blob: 030d61a651b0f61984aca655ad3edc9cc016417b [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000022#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000024#include "llvm/Analysis/Dominators.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000025#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000026#include "llvm/Support/ValueHandle.h"
Duncan Sandse60d79f2010-11-21 13:53:09 +000027#include "llvm/Target/TargetData.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000028using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000029using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000030
Duncan Sands124708d2011-01-01 20:08:02 +000031#define RecursionLimit 3
Duncan Sandsa74a58c2010-11-10 18:23:01 +000032
Duncan Sandsa3c44a52010-12-22 09:40:51 +000033STATISTIC(NumExpand, "Number of expansions");
34STATISTIC(NumFactor , "Number of factorizations");
35STATISTIC(NumReassoc, "Number of reassociations");
36
Duncan Sands82fdab32010-12-21 14:00:22 +000037static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
38 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000040 const DominatorTree *, unsigned);
Duncan Sandsa74a58c2010-11-10 18:23:01 +000041static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
Duncan Sands18450092010-11-16 12:16:38 +000042 const DominatorTree *, unsigned);
Duncan Sands82fdab32010-12-21 14:00:22 +000043static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
44 const DominatorTree *, unsigned);
45static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
46 const DominatorTree *, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000047
48/// ValueDominatesPHI - Does the given value dominate the specified phi node?
49static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
50 Instruction *I = dyn_cast<Instruction>(V);
51 if (!I)
52 // Arguments and constants dominate all instructions.
53 return true;
54
55 // If we have a DominatorTree then do a precise test.
56 if (DT)
57 return DT->dominates(I, P);
58
59 // Otherwise, if the instruction is in the entry block, and is not an invoke,
60 // then it obviously dominates all phi nodes.
61 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
62 !isa<InvokeInst>(I))
63 return true;
64
65 return false;
66}
Duncan Sandsa74a58c2010-11-10 18:23:01 +000067
Duncan Sands3421d902010-12-21 13:32:22 +000068/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
69/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
70/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
71/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
72/// Returns the simplified value, or null if no simplification was performed.
73static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +000074 unsigned OpcToExpand, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +000075 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +000076 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000077 // Recursion is always used, so bail out at once if we already hit the limit.
78 if (!MaxRecurse--)
79 return 0;
80
81 // Check whether the expression has the form "(A op' B) op C".
82 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
83 if (Op0->getOpcode() == OpcodeToExpand) {
84 // It does! Try turning it into "(A op C) op' (B op C)".
85 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
86 // Do "A op C" and "B op C" both simplify?
87 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
88 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
89 // They do! Return "L op' R" if it simplifies or is already available.
90 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +000091 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
92 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +000093 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +000094 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +000095 }
Duncan Sands3421d902010-12-21 13:32:22 +000096 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +000097 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
98 MaxRecurse)) {
99 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000100 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000101 }
Duncan Sands3421d902010-12-21 13:32:22 +0000102 }
103 }
104
105 // Check whether the expression has the form "A op (B op' C)".
106 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
107 if (Op1->getOpcode() == OpcodeToExpand) {
108 // It does! Try turning it into "(A op B) op' (A op C)".
109 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
110 // Do "A op B" and "A op C" both simplify?
111 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
112 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
113 // They do! Return "L op' R" if it simplifies or is already available.
114 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000115 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
116 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000117 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000118 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000119 }
Duncan Sands3421d902010-12-21 13:32:22 +0000120 // Otherwise return "L op' R" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000121 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
122 MaxRecurse)) {
123 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000124 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000125 }
Duncan Sands3421d902010-12-21 13:32:22 +0000126 }
127 }
128
129 return 0;
130}
131
132/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
133/// using the operation OpCodeToExtract. For example, when Opcode is Add and
134/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
135/// Returns the simplified value, or null if no simplification was performed.
136static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Benjamin Kramere21083a2010-12-28 13:52:52 +0000137 unsigned OpcToExtract, const TargetData *TD,
Duncan Sands3421d902010-12-21 13:32:22 +0000138 const DominatorTree *DT, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000139 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000140 // Recursion is always used, so bail out at once if we already hit the limit.
141 if (!MaxRecurse--)
142 return 0;
143
144 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
145 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
146
147 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
148 !Op1 || Op1->getOpcode() != OpcodeToExtract)
149 return 0;
150
151 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000152 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
153 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000154
155 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
156 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
157 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000158 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
159 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000160 // Form "A op' (B op DD)" if it simplifies completely.
161 // Does "B op DD" simplify?
162 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
163 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000164 // If V equals B then "A op' V" is just the LHS. If V equals DD then
165 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000166 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000167 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000168 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000169 }
Duncan Sands3421d902010-12-21 13:32:22 +0000170 // Otherwise return "A op' V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
172 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000173 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000174 }
Duncan Sands3421d902010-12-21 13:32:22 +0000175 }
176 }
177
178 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
179 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
180 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000181 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
182 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000183 // Form "(A op CC) op' B" if it simplifies completely..
184 // Does "A op CC" simplify?
185 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
186 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000187 // If V equals A then "V op' B" is just the LHS. If V equals CC then
188 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000189 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000190 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000191 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000192 }
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Otherwise return "V op' B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000194 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
195 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000196 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000197 }
Duncan Sands3421d902010-12-21 13:32:22 +0000198 }
199 }
200
201 return 0;
202}
203
204/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
205/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000206static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands566edb02010-12-21 08:49:00 +0000207 const TargetData *TD,
208 const DominatorTree *DT,
209 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000210 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000211 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
212
213 // Recursion is always used, so bail out at once if we already hit the limit.
214 if (!MaxRecurse--)
215 return 0;
216
217 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
218 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
219
220 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
221 if (Op0 && Op0->getOpcode() == Opcode) {
222 Value *A = Op0->getOperand(0);
223 Value *B = Op0->getOperand(1);
224 Value *C = RHS;
225
226 // Does "B op C" simplify?
227 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
228 // It does! Return "A op V" if it simplifies or is already available.
229 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000230 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000231 // Otherwise return "A op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000232 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
233 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000234 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000235 }
Duncan Sands566edb02010-12-21 08:49:00 +0000236 }
237 }
238
239 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
240 if (Op1 && Op1->getOpcode() == Opcode) {
241 Value *A = LHS;
242 Value *B = Op1->getOperand(0);
243 Value *C = Op1->getOperand(1);
244
245 // Does "A op B" simplify?
246 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
247 // It does! Return "V op C" if it simplifies or is already available.
248 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000249 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000250 // Otherwise return "V op C" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000251 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
252 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000253 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000254 }
Duncan Sands566edb02010-12-21 08:49:00 +0000255 }
256 }
257
258 // The remaining transforms require commutativity as well as associativity.
259 if (!Instruction::isCommutative(Opcode))
260 return 0;
261
262 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
263 if (Op0 && Op0->getOpcode() == Opcode) {
264 Value *A = Op0->getOperand(0);
265 Value *B = Op0->getOperand(1);
266 Value *C = RHS;
267
268 // Does "C op A" simplify?
269 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
270 // It does! Return "V op B" if it simplifies or is already available.
271 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000272 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000273 // Otherwise return "V op B" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000274 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
275 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000276 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000277 }
Duncan Sands566edb02010-12-21 08:49:00 +0000278 }
279 }
280
281 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
282 if (Op1 && Op1->getOpcode() == Opcode) {
283 Value *A = LHS;
284 Value *B = Op1->getOperand(0);
285 Value *C = Op1->getOperand(1);
286
287 // Does "C op A" simplify?
288 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
289 // It does! Return "B op V" if it simplifies or is already available.
290 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000291 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000292 // Otherwise return "B op V" if it simplifies.
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000293 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
294 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000295 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000296 }
Duncan Sands566edb02010-12-21 08:49:00 +0000297 }
298 }
299
300 return 0;
301}
302
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000303/// ThreadBinOpOverSelect - In the case of a binary operation with a select
304/// instruction as an operand, try to simplify the binop by seeing whether
305/// evaluating it on both branches of the select results in the same value.
306/// Returns the common value if so, otherwise returns null.
307static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000308 const TargetData *TD,
309 const DominatorTree *DT,
310 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000311 // Recursion is always used, so bail out at once if we already hit the limit.
312 if (!MaxRecurse--)
313 return 0;
314
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000315 SelectInst *SI;
316 if (isa<SelectInst>(LHS)) {
317 SI = cast<SelectInst>(LHS);
318 } else {
319 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
320 SI = cast<SelectInst>(RHS);
321 }
322
323 // Evaluate the BinOp on the true and false branches of the select.
324 Value *TV;
325 Value *FV;
326 if (SI == LHS) {
Duncan Sands18450092010-11-16 12:16:38 +0000327 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
328 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000329 } else {
Duncan Sands18450092010-11-16 12:16:38 +0000330 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
331 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000332 }
333
Duncan Sands7cf85e72011-01-01 16:12:09 +0000334 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000335 // If they both failed to simplify then return null.
336 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000337 return TV;
338
339 // If one branch simplified to undef, return the other one.
340 if (TV && isa<UndefValue>(TV))
341 return FV;
342 if (FV && isa<UndefValue>(FV))
343 return TV;
344
345 // If applying the operation did not change the true and false select values,
346 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000347 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000348 return SI;
349
350 // If one branch simplified and the other did not, and the simplified
351 // value is equal to the unsimplified one, return the simplified value.
352 // For example, select (cond, X, X & Z) & Z -> X & Z.
353 if ((FV && !TV) || (TV && !FV)) {
354 // Check that the simplified value has the form "X op Y" where "op" is the
355 // same as the original operation.
356 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
357 if (Simplified && Simplified->getOpcode() == Opcode) {
358 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
359 // We already know that "op" is the same as for the simplified value. See
360 // if the operands match too. If so, return the simplified value.
361 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
362 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
363 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000364 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
365 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000366 return Simplified;
367 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000368 Simplified->getOperand(1) == UnsimplifiedLHS &&
369 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000370 return Simplified;
371 }
372 }
373
374 return 0;
375}
376
377/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
378/// try to simplify the comparison by seeing whether both branches of the select
379/// result in the same value. Returns the common value if so, otherwise returns
380/// null.
381static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000382 Value *RHS, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000383 const DominatorTree *DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000384 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000385 // Recursion is always used, so bail out at once if we already hit the limit.
386 if (!MaxRecurse--)
387 return 0;
388
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000389 // Make sure the select is on the LHS.
390 if (!isa<SelectInst>(LHS)) {
391 std::swap(LHS, RHS);
392 Pred = CmpInst::getSwappedPredicate(Pred);
393 }
394 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
395 SelectInst *SI = cast<SelectInst>(LHS);
396
397 // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
398 // Does "cmp TV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000399 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000400 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000401 // It does! Does "cmp FV, RHS" simplify?
Duncan Sands18450092010-11-16 12:16:38 +0000402 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000403 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000404 // It does! If they simplified to the same value, then use it as the
405 // result of the original comparison.
Duncan Sands124708d2011-01-01 20:08:02 +0000406 if (TCmp == FCmp)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000407 return TCmp;
408 return 0;
409}
410
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000411/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
412/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
413/// it on the incoming phi values yields the same result for every value. If so
414/// returns the common value, otherwise returns null.
415static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000416 const TargetData *TD, const DominatorTree *DT,
417 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000418 // Recursion is always used, so bail out at once if we already hit the limit.
419 if (!MaxRecurse--)
420 return 0;
421
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000422 PHINode *PI;
423 if (isa<PHINode>(LHS)) {
424 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000425 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
426 if (!ValueDominatesPHI(RHS, PI, DT))
427 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000428 } else {
429 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
430 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000431 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
432 if (!ValueDominatesPHI(LHS, PI, DT))
433 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000434 }
435
436 // Evaluate the BinOp on the incoming phi values.
437 Value *CommonValue = 0;
438 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000439 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000440 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000441 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000442 Value *V = PI == LHS ?
Duncan Sands18450092010-11-16 12:16:38 +0000443 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
444 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000445 // If the operation failed to simplify, or simplified to a different value
446 // to previously, then give up.
447 if (!V || (CommonValue && V != CommonValue))
448 return 0;
449 CommonValue = V;
450 }
451
452 return CommonValue;
453}
454
455/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
456/// try to simplify the comparison by seeing whether comparing with all of the
457/// incoming phi values yields the same result every time. If so returns the
458/// common result, otherwise returns null.
459static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000460 const TargetData *TD, const DominatorTree *DT,
461 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000462 // Recursion is always used, so bail out at once if we already hit the limit.
463 if (!MaxRecurse--)
464 return 0;
465
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000466 // Make sure the phi is on the LHS.
467 if (!isa<PHINode>(LHS)) {
468 std::swap(LHS, RHS);
469 Pred = CmpInst::getSwappedPredicate(Pred);
470 }
471 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
472 PHINode *PI = cast<PHINode>(LHS);
473
Duncan Sands18450092010-11-16 12:16:38 +0000474 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
475 if (!ValueDominatesPHI(RHS, PI, DT))
476 return 0;
477
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000478 // Evaluate the BinOp on the incoming phi values.
479 Value *CommonValue = 0;
480 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000481 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000482 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000483 if (Incoming == PI) continue;
Duncan Sands18450092010-11-16 12:16:38 +0000484 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000485 // If the operation failed to simplify, or simplified to a different value
486 // to previously, then give up.
487 if (!V || (CommonValue && V != CommonValue))
488 return 0;
489 CommonValue = V;
490 }
491
492 return CommonValue;
493}
494
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000495/// SimplifyAddInst - Given operands for an Add, see if we can
496/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000497static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
498 const TargetData *TD, const DominatorTree *DT,
499 unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000500 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
501 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
502 Constant *Ops[] = { CLHS, CRHS };
503 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
504 Ops, 2, TD);
505 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000506
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000507 // Canonicalize the constant to the RHS.
508 std::swap(Op0, Op1);
509 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000510
Duncan Sandsfea3b212010-12-15 14:07:39 +0000511 // X + undef -> undef
512 if (isa<UndefValue>(Op1))
513 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000514
Duncan Sandsfea3b212010-12-15 14:07:39 +0000515 // X + 0 -> X
516 if (match(Op1, m_Zero()))
517 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000518
Duncan Sandsfea3b212010-12-15 14:07:39 +0000519 // X + (Y - X) -> Y
520 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000521 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000522 Value *Y = 0;
523 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
524 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000525 return Y;
526
527 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000528 if (match(Op0, m_Not(m_Specific(Op1))) ||
529 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000530 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000531
Duncan Sands82fdab32010-12-21 14:00:22 +0000532 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000533 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000534 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
535 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000536
Duncan Sands566edb02010-12-21 08:49:00 +0000537 // Try some generic simplifications for associative operations.
538 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
539 MaxRecurse))
540 return V;
541
Duncan Sands3421d902010-12-21 13:32:22 +0000542 // Mul distributes over Add. Try some generic simplifications based on this.
543 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
544 TD, DT, MaxRecurse))
545 return V;
546
Duncan Sands87689cf2010-11-19 09:20:39 +0000547 // Threading Add over selects and phi nodes is pointless, so don't bother.
548 // Threading over the select in "A + select(cond, B, C)" means evaluating
549 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
550 // only if B and C are equal. If B and C are equal then (since we assume
551 // that operands have already been simplified) "select(cond, B, C)" should
552 // have been simplified to the common value of B and C already. Analysing
553 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
554 // for threading over phi nodes.
555
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000556 return 0;
557}
558
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000559Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
560 const TargetData *TD, const DominatorTree *DT) {
561 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
562}
563
Duncan Sandsfea3b212010-12-15 14:07:39 +0000564/// SimplifySubInst - Given operands for a Sub, see if we can
565/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000566static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands3421d902010-12-21 13:32:22 +0000567 const TargetData *TD, const DominatorTree *DT,
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000568 unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000569 if (Constant *CLHS = dyn_cast<Constant>(Op0))
570 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
571 Constant *Ops[] = { CLHS, CRHS };
572 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
573 Ops, 2, TD);
574 }
575
576 // X - undef -> undef
577 // undef - X -> undef
578 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
579 return UndefValue::get(Op0->getType());
580
581 // X - 0 -> X
582 if (match(Op1, m_Zero()))
583 return Op0;
584
585 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000586 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000587 return Constant::getNullValue(Op0->getType());
588
589 // (X + Y) - Y -> X
590 // (Y + X) - Y -> X
Duncan Sands124708d2011-01-01 20:08:02 +0000591 Value *X = 0;
592 if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) ||
593 match(Op0, m_Add(m_Specific(Op1), m_Value(X))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000594 return X;
595
Duncan Sands82fdab32010-12-21 14:00:22 +0000596 /// i1 sub -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000597 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000598 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
599 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000600
Duncan Sands3421d902010-12-21 13:32:22 +0000601 // Mul distributes over Sub. Try some generic simplifications based on this.
602 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
603 TD, DT, MaxRecurse))
604 return V;
605
Duncan Sandsfea3b212010-12-15 14:07:39 +0000606 // Threading Sub over selects and phi nodes is pointless, so don't bother.
607 // Threading over the select in "A - select(cond, B, C)" means evaluating
608 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
609 // only if B and C are equal. If B and C are equal then (since we assume
610 // that operands have already been simplified) "select(cond, B, C)" should
611 // have been simplified to the common value of B and C already. Analysing
612 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
613 // for threading over phi nodes.
614
615 return 0;
616}
617
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000618Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
619 const TargetData *TD, const DominatorTree *DT) {
620 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
621}
622
Duncan Sands82fdab32010-12-21 14:00:22 +0000623/// SimplifyMulInst - Given operands for a Mul, see if we can
624/// fold the result. If not, this returns null.
625static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
626 const DominatorTree *DT, unsigned MaxRecurse) {
627 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
628 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
629 Constant *Ops[] = { CLHS, CRHS };
630 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
631 Ops, 2, TD);
632 }
633
634 // Canonicalize the constant to the RHS.
635 std::swap(Op0, Op1);
636 }
637
638 // X * undef -> 0
639 if (isa<UndefValue>(Op1))
640 return Constant::getNullValue(Op0->getType());
641
642 // X * 0 -> 0
643 if (match(Op1, m_Zero()))
644 return Op1;
645
646 // X * 1 -> X
647 if (match(Op1, m_One()))
648 return Op0;
649
650 /// i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000651 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000652 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
653 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000654
655 // Try some generic simplifications for associative operations.
656 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
657 MaxRecurse))
658 return V;
659
660 // Mul distributes over Add. Try some generic simplifications based on this.
661 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
662 TD, DT, MaxRecurse))
663 return V;
664
665 // If the operation is with the result of a select instruction, check whether
666 // operating on either branch of the select always yields the same value.
667 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
668 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
669 MaxRecurse))
670 return V;
671
672 // If the operation is with the result of a phi instruction, check whether
673 // operating on all incoming values of the phi always yields the same value.
674 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
675 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
676 MaxRecurse))
677 return V;
678
679 return 0;
680}
681
682Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
683 const DominatorTree *DT) {
684 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
685}
686
Chris Lattnerd06094f2009-11-10 00:55:12 +0000687/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000688/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000689static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000690 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000691 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
692 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
693 Constant *Ops[] = { CLHS, CRHS };
694 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
695 Ops, 2, TD);
696 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000697
Chris Lattnerd06094f2009-11-10 00:55:12 +0000698 // Canonicalize the constant to the RHS.
699 std::swap(Op0, Op1);
700 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000701
Chris Lattnerd06094f2009-11-10 00:55:12 +0000702 // X & undef -> 0
703 if (isa<UndefValue>(Op1))
704 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000705
Chris Lattnerd06094f2009-11-10 00:55:12 +0000706 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +0000707 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +0000708 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000709
Duncan Sands2b749872010-11-17 18:52:15 +0000710 // X & 0 = 0
711 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000712 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000713
Duncan Sands2b749872010-11-17 18:52:15 +0000714 // X & -1 = X
715 if (match(Op1, m_AllOnes()))
716 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000717
Chris Lattnerd06094f2009-11-10 00:55:12 +0000718 // A & ~A = ~A & A = 0
Chandler Carruthe89ada92010-11-29 01:41:13 +0000719 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +0000720 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
721 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000722 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000723
Chris Lattnerd06094f2009-11-10 00:55:12 +0000724 // (A | ?) & A = A
725 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000726 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000727 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000728
Chris Lattnerd06094f2009-11-10 00:55:12 +0000729 // A & (A | ?) = A
730 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000731 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000732 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000733
Duncan Sands566edb02010-12-21 08:49:00 +0000734 // Try some generic simplifications for associative operations.
735 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
736 MaxRecurse))
737 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000738
Duncan Sands3421d902010-12-21 13:32:22 +0000739 // And distributes over Or. Try some generic simplifications based on this.
740 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
741 TD, DT, MaxRecurse))
742 return V;
743
744 // And distributes over Xor. Try some generic simplifications based on this.
745 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
746 TD, DT, MaxRecurse))
747 return V;
748
749 // Or distributes over And. Try some generic simplifications based on this.
750 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
751 TD, DT, MaxRecurse))
752 return V;
753
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000754 // If the operation is with the result of a select instruction, check whether
755 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000756 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000757 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000758 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000759 return V;
760
761 // If the operation is with the result of a phi instruction, check whether
762 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000763 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000764 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000765 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000766 return V;
767
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000768 return 0;
769}
770
Duncan Sands18450092010-11-16 12:16:38 +0000771Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
772 const DominatorTree *DT) {
773 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000774}
775
Chris Lattnerd06094f2009-11-10 00:55:12 +0000776/// SimplifyOrInst - Given operands for an Or, see if we can
777/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000778static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
Duncan Sands18450092010-11-16 12:16:38 +0000779 const DominatorTree *DT, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +0000780 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
781 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
782 Constant *Ops[] = { CLHS, CRHS };
783 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
784 Ops, 2, TD);
785 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000786
Chris Lattnerd06094f2009-11-10 00:55:12 +0000787 // Canonicalize the constant to the RHS.
788 std::swap(Op0, Op1);
789 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000790
Chris Lattnerd06094f2009-11-10 00:55:12 +0000791 // X | undef -> -1
792 if (isa<UndefValue>(Op1))
793 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000794
Chris Lattnerd06094f2009-11-10 00:55:12 +0000795 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +0000796 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +0000797 return Op0;
798
Duncan Sands2b749872010-11-17 18:52:15 +0000799 // X | 0 = X
800 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000801 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000802
Duncan Sands2b749872010-11-17 18:52:15 +0000803 // X | -1 = -1
804 if (match(Op1, m_AllOnes()))
805 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000806
Chris Lattnerd06094f2009-11-10 00:55:12 +0000807 // A | ~A = ~A | A = -1
Chandler Carruthe89ada92010-11-29 01:41:13 +0000808 Value *A = 0, *B = 0;
Duncan Sands124708d2011-01-01 20:08:02 +0000809 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
810 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000811 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +0000812
Chris Lattnerd06094f2009-11-10 00:55:12 +0000813 // (A & ?) | A = A
814 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000815 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000816 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000817
Chris Lattnerd06094f2009-11-10 00:55:12 +0000818 // A | (A & ?) = A
819 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +0000820 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +0000821 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000822
Duncan Sands566edb02010-12-21 08:49:00 +0000823 // Try some generic simplifications for associative operations.
824 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
825 MaxRecurse))
826 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +0000827
Duncan Sands3421d902010-12-21 13:32:22 +0000828 // Or distributes over And. Try some generic simplifications based on this.
829 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
830 TD, DT, MaxRecurse))
831 return V;
832
833 // And distributes over Or. Try some generic simplifications based on this.
834 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
835 TD, DT, MaxRecurse))
836 return V;
837
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000838 // If the operation is with the result of a select instruction, check whether
839 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000840 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000841 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000842 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000843 return V;
844
845 // If the operation is with the result of a phi instruction, check whether
846 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000847 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands18450092010-11-16 12:16:38 +0000848 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +0000849 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000850 return V;
851
Chris Lattnerd06094f2009-11-10 00:55:12 +0000852 return 0;
853}
854
Duncan Sands18450092010-11-16 12:16:38 +0000855Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
856 const DominatorTree *DT) {
857 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000858}
Chris Lattnerd06094f2009-11-10 00:55:12 +0000859
Duncan Sands2b749872010-11-17 18:52:15 +0000860/// SimplifyXorInst - Given operands for a Xor, see if we can
861/// fold the result. If not, this returns null.
862static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
863 const DominatorTree *DT, unsigned MaxRecurse) {
864 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
865 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
866 Constant *Ops[] = { CLHS, CRHS };
867 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
868 Ops, 2, TD);
869 }
870
871 // Canonicalize the constant to the RHS.
872 std::swap(Op0, Op1);
873 }
874
875 // A ^ undef -> undef
876 if (isa<UndefValue>(Op1))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +0000877 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +0000878
879 // A ^ 0 = A
880 if (match(Op1, m_Zero()))
881 return Op0;
882
883 // A ^ A = 0
Duncan Sands124708d2011-01-01 20:08:02 +0000884 if (Op0 == Op1)
Duncan Sands2b749872010-11-17 18:52:15 +0000885 return Constant::getNullValue(Op0->getType());
886
887 // A ^ ~A = ~A ^ A = -1
Duncan Sands566edb02010-12-21 08:49:00 +0000888 Value *A = 0;
Duncan Sands124708d2011-01-01 20:08:02 +0000889 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
890 (match(Op1, m_Not(m_Value(A))) && A == Op0))
Duncan Sands2b749872010-11-17 18:52:15 +0000891 return Constant::getAllOnesValue(Op0->getType());
892
Duncan Sands566edb02010-12-21 08:49:00 +0000893 // Try some generic simplifications for associative operations.
894 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
895 MaxRecurse))
896 return V;
Duncan Sands2b749872010-11-17 18:52:15 +0000897
Duncan Sands3421d902010-12-21 13:32:22 +0000898 // And distributes over Xor. Try some generic simplifications based on this.
899 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
900 TD, DT, MaxRecurse))
901 return V;
902
Duncan Sands87689cf2010-11-19 09:20:39 +0000903 // Threading Xor over selects and phi nodes is pointless, so don't bother.
904 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
905 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
906 // only if B and C are equal. If B and C are equal then (since we assume
907 // that operands have already been simplified) "select(cond, B, C)" should
908 // have been simplified to the common value of B and C already. Analysing
909 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
910 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +0000911
912 return 0;
913}
914
915Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
916 const DominatorTree *DT) {
917 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
918}
919
Chris Lattner210c5d42009-11-09 23:55:12 +0000920static const Type *GetCompareTy(Value *Op) {
921 return CmpInst::makeCmpResultType(Op->getType());
922}
923
Chris Lattner9dbb4292009-11-09 23:28:39 +0000924/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
925/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000926static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +0000927 const TargetData *TD, const DominatorTree *DT,
928 unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000929 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +0000930 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +0000931
Chris Lattnerd06094f2009-11-10 00:55:12 +0000932 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +0000933 if (Constant *CRHS = dyn_cast<Constant>(RHS))
934 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Chris Lattnerd06094f2009-11-10 00:55:12 +0000935
936 // If we have a constant, make sure it is on the RHS.
937 std::swap(LHS, RHS);
938 Pred = CmpInst::getSwappedPredicate(Pred);
939 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000940
Chris Lattner210c5d42009-11-09 23:55:12 +0000941 // ITy - This is the return type of the compare we're considering.
942 const Type *ITy = GetCompareTy(LHS);
Duncan Sands12a86f52010-11-14 11:23:23 +0000943
Chris Lattner210c5d42009-11-09 23:55:12 +0000944 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +0000945 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
946 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +0000947 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +0000948 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +0000949
Chris Lattner210c5d42009-11-09 23:55:12 +0000950 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
951 // addresses never equal each other! We already know that Op0 != Op1.
Duncan Sands12a86f52010-11-14 11:23:23 +0000952 if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
Chris Lattner210c5d42009-11-09 23:55:12 +0000953 isa<ConstantPointerNull>(LHS)) &&
Duncan Sands12a86f52010-11-14 11:23:23 +0000954 (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
Chris Lattner210c5d42009-11-09 23:55:12 +0000955 isa<ConstantPointerNull>(RHS)))
956 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +0000957
Chris Lattner210c5d42009-11-09 23:55:12 +0000958 // See if we are doing a comparison with a constant.
959 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
960 // If we have an icmp le or icmp ge instruction, turn it into the
961 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
962 // them being folded in the code below.
963 switch (Pred) {
964 default: break;
965 case ICmpInst::ICMP_ULE:
966 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
967 return ConstantInt::getTrue(CI->getContext());
968 break;
969 case ICmpInst::ICMP_SLE:
970 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
971 return ConstantInt::getTrue(CI->getContext());
972 break;
973 case ICmpInst::ICMP_UGE:
974 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
975 return ConstantInt::getTrue(CI->getContext());
976 break;
977 case ICmpInst::ICMP_SGE:
978 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
979 return ConstantInt::getTrue(CI->getContext());
980 break;
981 }
Chris Lattner210c5d42009-11-09 23:55:12 +0000982 }
Duncan Sands1ac7c992010-11-07 16:12:23 +0000983
984 // If the comparison is with the result of a select instruction, check whether
985 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +0000986 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
987 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000988 return V;
989
990 // If the comparison is with the result of a phi instruction, check whether
991 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +0000992 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
993 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +0000994 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +0000995
Chris Lattner9f3c25a2009-11-09 22:57:59 +0000996 return 0;
997}
998
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000999Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001000 const TargetData *TD, const DominatorTree *DT) {
1001 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001002}
1003
Chris Lattner9dbb4292009-11-09 23:28:39 +00001004/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1005/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001006static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001007 const TargetData *TD, const DominatorTree *DT,
1008 unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001009 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1010 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1011
Chris Lattnerd06094f2009-11-10 00:55:12 +00001012 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00001013 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1014 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
Duncan Sands12a86f52010-11-14 11:23:23 +00001015
Chris Lattnerd06094f2009-11-10 00:55:12 +00001016 // If we have a constant, make sure it is on the RHS.
1017 std::swap(LHS, RHS);
1018 Pred = CmpInst::getSwappedPredicate(Pred);
1019 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001020
Chris Lattner210c5d42009-11-09 23:55:12 +00001021 // Fold trivial predicates.
1022 if (Pred == FCmpInst::FCMP_FALSE)
1023 return ConstantInt::get(GetCompareTy(LHS), 0);
1024 if (Pred == FCmpInst::FCMP_TRUE)
1025 return ConstantInt::get(GetCompareTy(LHS), 1);
1026
Chris Lattner210c5d42009-11-09 23:55:12 +00001027 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
1028 return UndefValue::get(GetCompareTy(LHS));
1029
1030 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00001031 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001032 if (CmpInst::isTrueWhenEqual(Pred))
1033 return ConstantInt::get(GetCompareTy(LHS), 1);
1034 if (CmpInst::isFalseWhenEqual(Pred))
1035 return ConstantInt::get(GetCompareTy(LHS), 0);
1036 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001037
Chris Lattner210c5d42009-11-09 23:55:12 +00001038 // Handle fcmp with constant RHS
1039 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1040 // If the constant is a nan, see if we can fold the comparison based on it.
1041 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1042 if (CFP->getValueAPF().isNaN()) {
1043 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
1044 return ConstantInt::getFalse(CFP->getContext());
1045 assert(FCmpInst::isUnordered(Pred) &&
1046 "Comparison must be either ordered or unordered!");
1047 // True if unordered.
1048 return ConstantInt::getTrue(CFP->getContext());
1049 }
Dan Gohman6b617a72010-02-22 04:06:03 +00001050 // Check whether the constant is an infinity.
1051 if (CFP->getValueAPF().isInfinity()) {
1052 if (CFP->getValueAPF().isNegative()) {
1053 switch (Pred) {
1054 case FCmpInst::FCMP_OLT:
1055 // No value is ordered and less than negative infinity.
1056 return ConstantInt::getFalse(CFP->getContext());
1057 case FCmpInst::FCMP_UGE:
1058 // All values are unordered with or at least negative infinity.
1059 return ConstantInt::getTrue(CFP->getContext());
1060 default:
1061 break;
1062 }
1063 } else {
1064 switch (Pred) {
1065 case FCmpInst::FCMP_OGT:
1066 // No value is ordered and greater than infinity.
1067 return ConstantInt::getFalse(CFP->getContext());
1068 case FCmpInst::FCMP_ULE:
1069 // All values are unordered with and at most infinity.
1070 return ConstantInt::getTrue(CFP->getContext());
1071 default:
1072 break;
1073 }
1074 }
1075 }
Chris Lattner210c5d42009-11-09 23:55:12 +00001076 }
1077 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001078
Duncan Sands92826de2010-11-07 16:46:25 +00001079 // If the comparison is with the result of a select instruction, check whether
1080 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001081 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1082 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001083 return V;
1084
1085 // If the comparison is with the result of a phi instruction, check whether
1086 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00001087 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1088 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00001089 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00001090
Chris Lattner9dbb4292009-11-09 23:28:39 +00001091 return 0;
1092}
1093
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001094Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001095 const TargetData *TD, const DominatorTree *DT) {
1096 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001097}
1098
Chris Lattner04754262010-04-20 05:32:14 +00001099/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1100/// the result. If not, this returns null.
Duncan Sands124708d2011-01-01 20:08:02 +00001101Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1102 const TargetData *TD, const DominatorTree *) {
Chris Lattner04754262010-04-20 05:32:14 +00001103 // select true, X, Y -> X
1104 // select false, X, Y -> Y
1105 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1106 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001107
Chris Lattner04754262010-04-20 05:32:14 +00001108 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00001109 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00001110 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00001111
Chris Lattner04754262010-04-20 05:32:14 +00001112 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
1113 return FalseVal;
1114 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
1115 return TrueVal;
1116 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
1117 if (isa<Constant>(TrueVal))
1118 return TrueVal;
1119 return FalseVal;
1120 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001121
Chris Lattner04754262010-04-20 05:32:14 +00001122 return 0;
1123}
1124
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001125/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1126/// fold the result. If not, this returns null.
1127Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
Duncan Sands18450092010-11-16 12:16:38 +00001128 const TargetData *TD, const DominatorTree *) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001129 // The type of the GEP pointer operand.
1130 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1131
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001132 // getelementptr P -> P.
1133 if (NumOps == 1)
1134 return Ops[0];
1135
Duncan Sands85bbff62010-11-22 13:42:49 +00001136 if (isa<UndefValue>(Ops[0])) {
1137 // Compute the (pointer) type returned by the GEP instruction.
1138 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1139 NumOps-1);
1140 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1141 return UndefValue::get(GEPTy);
1142 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001143
Duncan Sandse60d79f2010-11-21 13:53:09 +00001144 if (NumOps == 2) {
1145 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001146 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1147 if (C->isZero())
1148 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00001149 // getelementptr P, N -> P if P points to a type of zero size.
1150 if (TD) {
Duncan Sands85bbff62010-11-22 13:42:49 +00001151 const Type *Ty = PtrTy->getElementType();
Duncan Sandsa63395a2010-11-22 16:32:50 +00001152 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00001153 return Ops[0];
1154 }
1155 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001156
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001157 // Check to see if this is constant foldable.
1158 for (unsigned i = 0; i != NumOps; ++i)
1159 if (!isa<Constant>(Ops[i]))
1160 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001161
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001162 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1163 (Constant *const*)Ops+1, NumOps-1);
1164}
1165
Duncan Sandsff103412010-11-17 04:30:22 +00001166/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
1167static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1168 // If all of the PHI's incoming values are the same then replace the PHI node
1169 // with the common value.
1170 Value *CommonValue = 0;
1171 bool HasUndefInput = false;
1172 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1173 Value *Incoming = PN->getIncomingValue(i);
1174 // If the incoming value is the phi node itself, it can safely be skipped.
1175 if (Incoming == PN) continue;
1176 if (isa<UndefValue>(Incoming)) {
1177 // Remember that we saw an undef value, but otherwise ignore them.
1178 HasUndefInput = true;
1179 continue;
1180 }
1181 if (CommonValue && Incoming != CommonValue)
1182 return 0; // Not the same, bail out.
1183 CommonValue = Incoming;
1184 }
1185
1186 // If CommonValue is null then all of the incoming values were either undef or
1187 // equal to the phi node itself.
1188 if (!CommonValue)
1189 return UndefValue::get(PN->getType());
1190
1191 // If we have a PHI node like phi(X, undef, X), where X is defined by some
1192 // instruction, we cannot return X as the result of the PHI node unless it
1193 // dominates the PHI block.
1194 if (HasUndefInput)
1195 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1196
1197 return CommonValue;
1198}
1199
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001200
Chris Lattnerd06094f2009-11-10 00:55:12 +00001201//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00001202
Chris Lattnerd06094f2009-11-10 00:55:12 +00001203/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1204/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001205static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001206 const TargetData *TD, const DominatorTree *DT,
1207 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001208 switch (Opcode) {
Duncan Sandsee9a2e32010-12-20 14:47:04 +00001209 case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1210 /* isNUW */ false, TD, DT,
1211 MaxRecurse);
1212 case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1213 /* isNUW */ false, TD, DT,
1214 MaxRecurse);
Duncan Sands82fdab32010-12-21 14:00:22 +00001215 case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
1216 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1217 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1218 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001219 default:
1220 if (Constant *CLHS = dyn_cast<Constant>(LHS))
1221 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1222 Constant *COps[] = {CLHS, CRHS};
1223 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1224 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001225
Duncan Sands566edb02010-12-21 08:49:00 +00001226 // If the operation is associative, try some generic simplifications.
1227 if (Instruction::isAssociative(Opcode))
1228 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1229 MaxRecurse))
1230 return V;
1231
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001232 // If the operation is with the result of a select instruction, check whether
1233 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001234 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands18450092010-11-16 12:16:38 +00001235 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
Duncan Sands0312a932010-12-21 09:09:15 +00001236 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001237 return V;
1238
1239 // If the operation is with the result of a phi instruction, check whether
1240 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001241 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1242 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001243 return V;
1244
Chris Lattnerd06094f2009-11-10 00:55:12 +00001245 return 0;
1246 }
1247}
Chris Lattner9dbb4292009-11-09 23:28:39 +00001248
Duncan Sands12a86f52010-11-14 11:23:23 +00001249Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001250 const TargetData *TD, const DominatorTree *DT) {
1251 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00001252}
1253
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001254/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1255/// fold the result.
1256static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001257 const TargetData *TD, const DominatorTree *DT,
1258 unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001259 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands18450092010-11-16 12:16:38 +00001260 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1261 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001262}
1263
1264Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands18450092010-11-16 12:16:38 +00001265 const TargetData *TD, const DominatorTree *DT) {
1266 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001267}
Chris Lattnere3453782009-11-10 01:08:51 +00001268
1269/// SimplifyInstruction - See if we can compute a simplified version of this
1270/// instruction. If not, this returns null.
Duncan Sandseff05812010-11-14 18:36:10 +00001271Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1272 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00001273 Value *Result;
1274
Chris Lattnere3453782009-11-10 01:08:51 +00001275 switch (I->getOpcode()) {
1276 default:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001277 Result = ConstantFoldInstruction(I, TD);
1278 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00001279 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001280 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1281 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1282 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1283 TD, DT);
1284 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00001285 case Instruction::Sub:
1286 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1287 cast<BinaryOperator>(I)->hasNoSignedWrap(),
1288 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1289 TD, DT);
1290 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00001291 case Instruction::Mul:
1292 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1293 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001294 case Instruction::And:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001295 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1296 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001297 case Instruction::Or:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001298 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1299 break;
Duncan Sands2b749872010-11-17 18:52:15 +00001300 case Instruction::Xor:
1301 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1302 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001303 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001304 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1305 I->getOperand(0), I->getOperand(1), TD, DT);
1306 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001307 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001308 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1309 I->getOperand(0), I->getOperand(1), TD, DT);
1310 break;
Chris Lattner04754262010-04-20 05:32:14 +00001311 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001312 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1313 I->getOperand(2), TD, DT);
1314 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001315 case Instruction::GetElementPtr: {
1316 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sandsd261dc62010-11-17 08:35:29 +00001317 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1318 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001319 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00001320 case Instruction::PHI:
Duncan Sandsd261dc62010-11-17 08:35:29 +00001321 Result = SimplifyPHINode(cast<PHINode>(I), DT);
1322 break;
Chris Lattnere3453782009-11-10 01:08:51 +00001323 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00001324
1325 /// If called on unreachable code, the above logic may report that the
1326 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001327 /// detecting that case here, returning a safe value instead.
1328 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00001329}
1330
Chris Lattner40d8c282009-11-10 22:26:15 +00001331/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1332/// delete the From instruction. In addition to a basic RAUW, this does a
1333/// recursive simplification of the newly formed instructions. This catches
1334/// things where one simplification exposes other opportunities. This only
1335/// simplifies and deletes scalar operations, it does not change the CFG.
1336///
1337void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
Duncan Sandseff05812010-11-14 18:36:10 +00001338 const TargetData *TD,
1339 const DominatorTree *DT) {
Chris Lattner40d8c282009-11-10 22:26:15 +00001340 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001341
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001342 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1343 // we can know if it gets deleted out from under us or replaced in a
1344 // recursive simplification.
Chris Lattner40d8c282009-11-10 22:26:15 +00001345 WeakVH FromHandle(From);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001346 WeakVH ToHandle(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001347
Chris Lattner40d8c282009-11-10 22:26:15 +00001348 while (!From->use_empty()) {
1349 // Update the instruction to use the new value.
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001350 Use &TheUse = From->use_begin().getUse();
1351 Instruction *User = cast<Instruction>(TheUse.getUser());
1352 TheUse = To;
1353
1354 // Check to see if the instruction can be folded due to the operand
1355 // replacement. For example changing (or X, Y) into (or X, -1) can replace
1356 // the 'or' with -1.
1357 Value *SimplifiedVal;
1358 {
1359 // Sanity check to make sure 'User' doesn't dangle across
1360 // SimplifyInstruction.
1361 AssertingVH<> UserHandle(User);
Duncan Sands12a86f52010-11-14 11:23:23 +00001362
Duncan Sandseff05812010-11-14 18:36:10 +00001363 SimplifiedVal = SimplifyInstruction(User, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001364 if (SimplifiedVal == 0) continue;
Chris Lattner40d8c282009-11-10 22:26:15 +00001365 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001366
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001367 // Recursively simplify this user to the new value.
Duncan Sandseff05812010-11-14 18:36:10 +00001368 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001369 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1370 To = ToHandle;
Duncan Sands12a86f52010-11-14 11:23:23 +00001371
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001372 assert(ToHandle && "To value deleted by recursive simplification?");
Duncan Sands12a86f52010-11-14 11:23:23 +00001373
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001374 // If the recursive simplification ended up revisiting and deleting
1375 // 'From' then we're done.
1376 if (From == 0)
1377 return;
Chris Lattner40d8c282009-11-10 22:26:15 +00001378 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001379
Chris Lattnerd2bfe542010-07-15 06:36:08 +00001380 // If 'From' has value handles referring to it, do a real RAUW to update them.
1381 From->replaceAllUsesWith(To);
Duncan Sands12a86f52010-11-14 11:23:23 +00001382
Chris Lattner40d8c282009-11-10 22:26:15 +00001383 From->eraseFromParent();
1384}