blob: d0a0a093bf3e64248dec31cfff282406ec0d2908 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/LiveVariables.h"
22using namespace llvm;
23
24X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
25 : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])),
26 TM(tm), RI(tm, *this) {
27}
28
29bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
30 unsigned& sourceReg,
31 unsigned& destReg) const {
32 MachineOpCode oc = MI.getOpcode();
33 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
34 oc == X86::MOV32rr || oc == X86::MOV64rr ||
35 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
36 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
37 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
38 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
39 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
40 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
41 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
42 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
43 assert(MI.getNumOperands() >= 2 &&
44 MI.getOperand(0).isRegister() &&
45 MI.getOperand(1).isRegister() &&
46 "invalid register-register move instruction");
47 sourceReg = MI.getOperand(1).getReg();
48 destReg = MI.getOperand(0).getReg();
49 return true;
50 }
51 return false;
52}
53
54unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
55 int &FrameIndex) const {
56 switch (MI->getOpcode()) {
57 default: break;
58 case X86::MOV8rm:
59 case X86::MOV16rm:
60 case X86::MOV16_rm:
61 case X86::MOV32rm:
62 case X86::MOV32_rm:
63 case X86::MOV64rm:
64 case X86::LD_Fp64m:
65 case X86::MOVSSrm:
66 case X86::MOVSDrm:
67 case X86::MOVAPSrm:
68 case X86::MOVAPDrm:
69 case X86::MMX_MOVD64rm:
70 case X86::MMX_MOVQ64rm:
71 if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
72 MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
73 MI->getOperand(2).getImmedValue() == 1 &&
74 MI->getOperand(3).getReg() == 0 &&
75 MI->getOperand(4).getImmedValue() == 0) {
76 FrameIndex = MI->getOperand(1).getFrameIndex();
77 return MI->getOperand(0).getReg();
78 }
79 break;
80 }
81 return 0;
82}
83
84unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
85 int &FrameIndex) const {
86 switch (MI->getOpcode()) {
87 default: break;
88 case X86::MOV8mr:
89 case X86::MOV16mr:
90 case X86::MOV16_mr:
91 case X86::MOV32mr:
92 case X86::MOV32_mr:
93 case X86::MOV64mr:
94 case X86::ST_FpP64m:
95 case X86::MOVSSmr:
96 case X86::MOVSDmr:
97 case X86::MOVAPSmr:
98 case X86::MOVAPDmr:
99 case X86::MMX_MOVD64mr:
100 case X86::MMX_MOVQ64mr:
101 case X86::MMX_MOVNTQmr:
102 if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
103 MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
104 MI->getOperand(1).getImmedValue() == 1 &&
105 MI->getOperand(2).getReg() == 0 &&
106 MI->getOperand(3).getImmedValue() == 0) {
107 FrameIndex = MI->getOperand(0).getFrameIndex();
108 return MI->getOperand(4).getReg();
109 }
110 break;
111 }
112 return 0;
113}
114
115
116bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
117 switch (MI->getOpcode()) {
118 default: break;
119 case X86::MOV8rm:
120 case X86::MOV16rm:
121 case X86::MOV16_rm:
122 case X86::MOV32rm:
123 case X86::MOV32_rm:
124 case X86::MOV64rm:
125 case X86::LD_Fp64m:
126 case X86::MOVSSrm:
127 case X86::MOVSDrm:
128 case X86::MOVAPSrm:
129 case X86::MOVAPDrm:
130 case X86::MMX_MOVD64rm:
131 case X86::MMX_MOVQ64rm:
132 // Loads from constant pools are trivially rematerializable.
133 return MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate() &&
134 MI->getOperand(3).isRegister() && MI->getOperand(4).isConstantPoolIndex() &&
135 MI->getOperand(1).getReg() == 0 &&
136 MI->getOperand(2).getImmedValue() == 1 &&
137 MI->getOperand(3).getReg() == 0;
138 }
139 // All other instructions marked M_REMATERIALIZABLE are always trivially
140 // rematerializable.
141 return true;
142}
143
144/// convertToThreeAddress - This method must be implemented by targets that
145/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
146/// may be able to convert a two-address instruction into a true
147/// three-address instruction on demand. This allows the X86 target (for
148/// example) to convert ADD and SHL instructions into LEA instructions if they
149/// would require register copies due to two-addressness.
150///
151/// This method returns a null pointer if the transformation cannot be
152/// performed, otherwise it returns the new instruction.
153///
154MachineInstr *
155X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
156 MachineBasicBlock::iterator &MBBI,
157 LiveVariables &LV) const {
158 MachineInstr *MI = MBBI;
159 // All instructions input are two-addr instructions. Get the known operands.
160 unsigned Dest = MI->getOperand(0).getReg();
161 unsigned Src = MI->getOperand(1).getReg();
162
163 MachineInstr *NewMI = NULL;
164 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
165 // we have better subtarget support, enable the 16-bit LEA generation here.
166 bool DisableLEA16 = true;
167
168 switch (MI->getOpcode()) {
169 default: return 0;
170 case X86::SHUFPSrri: {
171 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
172 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
173
174 unsigned A = MI->getOperand(0).getReg();
175 unsigned B = MI->getOperand(1).getReg();
176 unsigned C = MI->getOperand(2).getReg();
177 unsigned M = MI->getOperand(3).getImm();
178 if (B != C) return 0;
179 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
180 break;
181 }
182 case X86::SHL64ri: {
183 assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
184 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
185 // the flags produced by a shift yet, so this is safe.
186 unsigned Dest = MI->getOperand(0).getReg();
187 unsigned Src = MI->getOperand(1).getReg();
188 unsigned ShAmt = MI->getOperand(2).getImm();
189 if (ShAmt == 0 || ShAmt >= 4) return 0;
190
191 NewMI = BuildMI(get(X86::LEA64r), Dest)
192 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
193 break;
194 }
195 case X86::SHL32ri: {
196 assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
197 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
198 // the flags produced by a shift yet, so this is safe.
199 unsigned Dest = MI->getOperand(0).getReg();
200 unsigned Src = MI->getOperand(1).getReg();
201 unsigned ShAmt = MI->getOperand(2).getImm();
202 if (ShAmt == 0 || ShAmt >= 4) return 0;
203
204 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
205 X86::LEA64_32r : X86::LEA32r;
206 NewMI = BuildMI(get(Opc), Dest)
207 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
208 break;
209 }
210 case X86::SHL16ri: {
211 assert(MI->getNumOperands() == 3 && "Unknown shift instruction!");
212 if (DisableLEA16) return 0;
213
214 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
215 // the flags produced by a shift yet, so this is safe.
216 unsigned Dest = MI->getOperand(0).getReg();
217 unsigned Src = MI->getOperand(1).getReg();
218 unsigned ShAmt = MI->getOperand(2).getImm();
219 if (ShAmt == 0 || ShAmt >= 4) return 0;
220
221 NewMI = BuildMI(get(X86::LEA16r), Dest)
222 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
223 break;
224 }
225 }
226
227 // FIXME: None of these instructions are promotable to LEAs without
228 // additional information. In particular, LEA doesn't set the flags that
229 // add and inc do. :(
230 if (0)
231 switch (MI->getOpcode()) {
232 case X86::INC32r:
233 case X86::INC64_32r:
234 assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
235 NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1);
236 break;
237 case X86::INC16r:
238 case X86::INC64_16r:
239 if (DisableLEA16) return 0;
240 assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
241 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
242 break;
243 case X86::DEC32r:
244 case X86::DEC64_32r:
245 assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
246 NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1);
247 break;
248 case X86::DEC16r:
249 case X86::DEC64_16r:
250 if (DisableLEA16) return 0;
251 assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
252 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
253 break;
254 case X86::ADD32rr:
255 assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
256 NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src,
257 MI->getOperand(2).getReg());
258 break;
259 case X86::ADD16rr:
260 if (DisableLEA16) return 0;
261 assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
262 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
263 MI->getOperand(2).getReg());
264 break;
265 case X86::ADD32ri:
266 case X86::ADD32ri8:
267 assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
268 if (MI->getOperand(2).isImmediate())
269 NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src,
270 MI->getOperand(2).getImmedValue());
271 break;
272 case X86::ADD16ri:
273 case X86::ADD16ri8:
274 if (DisableLEA16) return 0;
275 assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
276 if (MI->getOperand(2).isImmediate())
277 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
278 MI->getOperand(2).getImmedValue());
279 break;
280 case X86::SHL16ri:
281 if (DisableLEA16) return 0;
282 case X86::SHL32ri:
283 assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
284 "Unknown shl instruction!");
285 unsigned ShAmt = MI->getOperand(2).getImmedValue();
286 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
287 X86AddressMode AM;
288 AM.Scale = 1 << ShAmt;
289 AM.IndexReg = Src;
290 unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
291 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
292 }
293 break;
294 }
295
296 if (NewMI) {
297 NewMI->copyKillDeadInfo(MI);
298 LV.instructionChanged(MI, NewMI); // Update live variables
299 MFI->insert(MBBI, NewMI); // Insert the new inst
300 }
301 return NewMI;
302}
303
304/// commuteInstruction - We have a few instructions that must be hacked on to
305/// commute them.
306///
307MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
308 // FIXME: Can commute cmoves by changing the condition!
309 switch (MI->getOpcode()) {
310 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
311 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
312 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
313 case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
314 unsigned Opc;
315 unsigned Size;
316 switch (MI->getOpcode()) {
317 default: assert(0 && "Unreachable!");
318 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
319 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
320 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
321 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
322 }
323 unsigned Amt = MI->getOperand(3).getImmedValue();
324 unsigned A = MI->getOperand(0).getReg();
325 unsigned B = MI->getOperand(1).getReg();
326 unsigned C = MI->getOperand(2).getReg();
327 bool BisKill = MI->getOperand(1).isKill();
328 bool CisKill = MI->getOperand(2).isKill();
329 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
330 .addReg(B, false, false, BisKill).addImm(Size-Amt);
331 }
332 default:
333 return TargetInstrInfo::commuteInstruction(MI);
334 }
335}
336
337static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
338 switch (BrOpc) {
339 default: return X86::COND_INVALID;
340 case X86::JE: return X86::COND_E;
341 case X86::JNE: return X86::COND_NE;
342 case X86::JL: return X86::COND_L;
343 case X86::JLE: return X86::COND_LE;
344 case X86::JG: return X86::COND_G;
345 case X86::JGE: return X86::COND_GE;
346 case X86::JB: return X86::COND_B;
347 case X86::JBE: return X86::COND_BE;
348 case X86::JA: return X86::COND_A;
349 case X86::JAE: return X86::COND_AE;
350 case X86::JS: return X86::COND_S;
351 case X86::JNS: return X86::COND_NS;
352 case X86::JP: return X86::COND_P;
353 case X86::JNP: return X86::COND_NP;
354 case X86::JO: return X86::COND_O;
355 case X86::JNO: return X86::COND_NO;
356 }
357}
358
359unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
360 switch (CC) {
361 default: assert(0 && "Illegal condition code!");
362 case X86::COND_E: return X86::JE;
363 case X86::COND_NE: return X86::JNE;
364 case X86::COND_L: return X86::JL;
365 case X86::COND_LE: return X86::JLE;
366 case X86::COND_G: return X86::JG;
367 case X86::COND_GE: return X86::JGE;
368 case X86::COND_B: return X86::JB;
369 case X86::COND_BE: return X86::JBE;
370 case X86::COND_A: return X86::JA;
371 case X86::COND_AE: return X86::JAE;
372 case X86::COND_S: return X86::JS;
373 case X86::COND_NS: return X86::JNS;
374 case X86::COND_P: return X86::JP;
375 case X86::COND_NP: return X86::JNP;
376 case X86::COND_O: return X86::JO;
377 case X86::COND_NO: return X86::JNO;
378 }
379}
380
381/// GetOppositeBranchCondition - Return the inverse of the specified condition,
382/// e.g. turning COND_E to COND_NE.
383X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
384 switch (CC) {
385 default: assert(0 && "Illegal condition code!");
386 case X86::COND_E: return X86::COND_NE;
387 case X86::COND_NE: return X86::COND_E;
388 case X86::COND_L: return X86::COND_GE;
389 case X86::COND_LE: return X86::COND_G;
390 case X86::COND_G: return X86::COND_LE;
391 case X86::COND_GE: return X86::COND_L;
392 case X86::COND_B: return X86::COND_AE;
393 case X86::COND_BE: return X86::COND_A;
394 case X86::COND_A: return X86::COND_BE;
395 case X86::COND_AE: return X86::COND_B;
396 case X86::COND_S: return X86::COND_NS;
397 case X86::COND_NS: return X86::COND_S;
398 case X86::COND_P: return X86::COND_NP;
399 case X86::COND_NP: return X86::COND_P;
400 case X86::COND_O: return X86::COND_NO;
401 case X86::COND_NO: return X86::COND_O;
402 }
403}
404
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
407 if (TID->Flags & M_TERMINATOR_FLAG) {
408 // Conditional branch is a special case.
409 if ((TID->Flags & M_BRANCH_FLAG) != 0 && (TID->Flags & M_BARRIER_FLAG) == 0)
410 return true;
411 if ((TID->Flags & M_PREDICABLE) == 0)
412 return true;
413 return !isPredicated(MI);
414 }
415 return false;
416}
417
Evan Cheng12515792007-07-26 17:32:14 +0000418// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
419static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
420 const X86InstrInfo &TII) {
421 if (MI->getOpcode() == X86::FP_REG_KILL)
422 return false;
423 return TII.isUnpredicatedTerminator(MI);
424}
425
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
427 MachineBasicBlock *&TBB,
428 MachineBasicBlock *&FBB,
429 std::vector<MachineOperand> &Cond) const {
430 // If the block has no terminators, it just falls into the block after it.
431 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +0000432 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000433 return false;
434
435 // Get the last instruction in the block.
436 MachineInstr *LastInst = I;
437
438 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +0000439 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 if (!isBranch(LastInst->getOpcode()))
441 return true;
442
443 // If the block ends with a branch there are 3 possibilities:
444 // it's an unconditional, conditional, or indirect branch.
445
446 if (LastInst->getOpcode() == X86::JMP) {
447 TBB = LastInst->getOperand(0).getMachineBasicBlock();
448 return false;
449 }
450 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
451 if (BranchCode == X86::COND_INVALID)
452 return true; // Can't handle indirect branch.
453
454 // Otherwise, block ends with fall-through condbranch.
455 TBB = LastInst->getOperand(0).getMachineBasicBlock();
456 Cond.push_back(MachineOperand::CreateImm(BranchCode));
457 return false;
458 }
459
460 // Get the instruction before it if it's a terminator.
461 MachineInstr *SecondLastInst = I;
462
463 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +0000464 if (SecondLastInst && I != MBB.begin() &&
465 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466 return true;
467
468 // If the block ends with X86::JMP and a conditional branch, handle it.
469 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
470 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
471 TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
472 Cond.push_back(MachineOperand::CreateImm(BranchCode));
473 FBB = LastInst->getOperand(0).getMachineBasicBlock();
474 return false;
475 }
476
477 // If the block ends with two X86::JMPs, handle it. The second one is not
478 // executed, so remove it.
479 if (SecondLastInst->getOpcode() == X86::JMP &&
480 LastInst->getOpcode() == X86::JMP) {
481 TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
482 I = LastInst;
483 I->eraseFromParent();
484 return false;
485 }
486
487 // Otherwise, can't handle this.
488 return true;
489}
490
491unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
492 MachineBasicBlock::iterator I = MBB.end();
493 if (I == MBB.begin()) return 0;
494 --I;
495 if (I->getOpcode() != X86::JMP &&
496 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
497 return 0;
498
499 // Remove the branch.
500 I->eraseFromParent();
501
502 I = MBB.end();
503
504 if (I == MBB.begin()) return 1;
505 --I;
506 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
507 return 1;
508
509 // Remove the branch.
510 I->eraseFromParent();
511 return 2;
512}
513
514unsigned
515X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
516 MachineBasicBlock *FBB,
517 const std::vector<MachineOperand> &Cond) const {
518 // Shouldn't be a fall through.
519 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
520 assert((Cond.size() == 1 || Cond.size() == 0) &&
521 "X86 branch conditions have one component!");
522
523 if (FBB == 0) { // One way branch.
524 if (Cond.empty()) {
525 // Unconditional branch?
526 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
527 } else {
528 // Conditional branch.
529 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
530 BuildMI(&MBB, get(Opc)).addMBB(TBB);
531 }
532 return 1;
533 }
534
535 // Two-way Conditional branch.
536 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
537 BuildMI(&MBB, get(Opc)).addMBB(TBB);
538 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
539 return 2;
540}
541
542bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
543 if (MBB.empty()) return false;
544
545 switch (MBB.back().getOpcode()) {
546 case X86::RET: // Return.
547 case X86::RETI:
548 case X86::TAILJMPd:
549 case X86::TAILJMPr:
550 case X86::TAILJMPm:
551 case X86::JMP: // Uncond branch.
552 case X86::JMP32r: // Indirect branch.
553 case X86::JMP32m: // Indirect branch through mem.
554 return true;
555 default: return false;
556 }
557}
558
559bool X86InstrInfo::
560ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
561 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
562 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
563 return false;
564}
565
566const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
567 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
568 if (Subtarget->is64Bit())
569 return &X86::GR64RegClass;
570 else
571 return &X86::GR32RegClass;
572}