's available.
1052 Spills.addAvailable(SSorRMId, Phys);
1053
1054 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1055 DOUT << '\t' << *prior(MII);
1056 }
1057 }
1058
1059 // Insert spills here if asked to.
1060 if (VRM.isSpillPt(&MI)) {
1061 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1062 VRM.getSpillPtSpills(&MI);
1063 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1064 unsigned VirtReg = SpillRegs[i].first;
1065 bool isKill = SpillRegs[i].second;
1066 if (!VRM.getPreSplitReg(VirtReg))
1067 continue; // Split interval spilled again.
1068 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1069 unsigned Phys = VRM.getPhys(VirtReg);
1070 int StackSlot = VRM.getStackSlot(VirtReg);
1071 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1072 MachineInstr *StoreMI = next(MII);
1073 VRM.addSpillSlotUse(StackSlot, StoreMI);
1074 DOUT << "Store:\t" << *StoreMI;
1075 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1076 }
1077 NextMII = next(MII);
1078 }
1079
1080 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1081 /// reuse.
1082 ReuseInfo ReusedOperands(MI, TRI);
1083 SmallVector<unsigned, 4> VirtUseOps;
1084 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1085 MachineOperand &MO = MI.getOperand(i);
1086 if (!MO.isReg() || MO.getReg() == 0)
1087 continue; // Ignore non-register operands.
1088
1089 unsigned VirtReg = MO.getReg();
1090 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1091 // Ignore physregs for spilling, but remember that it is used by this
1092 // function.
1093 RegInfo->setPhysRegUsed(VirtReg);
1094 continue;
1095 }
1096
1097 // We want to process implicit virtual register uses first.
1098 if (MO.isImplicit())
1099 // If the virtual register is implicitly defined, emit a implicit_def
1100 // before so scavenger knows it's "defined".
1101 VirtUseOps.insert(VirtUseOps.begin(), i);
1102 else
1103 VirtUseOps.push_back(i);
1104 }
1105
1106 // Process all of the spilled uses and all non spilled reg references.
1107 SmallVector<int, 2> PotentialDeadStoreSlots;
1108 KilledMIRegs.clear();
1109 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1110 unsigned i = VirtUseOps[j];
1111 MachineOperand &MO = MI.getOperand(i);
1112 unsigned VirtReg = MO.getReg();
1113 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1114 "Not a virtual register?");
1115
1116 unsigned SubIdx = MO.getSubReg();
1117 if (VRM.isAssignedReg(VirtReg)) {
1118 // This virtual register was assigned a physreg!
1119 unsigned Phys = VRM.getPhys(VirtReg);
1120 RegInfo->setPhysRegUsed(Phys);
1121 if (MO.isDef())
1122 ReusedOperands.markClobbered(Phys);
1123 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1124 MI.getOperand(i).setReg(RReg);
1125 if (VRM.isImplicitlyDefined(VirtReg))
1126 BuildMI(MBB, &MI, MI.getDebugLoc(),
1127 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1128 continue;
1129 }
1130
1131 // This virtual register is now known to be a spilled value.
1132 if (!MO.isUse())
1133 continue; // Handle defs in the loop below (handle use&def here though)
1134
1135 bool DoReMat = VRM.isReMaterialized(VirtReg);
1136 int SSorRMId = DoReMat
1137 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1138 int ReuseSlot = SSorRMId;
1139
1140 // Check to see if this stack slot is available.
1141 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1142
1143 // If this is a sub-register use, make sure the reuse register is in the
1144 // right register class. For example, for x86 not all of the 32-bit
1145 // registers have accessible sub-registers.
1146 // Similarly so for EXTRACT_SUBREG. Consider this:
1147 // EDI = op
1148 // MOV32_mr fi#1, EDI
1149 // ...
1150 // = EXTRACT_SUBREG fi#1
1151 // fi#1 is available in EDI, but it cannot be reused because it's not in
1152 // the right register file.
1153 if (PhysReg &&
1154 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1155 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1156 if (!RC->contains(PhysReg))
1157 PhysReg = 0;
1158 }
1159
1160 if (PhysReg) {
1161 // This spilled operand might be part of a two-address operand. If this
1162 // is the case, then changing it will necessarily require changing the
1163 // def part of the instruction as well. However, in some cases, we
1164 // aren't allowed to modify the reused register. If none of these cases
1165 // apply, reuse it.
1166 bool CanReuse = true;
1167 int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1168 if (ti != -1) {
1169 // Okay, we have a two address operand. We can reuse this physreg as
1170 // long as we are allowed to clobber the value and there isn't an
1171 // earlier def that has already clobbered the physreg.
1172 CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1173 !ReusedOperands.isClobbered(PhysReg);
1174 }
1175
1176 if (CanReuse) {
1177 // If this stack slot value is already available, reuse it!
1178 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1179 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1180 else
1181 DOUT << "Reusing SS#" << ReuseSlot;
1182 DOUT << " from physreg "
1183 << TRI->getName(PhysReg) << " for vreg"
1184 << VirtReg <<" instead of reloading into physreg "
1185 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1186 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1187 MI.getOperand(i).setReg(RReg);
1188
1189 // The only technical detail we have is that we don't know that
1190 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1191 // later in the instruction. In particular, consider 'op V1, V2'.
1192 // If V1 is available in physreg R0, we would choose to reuse it
1193 // here, instead of reloading it into the register the allocator
1194 // indicated (say R1). However, V2 might have to be reloaded
1195 // later, and it might indicate that it needs to live in R0. When
1196 // this occurs, we need to have information available that
1197 // indicates it is safe to use R1 for the reload instead of R0.
1198 //
1199 // To further complicate matters, we might conflict with an alias,
1200 // or R0 and R1 might not be compatible with each other. In this
1201 // case, we actually insert a reload for V1 in R1, ensuring that
1202 // we can get at R0 or its alias.
1203 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1204 VRM.getPhys(VirtReg), VirtReg);
1205 if (ti != -1)
1206 // Only mark it clobbered if this is a use&def operand.
1207 ReusedOperands.markClobbered(PhysReg);
1208 ++NumReused;
1209
1210 if (MI.getOperand(i).isKill() &&
1211 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1212
1213 // The store of this spilled value is potentially dead, but we
1214 // won't know for certain until we've confirmed that the re-use
1215 // above is valid, which means waiting until the other operands
1216 // are processed. For now we just track the spill slot, we'll
1217 // remove it after the other operands are processed if valid.
1218
1219 PotentialDeadStoreSlots.push_back(ReuseSlot);
1220 }
1221
1222 // Mark is isKill if it's there no other uses of the same virtual
1223 // register and it's not a two-address operand. IsKill will be
1224 // unset if reg is reused.
1225 if (ti == -1 && KilledMIRegs.count(VirtReg) == 0) {
1226 MI.getOperand(i).setIsKill();
1227 KilledMIRegs.insert(VirtReg);
1228 }
1229
1230 continue;
1231 } // CanReuse
1232
1233 // Otherwise we have a situation where we have a two-address instruction
1234 // whose mod/ref operand needs to be reloaded. This reload is already
1235 // available in some register "PhysReg", but if we used PhysReg as the
1236 // operand to our 2-addr instruction, the instruction would modify
1237 // PhysReg. This isn't cool if something later uses PhysReg and expects
1238 // to get its initial value.
1239 //
1240 // To avoid this problem, and to avoid doing a load right after a store,
1241 // we emit a copy from PhysReg into the designated register for this
1242 // operand.
1243 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1244 assert(DesignatedReg && "Must map virtreg to physreg!");
1245
1246 // Note that, if we reused a register for a previous operand, the
1247 // register we want to reload into might not actually be
1248 // available. If this occurs, use the register indicated by the
1249 // reuser.
1250 if (ReusedOperands.hasReuses())
1251 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1252 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1253
1254 // If the mapped designated register is actually the physreg we have
1255 // incoming, we don't need to inserted a dead copy.
1256 if (DesignatedReg == PhysReg) {
1257 // If this stack slot value is already available, reuse it!
1258 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1259 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1260 else
1261 DOUT << "Reusing SS#" << ReuseSlot;
1262 DOUT << " from physreg " << TRI->getName(PhysReg)
1263 << " for vreg" << VirtReg
1264 << " instead of reloading into same physreg.\n";
1265 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1266 MI.getOperand(i).setReg(RReg);
1267 ReusedOperands.markClobbered(RReg);
1268 ++NumReused;
1269 continue;
1270 }
1271
1272 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1273 RegInfo->setPhysRegUsed(DesignatedReg);
1274 ReusedOperands.markClobbered(DesignatedReg);
1275 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1276
1277 MachineInstr *CopyMI = prior(MII);
1278 UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1279
1280 // This invalidates DesignatedReg.
1281 Spills.ClobberPhysReg(DesignatedReg);
1282
1283 Spills.addAvailable(ReuseSlot, DesignatedReg);
1284 unsigned RReg =
1285 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1286 MI.getOperand(i).setReg(RReg);
1287 DOUT << '\t' << *prior(MII);
1288 ++NumReused;
1289 continue;
1290 } // if (PhysReg)
1291
1292 // Otherwise, reload it and remember that we have it.
1293 PhysReg = VRM.getPhys(VirtReg);
1294 assert(PhysReg && "Must map virtreg to physreg!");
1295
1296 // Note that, if we reused a register for a previous operand, the
1297 // register we want to reload into might not actually be
1298 // available. If this occurs, use the register indicated by the
1299 // reuser.
1300 if (ReusedOperands.hasReuses())
1301 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1302 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1303
1304 RegInfo->setPhysRegUsed(PhysReg);
1305 ReusedOperands.markClobbered(PhysReg);
1306 if (DoReMat) {
1307 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1308 } else {
1309 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1310 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1311 MachineInstr *LoadMI = prior(MII);
1312 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1313 ++NumLoads;
1314 }
1315 // This invalidates PhysReg.
1316 Spills.ClobberPhysReg(PhysReg);
1317
1318 // Any stores to this stack slot are not dead anymore.
1319 if (!DoReMat)
1320 MaybeDeadStores[SSorRMId] = NULL;
1321 Spills.addAvailable(SSorRMId, PhysReg);
1322 // Assumes this is the last use. IsKill will be unset if reg is reused
1323 // unless it's a two-address operand.
1324 if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1 &&
1325 KilledMIRegs.count(VirtReg) == 0) {
1326 MI.getOperand(i).setIsKill();
1327 KilledMIRegs.insert(VirtReg);
1328 }
1329 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1330 MI.getOperand(i).setReg(RReg);
1331 UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1332 DOUT << '\t' << *prior(MII);
1333 }
1334
1335 // Ok - now we can remove stores that have been confirmed dead.
1336 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1337 // This was the last use and the spilled value is still available
1338 // for reuse. That means the spill was unnecessary!
1339 int PDSSlot = PotentialDeadStoreSlots[j];
1340 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1341 if (DeadStore) {
1342 DOUT << "Removed dead store:\t" << *DeadStore;
1343 InvalidateKills(*DeadStore, RegKills, KillOps);
1344 VRM.RemoveMachineInstrFromMaps(DeadStore);
1345 MBB.erase(DeadStore);
1346 MaybeDeadStores[PDSSlot] = NULL;
1347 ++NumDSE;
1348 }
1349 }
1350
1351
1352 DOUT << '\t' << MI;
1353
1354
1355 // If we have folded references to memory operands, make sure we clear all
1356 // physical registers that may contain the value of the spilled virtual
1357 // register
1358 SmallSet<int, 2> FoldedSS;
1359 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1360 unsigned VirtReg = I->second.first;
1361 VirtRegMap::ModRef MR = I->second.second;
1362 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1363
1364 // MI2VirtMap be can updated which invalidate the iterator.
1365 // Increment the iterator first.
1366 ++I;
1367 int SS = VRM.getStackSlot(VirtReg);
1368 if (SS == VirtRegMap::NO_STACK_SLOT)
1369 continue;
1370 FoldedSS.insert(SS);
1371 DOUT << " - StackSlot: " << SS << "\n";
1372
1373 // If this folded instruction is just a use, check to see if it's a
1374 // straight load from the virt reg slot.
1375 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1376 int FrameIdx;
1377 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1378 if (DestReg && FrameIdx == SS) {
1379 // If this spill slot is available, turn it into a copy (or nothing)
1380 // instead of leaving it as a load!
1381 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1382 DOUT << "Promoted Load To Copy: " << MI;
1383 if (DestReg != InReg) {
1384 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1385 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1386 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1387 unsigned SubIdx = DefMO->getSubReg();
1388 // Revisit the copy so we make sure to notice the effects of the
1389 // operation on the destreg (either needing to RA it if it's
1390 // virtual or needing to clobber any values if it's physical).
1391 NextMII = &MI;
1392 --NextMII; // backtrack to the copy.
1393 // Propagate the sub-register index over.
1394 if (SubIdx) {
1395 DefMO = NextMII->findRegisterDefOperand(DestReg);
1396 DefMO->setSubReg(SubIdx);
1397 }
1398
1399 // Mark is killed.
1400 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1401 KillOpnd->setIsKill();
1402
1403 BackTracked = true;
1404 } else {
1405 DOUT << "Removing now-noop copy: " << MI;
1406 // Unset last kill since it's being reused.
1407 InvalidateKill(InReg, RegKills, KillOps);
1408 }
1409
1410 InvalidateKills(MI, RegKills, KillOps);
1411 VRM.RemoveMachineInstrFromMaps(&MI);
1412 MBB.erase(&MI);
1413 Erased = true;
1414 goto ProcessNextInst;
1415 }
1416 } else {
1417 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1418 SmallVector<MachineInstr*, 4> NewMIs;
1419 if (PhysReg &&
1420 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1421 MBB.insert(MII, NewMIs[0]);
1422 InvalidateKills(MI, RegKills, KillOps);
1423 VRM.RemoveMachineInstrFromMaps(&MI);
1424 MBB.erase(&MI);
1425 Erased = true;
1426 --NextMII; // backtrack to the unfolded instruction.
1427 BackTracked = true;
1428 goto ProcessNextInst;
1429 }
1430 }
1431 }
1432
1433 // If this reference is not a use, any previous store is now dead.
1434 // Otherwise, the store to this stack slot is not dead anymore.
1435 MachineInstr* DeadStore = MaybeDeadStores[SS];
1436 if (DeadStore) {
1437 bool isDead = !(MR & VirtRegMap::isRef);
1438 MachineInstr *NewStore = NULL;
1439 if (MR & VirtRegMap::isModRef) {
1440 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1441 SmallVector<MachineInstr*, 4> NewMIs;
1442 // We can reuse this physreg as long as we are allowed to clobber
1443 // the value and there isn't an earlier def that has already clobbered
1444 // the physreg.
1445 if (PhysReg &&
1446 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1447 MachineOperand *KillOpnd =
1448 DeadStore->findRegisterUseOperand(PhysReg, true);
1449 // Note, if the store is storing a sub-register, it's possible the
1450 // super-register is needed below.
1451 if (KillOpnd && !KillOpnd->getSubReg() &&
1452 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1453 MBB.insert(MII, NewMIs[0]);
1454 NewStore = NewMIs[1];
1455 MBB.insert(MII, NewStore);
1456 VRM.addSpillSlotUse(SS, NewStore);
1457 InvalidateKills(MI, RegKills, KillOps);
1458 VRM.RemoveMachineInstrFromMaps(&MI);
1459 MBB.erase(&MI);
1460 Erased = true;
1461 --NextMII;
1462 --NextMII; // backtrack to the unfolded instruction.
1463 BackTracked = true;
1464 isDead = true;
1465 }
1466 }
1467 }
1468
1469 if (isDead) { // Previous store is dead.
1470 // If we get here, the store is dead, nuke it now.
1471 DOUT << "Removed dead store:\t" << *DeadStore;
1472 InvalidateKills(*DeadStore, RegKills, KillOps);
1473 VRM.RemoveMachineInstrFromMaps(DeadStore);
1474 MBB.erase(DeadStore);
1475 if (!NewStore)
1476 ++NumDSE;
1477 }
1478
1479 MaybeDeadStores[SS] = NULL;
1480 if (NewStore) {
1481 // Treat this store as a spill merged into a copy. That makes the
1482 // stack slot value available.
1483 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1484 goto ProcessNextInst;
1485 }
1486 }
1487
1488 // If the spill slot value is available, and this is a new definition of
1489 // the value, the value is not available anymore.
1490 if (MR & VirtRegMap::isMod) {
1491 // Notice that the value in this stack slot has been modified.
1492 Spills.ModifyStackSlotOrReMat(SS);
1493
1494 // If this is *just* a mod of the value, check to see if this is just a
1495 // store to the spill slot (i.e. the spill got merged into the copy). If
1496 // so, realize that the vreg is available now, and add the store to the
1497 // MaybeDeadStore info.
1498 int StackSlot;
1499 if (!(MR & VirtRegMap::isRef)) {
1500 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1501 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1502 "Src hasn't been allocated yet?");
1503
1504 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1505 Spills, RegKills, KillOps, TRI, VRM)) {
1506 NextMII = next(MII);
1507 BackTracked = true;
1508 goto ProcessNextInst;
1509 }
1510
1511 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1512 // this as a potentially dead store in case there is a subsequent
1513 // store into the stack slot without a read from it.
1514 MaybeDeadStores[StackSlot] = &MI;
1515
1516 // If the stack slot value was previously available in some other
1517 // register, change it now. Otherwise, make the register
1518 // available in PhysReg.
1519 Spills.addAvailable(StackSlot, SrcReg, false/*!clobber*/);
1520 }
1521 }
1522 }
1523 }
1524
1525 // Process all of the spilled defs.
1526 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1527 MachineOperand &MO = MI.getOperand(i);
1528 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1529 continue;
1530
1531 unsigned VirtReg = MO.getReg();
1532 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1533 // Check to see if this is a noop copy. If so, eliminate the
1534 // instruction before considering the dest reg to be changed.
1535 unsigned Src, Dst, SrcSR, DstSR;
1536 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1537 ++NumDCE;
1538 DOUT << "Removing now-noop copy: " << MI;
1539 SmallVector<unsigned, 2> KillRegs;
1540 InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1541 if (MO.isDead() && !KillRegs.empty()) {
1542 // Source register or an implicit super/sub-register use is killed.
1543 assert(KillRegs[0] == Dst ||
1544 TRI->isSubRegister(KillRegs[0], Dst) ||
1545 TRI->isSuperRegister(KillRegs[0], Dst));
1546 // Last def is now dead.
1547 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1548 }
1549 VRM.RemoveMachineInstrFromMaps(&MI);
1550 MBB.erase(&MI);
1551 Erased = true;
1552 Spills.disallowClobberPhysReg(VirtReg);
1553 goto ProcessNextInst;
1554 }
1555
1556 // If it's not a no-op copy, it clobbers the value in the destreg.
1557 Spills.ClobberPhysReg(VirtReg);
1558 ReusedOperands.markClobbered(VirtReg);
1559
1560 // Check to see if this instruction is a load from a stack slot into
1561 // a register. If so, this provides the stack slot value in the reg.
1562 int FrameIdx;
1563 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1564 assert(DestReg == VirtReg && "Unknown load situation!");
1565
1566 // If it is a folded reference, then it's not safe to clobber.
1567 bool Folded = FoldedSS.count(FrameIdx);
1568 // Otherwise, if it wasn't available, remember that it is now!
1569 Spills.addAvailable(FrameIdx, DestReg, !Folded);
1570 goto ProcessNextInst;
1571 }
1572
1573 continue;
1574 }
1575
1576 unsigned SubIdx = MO.getSubReg();
1577 bool DoReMat = VRM.isReMaterialized(VirtReg);
1578 if (DoReMat)
1579 ReMatDefs.insert(&MI);
1580
1581 // The only vregs left are stack slot definitions.
1582 int StackSlot = VRM.getStackSlot(VirtReg);
1583 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1584
1585 // If this def is part of a two-address operand, make sure to execute
1586 // the store from the correct physical register.
1587 unsigned PhysReg;
1588 int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1589 if (TiedOp != -1) {
1590 PhysReg = MI.getOperand(TiedOp).getReg();
1591 if (SubIdx) {
1592 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1593 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1594 "Can't find corresponding super-register!");
1595 PhysReg = SuperReg;
1596 }
1597 } else {
1598 PhysReg = VRM.getPhys(VirtReg);
1599 if (ReusedOperands.isClobbered(PhysReg)) {
1600 // Another def has taken the assigned physreg. It must have been a
1601 // use&def which got it due to reuse. Undo the reuse!
1602 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1603 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1604 }
1605 }
1606
1607 assert(PhysReg && "VR not assigned a physical register?");
1608 RegInfo->setPhysRegUsed(PhysReg);
1609 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1610 ReusedOperands.markClobbered(RReg);
1611 MI.getOperand(i).setReg(RReg);
1612
1613 if (!MO.isDead()) {
1614 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1615 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1616 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1617 NextMII = next(MII);
1618
1619 // Check to see if this is a noop copy. If so, eliminate the
1620 // instruction before considering the dest reg to be changed.
1621 {
1622 unsigned Src, Dst, SrcSR, DstSR;
1623 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1624 ++NumDCE;
1625 DOUT << "Removing now-noop copy: " << MI;
1626 InvalidateKills(MI, RegKills, KillOps);
1627 VRM.RemoveMachineInstrFromMaps(&MI);
1628 MBB.erase(&MI);
1629 Erased = true;
1630 UpdateKills(*LastStore, RegKills, KillOps, TRI);
1631 goto ProcessNextInst;
1632 }
1633 }
1634 }
1635 }
1636 ProcessNextInst:
1637 DistanceMap.insert(std::make_pair(&MI, Dist++));
1638 if (!Erased && !BackTracked) {
1639 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1640 UpdateKills(*II, RegKills, KillOps, TRI);
1641 }
1642 MII = NextMII;
1643 }
1644
1645}
1646
1647llvm::Spiller* llvm::createSpiller() {
1648 switch (SpillerOpt) {
1649 default: assert(0 && "Unreachable!");
1650 case local:
1651 return new LocalSpiller();
1652 case simple:
1653 return new SimpleSpiller();
1654 }
1655}