| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
|  | 2 | "http://www.w3.org/TR/html4/strict.dtd"> | 
|  | 3 |  | 
|  | 4 | <html> | 
|  | 5 | <head> | 
|  | 6 | <title>Kaleidoscope: Adding JIT and Optimizer Support</title> | 
|  | 7 | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
|  | 8 | <meta name="author" content="Chris Lattner"> | 
|  | 9 | <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
|  | 10 | </head> | 
|  | 11 |  | 
|  | 12 | <body> | 
|  | 13 |  | 
|  | 14 | <div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div> | 
|  | 15 |  | 
|  | 16 | <div class="doc_author"> | 
|  | 17 | <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> | 
|  | 18 | </div> | 
|  | 19 |  | 
|  | 20 | <!-- *********************************************************************** --> | 
|  | 21 | <div class="doc_section"><a name="intro">Part 4 Introduction</a></div> | 
|  | 22 | <!-- *********************************************************************** --> | 
|  | 23 |  | 
|  | 24 | <div class="doc_text"> | 
|  | 25 |  | 
|  | 26 | <p>Welcome to part 4 of the "<a href="index.html">Implementing a language with | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 27 | LLVM</a>" tutorial.  Parts 1-3 described the implementation of a simple language | 
|  | 28 | and included support for generating LLVM IR.  This chapter describes two new | 
|  | 29 | techniques: adding optimizer support to your language, and adding JIT compiler | 
|  | 30 | support.  This shows how to get nice efficient code for your language.</p> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 31 |  | 
|  | 32 | </div> | 
|  | 33 |  | 
|  | 34 | <!-- *********************************************************************** --> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 35 | <div class="doc_section"><a name="trivialconstfold">Trivial Constant | 
|  | 36 | Folding</a></div> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 37 | <!-- *********************************************************************** --> | 
|  | 38 |  | 
|  | 39 | <div class="doc_text"> | 
|  | 40 |  | 
|  | 41 | <p> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 42 | Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately, | 
|  | 43 | it does not produce wonderful code.  For example, when compiling simple code, | 
|  | 44 | we don't get obvious optimizations:</p> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 45 |  | 
|  | 46 | <div class="doc_code"> | 
|  | 47 | <pre> | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 48 | ready> <b>def test(x) 1+2+x;</b> | 
|  | 49 | Read function definition: | 
|  | 50 | define double @test(double %x) { | 
|  | 51 | entry: | 
|  | 52 | %addtmp = add double 1.000000e+00, 2.000000e+00 | 
|  | 53 | %addtmp1 = add double %addtmp, %x | 
|  | 54 | ret double %addtmp1 | 
|  | 55 | } | 
|  | 56 | </pre> | 
|  | 57 | </div> | 
|  | 58 |  | 
|  | 59 | <p>This code is a very very literal transcription of the AST built by parsing | 
|  | 60 | our code, and as such, lacks optimizations like constant folding (we'd like to | 
|  | 61 | get "<tt>add x, 3.0</tt>" in the example above) as well as other more important | 
|  | 62 | optimizations.  Constant folding in particular is a very common and very | 
|  | 63 | important optimization: so much so that many language implementors implement | 
|  | 64 | constant folding support in their AST representation.</p> | 
|  | 65 |  | 
|  | 66 | <p>With LLVM, you don't need to.  Since all calls to build LLVM IR go through | 
|  | 67 | the LLVM builder, it would be nice if the builder itself checked to see if there | 
|  | 68 | was a constant folding opportunity when you call it.  If so, it could just do | 
|  | 69 | the constant fold and return the constant instead of creating an instruction. | 
|  | 70 | This is exactly what the <tt>LLVMFoldingBuilder</tt> class does.  Lets make one | 
|  | 71 | change: | 
|  | 72 |  | 
|  | 73 | <div class="doc_code"> | 
|  | 74 | <pre> | 
|  | 75 | static LLVMFoldingBuilder Builder; | 
|  | 76 | </pre> | 
|  | 77 | </div> | 
|  | 78 |  | 
|  | 79 | <p>All we did was switch from <tt>LLVMBuilder</tt> to | 
|  | 80 | <tt>LLVMFoldingBuilder</tt>.  Though we change no other code, now all of our | 
|  | 81 | instructions are implicitly constant folded without us having to do anything | 
|  | 82 | about it.  For example, our example above now compiles to:</p> | 
|  | 83 |  | 
|  | 84 | <div class="doc_code"> | 
|  | 85 | <pre> | 
|  | 86 | ready> <b>def test(x) 1+2+x;</b> | 
|  | 87 | Read function definition: | 
|  | 88 | define double @test(double %x) { | 
|  | 89 | entry: | 
|  | 90 | %addtmp = add double 3.000000e+00, %x | 
|  | 91 | ret double %addtmp | 
|  | 92 | } | 
|  | 93 | </pre> | 
|  | 94 | </div> | 
|  | 95 |  | 
|  | 96 | <p>Well, that was easy.  :)  In practice, we recommend always using | 
|  | 97 | <tt>LLVMConstantBuilder</tt> when generating code like this.  It has no | 
|  | 98 | "syntactic overhead" for its use (you don't have to uglify your compiler with | 
|  | 99 | constant checks everywhere) and it can dramatically reduce the amount of | 
|  | 100 | LLVM IR that is generated in some cases (particular for languages with a macro | 
|  | 101 | preprocessor or that use a lot of constants).</p> | 
|  | 102 |  | 
|  | 103 | <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact | 
|  | 104 | that it does all of its analysis inline with the code as it is built.  If you | 
|  | 105 | take a slightly more complex example:</p> | 
|  | 106 |  | 
|  | 107 | <div class="doc_code"> | 
|  | 108 | <pre> | 
|  | 109 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
|  | 110 | ready> Read function definition: | 
|  | 111 | define double @test(double %x) { | 
|  | 112 | entry: | 
|  | 113 | %addtmp = add double 3.000000e+00, %x | 
|  | 114 | %addtmp1 = add double %x, 3.000000e+00 | 
|  | 115 | %multmp = mul double %addtmp, %addtmp1 | 
|  | 116 | ret double %multmp | 
|  | 117 | } | 
|  | 118 | </pre> | 
|  | 119 | </div> | 
|  | 120 |  | 
|  | 121 | <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd | 
|  | 122 | really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead | 
|  | 123 | of computing "<tt>x*3</tt>" twice.</p> | 
|  | 124 |  | 
|  | 125 | <p>Unfortunately, no amount of local analysis will be able to detect and correct | 
|  | 126 | this.  This requires two transformations: reassociation of expressions (to | 
|  | 127 | make the add's lexically identical) and Common Subexpression Elimination (CSE) | 
|  | 128 | to  delete the redundant add instruction.  Fortunately, LLVM provides a broad | 
|  | 129 | range of optimizations that you can use, in the form of "passes".</p> | 
|  | 130 |  | 
|  | 131 | </div> | 
|  | 132 |  | 
|  | 133 | <!-- *********************************************************************** --> | 
|  | 134 | <div class="doc_section"><a name="optimizerpasses">LLVM Optimization | 
|  | 135 | Passes</a></div> | 
|  | 136 | <!-- *********************************************************************** --> | 
|  | 137 |  | 
|  | 138 | <div class="doc_text"> | 
|  | 139 |  | 
|  | 140 | <p>LLVM provides many optimization passes which do many different sorts of | 
|  | 141 | things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold | 
|  | 142 | to the mistaken notion that one set of optimizations is right for all languages | 
|  | 143 | and for all situations.  LLVM allows a compiler implementor to make complete | 
|  | 144 | decisions about what optimizations to use, in which order, and in what | 
|  | 145 | situation.</p> | 
|  | 146 |  | 
|  | 147 | <p>As a concrete example, LLVM supports both "whole module" passes, which look | 
|  | 148 | across as large of body of code as they can (often a whole file, but if run | 
|  | 149 | at link time, this can be a substantial portion of the whole program).  It also | 
|  | 150 | supports and includes "per-function" passes which just operate on a single | 
|  | 151 | function at a time, without looking at other functions.  For more information | 
|  | 152 | on passes and how the get run, see the <a href="../WritingAnLLVMPass.html">How | 
|  | 153 | to Write a Pass</a> document.</p> | 
|  | 154 |  | 
|  | 155 | <p>For Kaleidoscope, we are currently generating functions on the fly, one at | 
|  | 156 | a time, as the user types them in.  We aren't shooting for the ultimate | 
|  | 157 | optimization experience in this setting, but we also want to catch the easy and | 
|  | 158 | quick stuff where possible.  As such, we will choose to run a few per-function | 
|  | 159 | optimizations as the user types the function in.  If we wanted to make a "static | 
|  | 160 | Kaleidoscope compiler", we would use exactly the code we have now, except that | 
|  | 161 | we would defer running the optimizer until the entire file has been parsed.</p> | 
|  | 162 |  | 
|  | 163 | <p>In order to get per-function optimizations going, we need to set up a | 
|  | 164 | <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and | 
|  | 165 | organize the LLVM optimizations that we want to run.  Once we have that, we can | 
|  | 166 | add a set of optimizations to run.  The code looks like this:</p> | 
|  | 167 |  | 
|  | 168 | <div class="doc_code"> | 
|  | 169 | <pre> | 
|  | 170 | ExistingModuleProvider OurModuleProvider(TheModule); | 
|  | 171 | FunctionPassManager OurFPM(&OurModuleProvider); | 
|  | 172 |  | 
|  | 173 | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | 174 | // target lays out data structures. | 
|  | 175 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | 176 | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | 177 | OurFPM.add(createInstructionCombiningPass()); | 
|  | 178 | // Reassociate expressions. | 
|  | 179 | OurFPM.add(createReassociatePass()); | 
|  | 180 | // Eliminate Common SubExpressions. | 
|  | 181 | OurFPM.add(createGVNPass()); | 
|  | 182 | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | 183 | OurFPM.add(createCFGSimplificationPass()); | 
|  | 184 |  | 
|  | 185 | // Set the global so the code gen can use this. | 
|  | 186 | TheFPM = &OurFPM; | 
|  | 187 |  | 
|  | 188 | // Run the main "interpreter loop" now. | 
|  | 189 | MainLoop(); | 
|  | 190 | </pre> | 
|  | 191 | </div> | 
|  | 192 |  | 
|  | 193 | <p>This code defines two objects, a <tt>ExistingModuleProvider</tt> and a | 
|  | 194 | <tt>FunctionPassManager</tt>.  The former is basically a wrapper around our | 
|  | 195 | <tt>Module</tt> that the PassManager requires.  It provides certain flexibility | 
|  | 196 | that we're not going to take advantage of here, so I won't dive into what it is | 
|  | 197 | all about.</p> | 
|  | 198 |  | 
|  | 199 | <p>The meat of the matter is the definition of the "<tt>OurFPM</tt>".  It | 
|  | 200 | requires a pointer to the <tt>Module</tt> (through the <tt>ModuleProvider</tt>) | 
|  | 201 | to construct itself.  Once it is set up, we use a series of "add" calls to add | 
|  | 202 | a bunch of LLVM passes.  The first pass is basically boilerplate, it adds a pass | 
|  | 203 | so that later optimizations know how the data structures in the program are | 
|  | 204 | layed out.  The "<tt>TheExecutionEngine</tt>" variable is related to the JIT, | 
|  | 205 | which we will get to in the next section.</p> | 
|  | 206 |  | 
|  | 207 | <p>In this case, we choose to add 4 optimization passes.  The passes we chose | 
|  | 208 | here are a pretty standard set of "cleanup" optimizations that are useful for | 
|  | 209 | a wide variety of code.  I won't delve into what they do, but believe that they | 
|  | 210 | are a good starting place.</p> | 
|  | 211 |  | 
|  | 212 | <p>Once the passmanager, is set up, we need to make use of it.  We do this by | 
|  | 213 | running it after our newly created function is constructed (in | 
|  | 214 | <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p> | 
|  | 215 |  | 
|  | 216 | <div class="doc_code"> | 
|  | 217 | <pre> | 
|  | 218 | if (Value *RetVal = Body->Codegen()) { | 
|  | 219 | // Finish off the function. | 
|  | 220 | Builder.CreateRet(RetVal); | 
|  | 221 |  | 
|  | 222 | // Validate the generated code, checking for consistency. | 
|  | 223 | verifyFunction(*TheFunction); | 
|  | 224 |  | 
|  | 225 | // Optimize the function. | 
|  | 226 | TheFPM->run(*TheFunction); | 
|  | 227 |  | 
|  | 228 | return TheFunction; | 
|  | 229 | } | 
|  | 230 | </pre> | 
|  | 231 | </div> | 
|  | 232 |  | 
|  | 233 | <p>As you can see, this is pretty straight-forward.  The | 
|  | 234 | <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place, | 
|  | 235 | improving (hopefully) its body.  With this in place, we can try our test above | 
|  | 236 | again:</p> | 
|  | 237 |  | 
|  | 238 | <div class="doc_code"> | 
|  | 239 | <pre> | 
|  | 240 | ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> | 
|  | 241 | ready> Read function definition: | 
|  | 242 | define double @test(double %x) { | 
|  | 243 | entry: | 
|  | 244 | %addtmp = add double %x, 3.000000e+00 | 
|  | 245 | %multmp = mul double %addtmp, %addtmp | 
|  | 246 | ret double %multmp | 
|  | 247 | } | 
|  | 248 | </pre> | 
|  | 249 | </div> | 
|  | 250 |  | 
|  | 251 | <p>As expected, we now get our nicely optimized code, saving a floating point | 
|  | 252 | add from the program.</p> | 
|  | 253 |  | 
|  | 254 | <p>LLVM provides a wide variety of optimizations that can be used in certain | 
|  | 255 | circumstances.  Unfortunately we don't have a good centralized description of | 
|  | 256 | what every pass does, but you can check out the ones that <tt>llvm-gcc</tt> or | 
|  | 257 | <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to | 
|  | 258 | experiment with passes from the command line, so you can see if they do | 
|  | 259 | anything.</p> | 
|  | 260 |  | 
|  | 261 | <p>Now that we have reasonable code coming out of our front-end, lets talk about | 
|  | 262 | executing it!</p> | 
|  | 263 |  | 
|  | 264 | </div> | 
|  | 265 |  | 
|  | 266 | <!-- *********************************************************************** --> | 
|  | 267 | <div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div> | 
|  | 268 | <!-- *********************************************************************** --> | 
|  | 269 |  | 
|  | 270 | <div class="doc_text"> | 
|  | 271 |  | 
|  | 272 | <p>Once the code is available in LLVM IR form a wide variety of tools can be | 
|  | 273 | applied to it.  For example, you can run optimizations on it (as we did above), | 
|  | 274 | you can dump it out in textual or binary forms, you can compile the code to an | 
|  | 275 | assembly file (.s) for some target, or you can JIT compile it.  The nice thing | 
|  | 276 | about the LLVM IR representation is that it is the common currency between many | 
|  | 277 | different parts of the compiler. | 
|  | 278 | </p> | 
|  | 279 |  | 
|  | 280 | <p>In this chapter, we'll add JIT compiler support to our interpreter.  The | 
|  | 281 | basic idea that we want for Kaleidoscope is to have the user enter function | 
|  | 282 | bodies as they do now, but immediately evaluate the top-level expressions they | 
|  | 283 | type in.  For example, if they type in "1 + 2;", we should evaluate and print | 
|  | 284 | out 3.  If they define a function, they should be able to call it from the | 
|  | 285 | command line.</p> | 
|  | 286 |  | 
|  | 287 | <p>In order to do this, we first declare and initialize the JIT.  This is done | 
|  | 288 | by adding a global variable and a call in <tt>main</tt>:</p> | 
|  | 289 |  | 
|  | 290 | <div class="doc_code"> | 
|  | 291 | <pre> | 
|  | 292 | static ExecutionEngine *TheExecutionEngine; | 
|  | 293 | ... | 
|  | 294 | int main() { | 
|  | 295 | .. | 
|  | 296 | // Create the JIT. | 
|  | 297 | TheExecutionEngine = ExecutionEngine::create(TheModule); | 
|  | 298 | .. | 
|  | 299 | } | 
|  | 300 | </pre> | 
|  | 301 | </div> | 
|  | 302 |  | 
|  | 303 | <p>This creates an abstract "Execution Engine" which can be either a JIT | 
|  | 304 | compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler | 
|  | 305 | for you if one is available for your platform, otherwise it will fall back to | 
|  | 306 | the interpreter.</p> | 
|  | 307 |  | 
|  | 308 | <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used. | 
|  | 309 | There are a variety of APIs that are useful, but the most simple one is the | 
|  | 310 | "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the | 
|  | 311 | specified LLVM Function and returns a function pointer to the generated machine | 
|  | 312 | code.  In our case, this means that we can change the code that parses a | 
|  | 313 | top-level expression to look like this:</p> | 
|  | 314 |  | 
|  | 315 | <div class="doc_code"> | 
|  | 316 | <pre> | 
|  | 317 | static void HandleTopLevelExpression() { | 
|  | 318 | // Evaluate a top level expression into an anonymous function. | 
|  | 319 | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | 320 | if (Function *LF = F->Codegen()) { | 
|  | 321 | LF->dump();  // Dump the function for exposition purposes. | 
|  | 322 |  | 
|  | 323 | // JIT the function, returning a function pointer. | 
|  | 324 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  | 325 |  | 
|  | 326 | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | 327 | // can call it as a native function. | 
|  | 328 | double (*FP)() = (double (*)())FPtr; | 
|  | 329 | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | 330 | } | 
|  | 331 | </pre> | 
|  | 332 | </div> | 
|  | 333 |  | 
|  | 334 | <p>Recall that we compile top-level expressions into a self-contained LLVM | 
|  | 335 | function that takes no arguments and returns the computed double.  Because the | 
|  | 336 | LLVM JIT compiler matches the native platform ABI, this means that you can just | 
|  | 337 | cast the result pointer to a function pointer of that type and call it directly. | 
|  | 338 | As such, there is no difference between JIT compiled code and native machine | 
|  | 339 | code that is statically linked into your application.</p> | 
|  | 340 |  | 
|  | 341 | <p>With just these two changes, lets see how Kaleidoscope works now!</p> | 
|  | 342 |  | 
|  | 343 | <div class="doc_code"> | 
|  | 344 | <pre> | 
|  | 345 | ready> <b>4+5;</b> | 
|  | 346 | define double @""() { | 
|  | 347 | entry: | 
|  | 348 | ret double 9.000000e+00 | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | <em>Evaluated to 9.000000</em> | 
|  | 352 | </pre> | 
|  | 353 | </div> | 
|  | 354 |  | 
|  | 355 | <p>Well this looks like it is basically working.  The dump of the function | 
|  | 356 | shows the "no argument function that always returns double" that we synthesize | 
|  | 357 | for each top level expression that is typed it.  This demonstrates very basic | 
|  | 358 | functionality, but can we do more?</p> | 
|  | 359 |  | 
|  | 360 | <div class="doc_code"> | 
|  | 361 | <pre> | 
|  | 362 | ready> def testfunc(x y) x + y*2; </b> | 
|  | 363 | Read function definition: | 
|  | 364 | define double @testfunc(double %x, double %y) { | 
|  | 365 | entry: | 
|  | 366 | %multmp = mul double %y, 2.000000e+00 | 
|  | 367 | %addtmp = add double %multmp, %x | 
|  | 368 | ret double %addtmp | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | ready> <b>testfunc(4, 10);</b> | 
|  | 372 | define double @""() { | 
|  | 373 | entry: | 
|  | 374 | %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 ) | 
|  | 375 | ret double %calltmp | 
|  | 376 | } | 
|  | 377 |  | 
|  | 378 | <em>Evaluated to 24.000000</em> | 
|  | 379 | </pre> | 
|  | 380 | </div> | 
|  | 381 |  | 
|  | 382 | <p>This illustrates that we can now call user code, but it is a bit subtle what | 
|  | 383 | is going on here.  Note that we only invoke the JIT on the anonymous functions | 
|  | 384 | that <em>calls testfunc</em>, but we never invoked it on <em>testfunc | 
|  | 385 | itself</em>.</p> | 
|  | 386 |  | 
|  | 387 | <p>What actually happened here is that the anonymous function is | 
|  | 388 | JIT'd when requested.  When the Kaleidoscope app calls through the function | 
|  | 389 | pointer that is returned, the anonymous function starts executing.  It ends up | 
|  | 390 | making the call for the "testfunc" function, and ends up in a stub that invokes | 
|  | 391 | the JIT, lazily, on testfunc.  Once the JIT finishes lazily compiling testfunc, | 
|  | 392 | it returns and the code reexecutes the call.</p> | 
|  | 393 |  | 
|  | 394 | <p>In summary, the JIT will lazily JIT code on the fly as it is needed.  The | 
|  | 395 | JIT provides a number of other more advanced interfaces for things like freeing | 
|  | 396 | allocated machine code, rejit'ing functions to update them, etc.  However, even | 
|  | 397 | with this simple code, we get some surprisingly powerful capabilities - check | 
|  | 398 | this out (I removed the dump of the anonymous functions, you should get the idea | 
|  | 399 | by now :) :</p> | 
|  | 400 |  | 
|  | 401 | <div class="doc_code"> | 
|  | 402 | <pre> | 
|  | 403 | ready> <b>extern sin(x);</b> | 
|  | 404 | Read extern: | 
|  | 405 | declare double @sin(double) | 
|  | 406 |  | 
|  | 407 | ready> <b>extern cos(x);</b> | 
|  | 408 | Read extern: | 
|  | 409 | declare double @cos(double) | 
|  | 410 |  | 
|  | 411 | ready> <b>sin(1.0);</b> | 
|  | 412 | <em>Evaluated to 0.841471</em> | 
|  | 413 | ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> | 
|  | 414 | Read function definition: | 
|  | 415 | define double @foo(double %x) { | 
|  | 416 | entry: | 
|  | 417 | %calltmp = call double @sin( double %x ) | 
|  | 418 | %multmp = mul double %calltmp, %calltmp | 
|  | 419 | %calltmp2 = call double @cos( double %x ) | 
|  | 420 | %multmp4 = mul double %calltmp2, %calltmp2 | 
|  | 421 | %addtmp = add double %multmp, %multmp4 | 
|  | 422 | ret double %addtmp | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | ready> <b>foo(4.0);</b> | 
|  | 426 | <em>Evaluated to 1.000000</em> | 
|  | 427 | </pre> | 
|  | 428 | </div> | 
|  | 429 |  | 
|  | 430 | <p>Whoa, how does the JIT know about sin and cos?  The answer is simple: in this | 
|  | 431 | example, the JIT started execution of a function and got to a function call.  It | 
|  | 432 | realized that the function was not yet JIT compiled and invoked the standard set | 
|  | 433 | of routines to resolve the function.  In this case, there is no body defined | 
|  | 434 | for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on itself. | 
|  | 435 | Since "<tt>sin</tt>" is defined within the JIT's address space, it simply | 
|  | 436 | patches up calls in the module to call the libm version of <tt>sin</tt> | 
|  | 437 | directly.</p> | 
|  | 438 |  | 
|  | 439 | <p>The LLVM JIT provides a number of interfaces (look in the | 
|  | 440 | <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get | 
|  | 441 | resolved.  It allows you to establish explicit mappings between IR objects and | 
|  | 442 | addresses (useful for LLVM global variables that you want to map to static | 
|  | 443 | tables, for example), allows you to dynamically decide on the fly based on the | 
|  | 444 | function name, and even allows you to have the JIT abort itself if any lazy | 
|  | 445 | compilation is attempted.</p> | 
|  | 446 |  | 
|  | 447 | <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At | 
|  | 448 | this point, we can compile a non-Turing-complete programming language, optimize | 
|  | 449 | and JIT compile it in a user-driven way.  Next up we'll look into <a | 
|  | 450 | href="LangImpl5.html">extending the language with control flow constructs</a>, | 
|  | 451 | tackling some interesting LLVM IR issues along the way.</p> | 
|  | 452 |  | 
|  | 453 | </div> | 
|  | 454 |  | 
|  | 455 | <!-- *********************************************************************** --> | 
|  | 456 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
|  | 457 | <!-- *********************************************************************** --> | 
|  | 458 |  | 
|  | 459 | <div class="doc_text"> | 
|  | 460 |  | 
|  | 461 | <p> | 
|  | 462 | Here is the complete code listing for our running example, enhanced with the | 
|  | 463 | LLVM JIT and optimizer.  To build this example, use: | 
|  | 464 | </p> | 
|  | 465 |  | 
|  | 466 | <div class="doc_code"> | 
|  | 467 | <pre> | 
|  | 468 | # Compile | 
|  | 469 | g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy | 
|  | 470 | # Run | 
|  | 471 | ./toy | 
|  | 472 | </pre> | 
|  | 473 | </div> | 
|  | 474 |  | 
|  | 475 | <p>Here is the code:</p> | 
|  | 476 |  | 
|  | 477 | <div class="doc_code"> | 
|  | 478 | <pre> | 
|  | 479 | #include "llvm/DerivedTypes.h" | 
|  | 480 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | 481 | #include "llvm/Module.h" | 
|  | 482 | #include "llvm/ModuleProvider.h" | 
|  | 483 | #include "llvm/PassManager.h" | 
|  | 484 | #include "llvm/Analysis/Verifier.h" | 
|  | 485 | #include "llvm/Target/TargetData.h" | 
|  | 486 | #include "llvm/Transforms/Scalar.h" | 
|  | 487 | #include "llvm/Support/LLVMBuilder.h" | 
|  | 488 | #include <cstdio> | 
|  | 489 | #include <string> | 
|  | 490 | #include <map> | 
|  | 491 | #include <vector> | 
|  | 492 | using namespace llvm; | 
|  | 493 |  | 
|  | 494 | //===----------------------------------------------------------------------===// | 
|  | 495 | // Lexer | 
|  | 496 | //===----------------------------------------------------------------------===// | 
|  | 497 |  | 
|  | 498 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | 499 | // of these for known things. | 
|  | 500 | enum Token { | 
|  | 501 | tok_eof = -1, | 
|  | 502 |  | 
|  | 503 | // commands | 
|  | 504 | tok_def = -2, tok_extern = -3, | 
|  | 505 |  | 
|  | 506 | // primary | 
|  | 507 | tok_identifier = -4, tok_number = -5, | 
|  | 508 | }; | 
|  | 509 |  | 
|  | 510 | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | 511 | static double NumVal;              // Filled in if tok_number | 
|  | 512 |  | 
|  | 513 | /// gettok - Return the next token from standard input. | 
|  | 514 | static int gettok() { | 
|  | 515 | static int LastChar = ' '; | 
|  | 516 |  | 
|  | 517 | // Skip any whitespace. | 
|  | 518 | while (isspace(LastChar)) | 
|  | 519 | LastChar = getchar(); | 
|  | 520 |  | 
|  | 521 | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | 522 | IdentifierStr = LastChar; | 
|  | 523 | while (isalnum((LastChar = getchar()))) | 
|  | 524 | IdentifierStr += LastChar; | 
|  | 525 |  | 
|  | 526 | if (IdentifierStr == "def") return tok_def; | 
|  | 527 | if (IdentifierStr == "extern") return tok_extern; | 
|  | 528 | return tok_identifier; | 
|  | 529 | } | 
|  | 530 |  | 
|  | 531 | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | 532 | std::string NumStr; | 
|  | 533 | do { | 
|  | 534 | NumStr += LastChar; | 
|  | 535 | LastChar = getchar(); | 
|  | 536 | } while (isdigit(LastChar) || LastChar == '.'); | 
|  | 537 |  | 
|  | 538 | NumVal = strtod(NumStr.c_str(), 0); | 
|  | 539 | return tok_number; | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | if (LastChar == '#') { | 
|  | 543 | // Comment until end of line. | 
|  | 544 | do LastChar = getchar(); | 
|  | 545 | while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); | 
|  | 546 |  | 
|  | 547 | if (LastChar != EOF) | 
|  | 548 | return gettok(); | 
|  | 549 | } | 
|  | 550 |  | 
|  | 551 | // Check for end of file.  Don't eat the EOF. | 
|  | 552 | if (LastChar == EOF) | 
|  | 553 | return tok_eof; | 
|  | 554 |  | 
|  | 555 | // Otherwise, just return the character as its ascii value. | 
|  | 556 | int ThisChar = LastChar; | 
|  | 557 | LastChar = getchar(); | 
|  | 558 | return ThisChar; | 
|  | 559 | } | 
|  | 560 |  | 
|  | 561 | //===----------------------------------------------------------------------===// | 
|  | 562 | // Abstract Syntax Tree (aka Parse Tree) | 
|  | 563 | //===----------------------------------------------------------------------===// | 
|  | 564 |  | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 565 | /// ExprAST - Base class for all expression nodes. | 
|  | 566 | class ExprAST { | 
|  | 567 | public: | 
|  | 568 | virtual ~ExprAST() {} | 
|  | 569 | virtual Value *Codegen() = 0; | 
|  | 570 | }; | 
|  | 571 |  | 
|  | 572 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | 573 | class NumberExprAST : public ExprAST { | 
|  | 574 | double Val; | 
|  | 575 | public: | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 576 | NumberExprAST(double val) : Val(val) {} | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 577 | virtual Value *Codegen(); | 
|  | 578 | }; | 
| Chris Lattner | 118749e | 2007-10-25 06:23:36 +0000 | [diff] [blame^] | 579 |  | 
|  | 580 | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | 581 | class VariableExprAST : public ExprAST { | 
|  | 582 | std::string Name; | 
|  | 583 | public: | 
|  | 584 | VariableExprAST(const std::string &name) : Name(name) {} | 
|  | 585 | virtual Value *Codegen(); | 
|  | 586 | }; | 
|  | 587 |  | 
|  | 588 | /// BinaryExprAST - Expression class for a binary operator. | 
|  | 589 | class BinaryExprAST : public ExprAST { | 
|  | 590 | char Op; | 
|  | 591 | ExprAST *LHS, *RHS; | 
|  | 592 | public: | 
|  | 593 | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | 594 | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | 595 | virtual Value *Codegen(); | 
|  | 596 | }; | 
|  | 597 |  | 
|  | 598 | /// CallExprAST - Expression class for function calls. | 
|  | 599 | class CallExprAST : public ExprAST { | 
|  | 600 | std::string Callee; | 
|  | 601 | std::vector<ExprAST*> Args; | 
|  | 602 | public: | 
|  | 603 | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | 604 | : Callee(callee), Args(args) {} | 
|  | 605 | virtual Value *Codegen(); | 
|  | 606 | }; | 
|  | 607 |  | 
|  | 608 | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | 609 | /// which captures its argument names as well as if it is an operator. | 
|  | 610 | class PrototypeAST { | 
|  | 611 | std::string Name; | 
|  | 612 | std::vector<std::string> Args; | 
|  | 613 | public: | 
|  | 614 | PrototypeAST(const std::string &name, const std::vector<std::string> &args) | 
|  | 615 | : Name(name), Args(args) {} | 
|  | 616 |  | 
|  | 617 | Function *Codegen(); | 
|  | 618 | }; | 
|  | 619 |  | 
|  | 620 | /// FunctionAST - This class represents a function definition itself. | 
|  | 621 | class FunctionAST { | 
|  | 622 | PrototypeAST *Proto; | 
|  | 623 | ExprAST *Body; | 
|  | 624 | public: | 
|  | 625 | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | 626 | : Proto(proto), Body(body) {} | 
|  | 627 |  | 
|  | 628 | Function *Codegen(); | 
|  | 629 | }; | 
|  | 630 |  | 
|  | 631 | //===----------------------------------------------------------------------===// | 
|  | 632 | // Parser | 
|  | 633 | //===----------------------------------------------------------------------===// | 
|  | 634 |  | 
|  | 635 | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | 636 | /// token the parser it looking at.  getNextToken reads another token from the | 
|  | 637 | /// lexer and updates CurTok with its results. | 
|  | 638 | static int CurTok; | 
|  | 639 | static int getNextToken() { | 
|  | 640 | return CurTok = gettok(); | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | 644 | /// defined. | 
|  | 645 | static std::map<char, int> BinopPrecedence; | 
|  | 646 |  | 
|  | 647 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | 648 | static int GetTokPrecedence() { | 
|  | 649 | if (!isascii(CurTok)) | 
|  | 650 | return -1; | 
|  | 651 |  | 
|  | 652 | // Make sure it's a declared binop. | 
|  | 653 | int TokPrec = BinopPrecedence[CurTok]; | 
|  | 654 | if (TokPrec <= 0) return -1; | 
|  | 655 | return TokPrec; | 
|  | 656 | } | 
|  | 657 |  | 
|  | 658 | /// Error* - These are little helper functions for error handling. | 
|  | 659 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | 660 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | 661 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  | 662 |  | 
|  | 663 | static ExprAST *ParseExpression(); | 
|  | 664 |  | 
|  | 665 | /// identifierexpr | 
|  | 666 | ///   ::= identifer | 
|  | 667 | ///   ::= identifer '(' expression* ')' | 
|  | 668 | static ExprAST *ParseIdentifierExpr() { | 
|  | 669 | std::string IdName = IdentifierStr; | 
|  | 670 |  | 
|  | 671 | getNextToken();  // eat identifer. | 
|  | 672 |  | 
|  | 673 | if (CurTok != '(') // Simple variable ref. | 
|  | 674 | return new VariableExprAST(IdName); | 
|  | 675 |  | 
|  | 676 | // Call. | 
|  | 677 | getNextToken();  // eat ( | 
|  | 678 | std::vector<ExprAST*> Args; | 
|  | 679 | while (1) { | 
|  | 680 | ExprAST *Arg = ParseExpression(); | 
|  | 681 | if (!Arg) return 0; | 
|  | 682 | Args.push_back(Arg); | 
|  | 683 |  | 
|  | 684 | if (CurTok == ')') break; | 
|  | 685 |  | 
|  | 686 | if (CurTok != ',') | 
|  | 687 | return Error("Expected ')'"); | 
|  | 688 | getNextToken(); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | // Eat the ')'. | 
|  | 692 | getNextToken(); | 
|  | 693 |  | 
|  | 694 | return new CallExprAST(IdName, Args); | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | /// numberexpr ::= number | 
|  | 698 | static ExprAST *ParseNumberExpr() { | 
|  | 699 | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | 700 | getNextToken(); // consume the number | 
|  | 701 | return Result; | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | /// parenexpr ::= '(' expression ')' | 
|  | 705 | static ExprAST *ParseParenExpr() { | 
|  | 706 | getNextToken();  // eat (. | 
|  | 707 | ExprAST *V = ParseExpression(); | 
|  | 708 | if (!V) return 0; | 
|  | 709 |  | 
|  | 710 | if (CurTok != ')') | 
|  | 711 | return Error("expected ')'"); | 
|  | 712 | getNextToken();  // eat ). | 
|  | 713 | return V; | 
|  | 714 | } | 
|  | 715 |  | 
|  | 716 | /// primary | 
|  | 717 | ///   ::= identifierexpr | 
|  | 718 | ///   ::= numberexpr | 
|  | 719 | ///   ::= parenexpr | 
|  | 720 | static ExprAST *ParsePrimary() { | 
|  | 721 | switch (CurTok) { | 
|  | 722 | default: return Error("unknown token when expecting an expression"); | 
|  | 723 | case tok_identifier: return ParseIdentifierExpr(); | 
|  | 724 | case tok_number:     return ParseNumberExpr(); | 
|  | 725 | case '(':            return ParseParenExpr(); | 
|  | 726 | } | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | /// binoprhs | 
|  | 730 | ///   ::= ('+' primary)* | 
|  | 731 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | 732 | // If this is a binop, find its precedence. | 
|  | 733 | while (1) { | 
|  | 734 | int TokPrec = GetTokPrecedence(); | 
|  | 735 |  | 
|  | 736 | // If this is a binop that binds at least as tightly as the current binop, | 
|  | 737 | // consume it, otherwise we are done. | 
|  | 738 | if (TokPrec < ExprPrec) | 
|  | 739 | return LHS; | 
|  | 740 |  | 
|  | 741 | // Okay, we know this is a binop. | 
|  | 742 | int BinOp = CurTok; | 
|  | 743 | getNextToken();  // eat binop | 
|  | 744 |  | 
|  | 745 | // Parse the primary expression after the binary operator. | 
|  | 746 | ExprAST *RHS = ParsePrimary(); | 
|  | 747 | if (!RHS) return 0; | 
|  | 748 |  | 
|  | 749 | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | 750 | // the pending operator take RHS as its LHS. | 
|  | 751 | int NextPrec = GetTokPrecedence(); | 
|  | 752 | if (TokPrec < NextPrec) { | 
|  | 753 | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | 754 | if (RHS == 0) return 0; | 
|  | 755 | } | 
|  | 756 |  | 
|  | 757 | // Merge LHS/RHS. | 
|  | 758 | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | 759 | } | 
|  | 760 | } | 
|  | 761 |  | 
|  | 762 | /// expression | 
|  | 763 | ///   ::= primary binoprhs | 
|  | 764 | /// | 
|  | 765 | static ExprAST *ParseExpression() { | 
|  | 766 | ExprAST *LHS = ParsePrimary(); | 
|  | 767 | if (!LHS) return 0; | 
|  | 768 |  | 
|  | 769 | return ParseBinOpRHS(0, LHS); | 
|  | 770 | } | 
|  | 771 |  | 
|  | 772 | /// prototype | 
|  | 773 | ///   ::= id '(' id* ')' | 
|  | 774 | static PrototypeAST *ParsePrototype() { | 
|  | 775 | if (CurTok != tok_identifier) | 
|  | 776 | return ErrorP("Expected function name in prototype"); | 
|  | 777 |  | 
|  | 778 | std::string FnName = IdentifierStr; | 
|  | 779 | getNextToken(); | 
|  | 780 |  | 
|  | 781 | if (CurTok != '(') | 
|  | 782 | return ErrorP("Expected '(' in prototype"); | 
|  | 783 |  | 
|  | 784 | std::vector<std::string> ArgNames; | 
|  | 785 | while (getNextToken() == tok_identifier) | 
|  | 786 | ArgNames.push_back(IdentifierStr); | 
|  | 787 | if (CurTok != ')') | 
|  | 788 | return ErrorP("Expected ')' in prototype"); | 
|  | 789 |  | 
|  | 790 | // success. | 
|  | 791 | getNextToken();  // eat ')'. | 
|  | 792 |  | 
|  | 793 | return new PrototypeAST(FnName, ArgNames); | 
|  | 794 | } | 
|  | 795 |  | 
|  | 796 | /// definition ::= 'def' prototype expression | 
|  | 797 | static FunctionAST *ParseDefinition() { | 
|  | 798 | getNextToken();  // eat def. | 
|  | 799 | PrototypeAST *Proto = ParsePrototype(); | 
|  | 800 | if (Proto == 0) return 0; | 
|  | 801 |  | 
|  | 802 | if (ExprAST *E = ParseExpression()) | 
|  | 803 | return new FunctionAST(Proto, E); | 
|  | 804 | return 0; | 
|  | 805 | } | 
|  | 806 |  | 
|  | 807 | /// toplevelexpr ::= expression | 
|  | 808 | static FunctionAST *ParseTopLevelExpr() { | 
|  | 809 | if (ExprAST *E = ParseExpression()) { | 
|  | 810 | // Make an anonymous proto. | 
|  | 811 | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | 812 | return new FunctionAST(Proto, E); | 
|  | 813 | } | 
|  | 814 | return 0; | 
|  | 815 | } | 
|  | 816 |  | 
|  | 817 | /// external ::= 'extern' prototype | 
|  | 818 | static PrototypeAST *ParseExtern() { | 
|  | 819 | getNextToken();  // eat extern. | 
|  | 820 | return ParsePrototype(); | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | //===----------------------------------------------------------------------===// | 
|  | 824 | // Code Generation | 
|  | 825 | //===----------------------------------------------------------------------===// | 
|  | 826 |  | 
|  | 827 | static Module *TheModule; | 
|  | 828 | static LLVMFoldingBuilder Builder; | 
|  | 829 | static std::map<std::string, Value*> NamedValues; | 
|  | 830 | static FunctionPassManager *TheFPM; | 
|  | 831 |  | 
|  | 832 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
|  | 833 |  | 
|  | 834 | Value *NumberExprAST::Codegen() { | 
|  | 835 | return ConstantFP::get(Type::DoubleTy, APFloat(Val)); | 
|  | 836 | } | 
|  | 837 |  | 
|  | 838 | Value *VariableExprAST::Codegen() { | 
|  | 839 | // Look this variable up in the function. | 
|  | 840 | Value *V = NamedValues[Name]; | 
|  | 841 | return V ? V : ErrorV("Unknown variable name"); | 
|  | 842 | } | 
|  | 843 |  | 
|  | 844 | Value *BinaryExprAST::Codegen() { | 
|  | 845 | Value *L = LHS->Codegen(); | 
|  | 846 | Value *R = RHS->Codegen(); | 
|  | 847 | if (L == 0 || R == 0) return 0; | 
|  | 848 |  | 
|  | 849 | switch (Op) { | 
|  | 850 | case '+': return Builder.CreateAdd(L, R, "addtmp"); | 
|  | 851 | case '-': return Builder.CreateSub(L, R, "subtmp"); | 
|  | 852 | case '*': return Builder.CreateMul(L, R, "multmp"); | 
|  | 853 | case '<': | 
|  | 854 | L = Builder.CreateFCmpULT(L, R, "multmp"); | 
|  | 855 | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | 856 | return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); | 
|  | 857 | default: return ErrorV("invalid binary operator"); | 
|  | 858 | } | 
|  | 859 | } | 
|  | 860 |  | 
|  | 861 | Value *CallExprAST::Codegen() { | 
|  | 862 | // Look up the name in the global module table. | 
|  | 863 | Function *CalleeF = TheModule->getFunction(Callee); | 
|  | 864 | if (CalleeF == 0) | 
|  | 865 | return ErrorV("Unknown function referenced"); | 
|  | 866 |  | 
|  | 867 | // If argument mismatch error. | 
|  | 868 | if (CalleeF->arg_size() != Args.size()) | 
|  | 869 | return ErrorV("Incorrect # arguments passed"); | 
|  | 870 |  | 
|  | 871 | std::vector<Value*> ArgsV; | 
|  | 872 | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | 873 | ArgsV.push_back(Args[i]->Codegen()); | 
|  | 874 | if (ArgsV.back() == 0) return 0; | 
|  | 875 | } | 
|  | 876 |  | 
|  | 877 | return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); | 
|  | 878 | } | 
|  | 879 |  | 
|  | 880 | Function *PrototypeAST::Codegen() { | 
|  | 881 | // Make the function type:  double(double,double) etc. | 
|  | 882 | std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); | 
|  | 883 | FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); | 
|  | 884 |  | 
|  | 885 | Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); | 
|  | 886 |  | 
|  | 887 | // If F conflicted, there was already something named 'Name'.  If it has a | 
|  | 888 | // body, don't allow redefinition or reextern. | 
|  | 889 | if (F->getName() != Name) { | 
|  | 890 | // Delete the one we just made and get the existing one. | 
|  | 891 | F->eraseFromParent(); | 
|  | 892 | F = TheModule->getFunction(Name); | 
|  | 893 |  | 
|  | 894 | // If F already has a body, reject this. | 
|  | 895 | if (!F->empty()) { | 
|  | 896 | ErrorF("redefinition of function"); | 
|  | 897 | return 0; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | // If F took a different number of args, reject. | 
|  | 901 | if (F->arg_size() != Args.size()) { | 
|  | 902 | ErrorF("redefinition of function with different # args"); | 
|  | 903 | return 0; | 
|  | 904 | } | 
|  | 905 | } | 
|  | 906 |  | 
|  | 907 | // Set names for all arguments. | 
|  | 908 | unsigned Idx = 0; | 
|  | 909 | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | 910 | ++AI, ++Idx) { | 
|  | 911 | AI->setName(Args[Idx]); | 
|  | 912 |  | 
|  | 913 | // Add arguments to variable symbol table. | 
|  | 914 | NamedValues[Args[Idx]] = AI; | 
|  | 915 | } | 
|  | 916 |  | 
|  | 917 | return F; | 
|  | 918 | } | 
|  | 919 |  | 
|  | 920 | Function *FunctionAST::Codegen() { | 
|  | 921 | NamedValues.clear(); | 
|  | 922 |  | 
|  | 923 | Function *TheFunction = Proto->Codegen(); | 
|  | 924 | if (TheFunction == 0) | 
|  | 925 | return 0; | 
|  | 926 |  | 
|  | 927 | // Create a new basic block to start insertion into. | 
|  | 928 | BasicBlock *BB = new BasicBlock("entry", TheFunction); | 
|  | 929 | Builder.SetInsertPoint(BB); | 
|  | 930 |  | 
|  | 931 | if (Value *RetVal = Body->Codegen()) { | 
|  | 932 | // Finish off the function. | 
|  | 933 | Builder.CreateRet(RetVal); | 
|  | 934 |  | 
|  | 935 | // Validate the generated code, checking for consistency. | 
|  | 936 | verifyFunction(*TheFunction); | 
|  | 937 |  | 
|  | 938 | // Optimize the function. | 
|  | 939 | TheFPM->run(*TheFunction); | 
|  | 940 |  | 
|  | 941 | return TheFunction; | 
|  | 942 | } | 
|  | 943 |  | 
|  | 944 | // Error reading body, remove function. | 
|  | 945 | TheFunction->eraseFromParent(); | 
|  | 946 | return 0; | 
|  | 947 | } | 
|  | 948 |  | 
|  | 949 | //===----------------------------------------------------------------------===// | 
|  | 950 | // Top-Level parsing and JIT Driver | 
|  | 951 | //===----------------------------------------------------------------------===// | 
|  | 952 |  | 
|  | 953 | static ExecutionEngine *TheExecutionEngine; | 
|  | 954 |  | 
|  | 955 | static void HandleDefinition() { | 
|  | 956 | if (FunctionAST *F = ParseDefinition()) { | 
|  | 957 | if (Function *LF = F->Codegen()) { | 
|  | 958 | fprintf(stderr, "Read function definition:"); | 
|  | 959 | LF->dump(); | 
|  | 960 | } | 
|  | 961 | } else { | 
|  | 962 | // Skip token for error recovery. | 
|  | 963 | getNextToken(); | 
|  | 964 | } | 
|  | 965 | } | 
|  | 966 |  | 
|  | 967 | static void HandleExtern() { | 
|  | 968 | if (PrototypeAST *P = ParseExtern()) { | 
|  | 969 | if (Function *F = P->Codegen()) { | 
|  | 970 | fprintf(stderr, "Read extern: "); | 
|  | 971 | F->dump(); | 
|  | 972 | } | 
|  | 973 | } else { | 
|  | 974 | // Skip token for error recovery. | 
|  | 975 | getNextToken(); | 
|  | 976 | } | 
|  | 977 | } | 
|  | 978 |  | 
|  | 979 | static void HandleTopLevelExpression() { | 
|  | 980 | // Evaluate a top level expression into an anonymous function. | 
|  | 981 | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | 982 | if (Function *LF = F->Codegen()) { | 
|  | 983 | // JIT the function, returning a function pointer. | 
|  | 984 | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  | 985 |  | 
|  | 986 | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | 987 | // can call it as a native function. | 
|  | 988 | double (*FP)() = (double (*)())FPtr; | 
|  | 989 | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | 990 | } | 
|  | 991 | } else { | 
|  | 992 | // Skip token for error recovery. | 
|  | 993 | getNextToken(); | 
|  | 994 | } | 
|  | 995 | } | 
|  | 996 |  | 
|  | 997 | /// top ::= definition | external | expression | ';' | 
|  | 998 | static void MainLoop() { | 
|  | 999 | while (1) { | 
|  | 1000 | fprintf(stderr, "ready> "); | 
|  | 1001 | switch (CurTok) { | 
|  | 1002 | case tok_eof:    return; | 
|  | 1003 | case ';':        getNextToken(); break;  // ignore top level semicolons. | 
|  | 1004 | case tok_def:    HandleDefinition(); break; | 
|  | 1005 | case tok_extern: HandleExtern(); break; | 
|  | 1006 | default:         HandleTopLevelExpression(); break; | 
|  | 1007 | } | 
|  | 1008 | } | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 |  | 
|  | 1012 |  | 
|  | 1013 | //===----------------------------------------------------------------------===// | 
|  | 1014 | // "Library" functions that can be "extern'd" from user code. | 
|  | 1015 | //===----------------------------------------------------------------------===// | 
|  | 1016 |  | 
|  | 1017 | /// putchard - putchar that takes a double and returns 0. | 
|  | 1018 | extern "C" | 
|  | 1019 | double putchard(double X) { | 
|  | 1020 | putchar((char)X); | 
|  | 1021 | return 0; | 
|  | 1022 | } | 
|  | 1023 |  | 
|  | 1024 | //===----------------------------------------------------------------------===// | 
|  | 1025 | // Main driver code. | 
|  | 1026 | //===----------------------------------------------------------------------===// | 
|  | 1027 |  | 
|  | 1028 | int main() { | 
|  | 1029 | // Install standard binary operators. | 
|  | 1030 | // 1 is lowest precedence. | 
|  | 1031 | BinopPrecedence['<'] = 10; | 
|  | 1032 | BinopPrecedence['+'] = 20; | 
|  | 1033 | BinopPrecedence['-'] = 20; | 
|  | 1034 | BinopPrecedence['*'] = 40;  // highest. | 
|  | 1035 |  | 
|  | 1036 | // Prime the first token. | 
|  | 1037 | fprintf(stderr, "ready> "); | 
|  | 1038 | getNextToken(); | 
|  | 1039 |  | 
|  | 1040 | // Make the module, which holds all the code. | 
|  | 1041 | TheModule = new Module("my cool jit"); | 
|  | 1042 |  | 
|  | 1043 | // Create the JIT. | 
|  | 1044 | TheExecutionEngine = ExecutionEngine::create(TheModule); | 
|  | 1045 |  | 
|  | 1046 | { | 
|  | 1047 | ExistingModuleProvider OurModuleProvider(TheModule); | 
|  | 1048 | FunctionPassManager OurFPM(&OurModuleProvider); | 
|  | 1049 |  | 
|  | 1050 | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | 1051 | // target lays out data structures. | 
|  | 1052 | OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
|  | 1053 | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | 1054 | OurFPM.add(createInstructionCombiningPass()); | 
|  | 1055 | // Reassociate expressions. | 
|  | 1056 | OurFPM.add(createReassociatePass()); | 
|  | 1057 | // Eliminate Common SubExpressions. | 
|  | 1058 | OurFPM.add(createGVNPass()); | 
|  | 1059 | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | 1060 | OurFPM.add(createCFGSimplificationPass()); | 
|  | 1061 |  | 
|  | 1062 | // Set the global so the code gen can use this. | 
|  | 1063 | TheFPM = &OurFPM; | 
|  | 1064 |  | 
|  | 1065 | // Run the main "interpreter loop" now. | 
|  | 1066 | MainLoop(); | 
|  | 1067 |  | 
|  | 1068 | TheFPM = 0; | 
|  | 1069 | }  // Free module provider and pass manager. | 
|  | 1070 |  | 
|  | 1071 |  | 
|  | 1072 | // Print out all of the generated code. | 
|  | 1073 | TheModule->dump(); | 
|  | 1074 | return 0; | 
|  | 1075 | } | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1076 | </pre> | 
|  | 1077 | </div> | 
|  | 1078 |  | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1079 | </div> | 
|  | 1080 |  | 
|  | 1081 | <!-- *********************************************************************** --> | 
|  | 1082 | <hr> | 
|  | 1083 | <address> | 
|  | 1084 | <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
|  | 1085 | src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
|  | 1086 | <a href="http://validator.w3.org/check/referer"><img | 
| Chris Lattner | 8eef4b2 | 2007-10-23 06:30:50 +0000 | [diff] [blame] | 1087 | src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
| Chris Lattner | c0b42e9 | 2007-10-23 06:27:55 +0000 | [diff] [blame] | 1088 |  | 
|  | 1089 | <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
|  | 1090 | <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
|  | 1091 | Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
|  | 1092 | </address> | 
|  | 1093 | </body> | 
|  | 1094 | </html> |