Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 1 | //===-- APFloat.cpp - Implement APFloat class -----------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Neil Booth and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a class to represent arbitrary precision floating |
| 11 | // point values and provide a variety of arithmetic operations on them. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include <cassert> |
| 16 | #include "llvm/ADT/APFloat.h" |
Dale Johannesen | d3b51fd | 2007-08-24 05:08:11 +0000 | [diff] [blame] | 17 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 18 | |
| 19 | using namespace llvm; |
| 20 | |
| 21 | #define convolve(lhs, rhs) ((lhs) * 4 + (rhs)) |
| 22 | |
| 23 | /* Assumed in hexadecimal significand parsing. */ |
| 24 | COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0); |
| 25 | |
| 26 | namespace llvm { |
| 27 | |
| 28 | /* Represents floating point arithmetic semantics. */ |
| 29 | struct fltSemantics { |
| 30 | /* The largest E such that 2^E is representable; this matches the |
| 31 | definition of IEEE 754. */ |
| 32 | exponent_t maxExponent; |
| 33 | |
| 34 | /* The smallest E such that 2^E is a normalized number; this |
| 35 | matches the definition of IEEE 754. */ |
| 36 | exponent_t minExponent; |
| 37 | |
| 38 | /* Number of bits in the significand. This includes the integer |
| 39 | bit. */ |
| 40 | unsigned char precision; |
| 41 | |
| 42 | /* If the target format has an implicit integer bit. */ |
| 43 | bool implicitIntegerBit; |
| 44 | }; |
| 45 | |
| 46 | const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true }; |
| 47 | const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true }; |
| 48 | const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true }; |
| 49 | const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false }; |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 50 | const fltSemantics APFloat::Bogus = { 0, 0, 0, false }; |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 51 | } |
| 52 | |
| 53 | /* Put a bunch of private, handy routines in an anonymous namespace. */ |
| 54 | namespace { |
| 55 | |
| 56 | inline unsigned int |
| 57 | partCountForBits(unsigned int bits) |
| 58 | { |
| 59 | return ((bits) + integerPartWidth - 1) / integerPartWidth; |
| 60 | } |
| 61 | |
| 62 | unsigned int |
| 63 | digitValue(unsigned int c) |
| 64 | { |
| 65 | unsigned int r; |
| 66 | |
| 67 | r = c - '0'; |
| 68 | if(r <= 9) |
| 69 | return r; |
| 70 | |
| 71 | return -1U; |
| 72 | } |
| 73 | |
| 74 | unsigned int |
| 75 | hexDigitValue (unsigned int c) |
| 76 | { |
| 77 | unsigned int r; |
| 78 | |
| 79 | r = c - '0'; |
| 80 | if(r <= 9) |
| 81 | return r; |
| 82 | |
| 83 | r = c - 'A'; |
| 84 | if(r <= 5) |
| 85 | return r + 10; |
| 86 | |
| 87 | r = c - 'a'; |
| 88 | if(r <= 5) |
| 89 | return r + 10; |
| 90 | |
| 91 | return -1U; |
| 92 | } |
| 93 | |
| 94 | /* This is ugly and needs cleaning up, but I don't immediately see |
| 95 | how whilst remaining safe. */ |
| 96 | static int |
| 97 | totalExponent(const char *p, int exponentAdjustment) |
| 98 | { |
| 99 | integerPart unsignedExponent; |
| 100 | bool negative, overflow; |
| 101 | long exponent; |
| 102 | |
| 103 | /* Move past the exponent letter and sign to the digits. */ |
| 104 | p++; |
| 105 | negative = *p == '-'; |
| 106 | if(*p == '-' || *p == '+') |
| 107 | p++; |
| 108 | |
| 109 | unsignedExponent = 0; |
| 110 | overflow = false; |
| 111 | for(;;) { |
| 112 | unsigned int value; |
| 113 | |
| 114 | value = digitValue(*p); |
| 115 | if(value == -1U) |
| 116 | break; |
| 117 | |
| 118 | p++; |
| 119 | unsignedExponent = unsignedExponent * 10 + value; |
| 120 | if(unsignedExponent > 65535) |
| 121 | overflow = true; |
| 122 | } |
| 123 | |
| 124 | if(exponentAdjustment > 65535 || exponentAdjustment < -65536) |
| 125 | overflow = true; |
| 126 | |
| 127 | if(!overflow) { |
| 128 | exponent = unsignedExponent; |
| 129 | if(negative) |
| 130 | exponent = -exponent; |
| 131 | exponent += exponentAdjustment; |
| 132 | if(exponent > 65535 || exponent < -65536) |
| 133 | overflow = true; |
| 134 | } |
| 135 | |
| 136 | if(overflow) |
| 137 | exponent = negative ? -65536: 65535; |
| 138 | |
| 139 | return exponent; |
| 140 | } |
| 141 | |
| 142 | const char * |
| 143 | skipLeadingZeroesAndAnyDot(const char *p, const char **dot) |
| 144 | { |
| 145 | *dot = 0; |
| 146 | while(*p == '0') |
| 147 | p++; |
| 148 | |
| 149 | if(*p == '.') { |
| 150 | *dot = p++; |
| 151 | while(*p == '0') |
| 152 | p++; |
| 153 | } |
| 154 | |
| 155 | return p; |
| 156 | } |
| 157 | |
| 158 | /* Return the trailing fraction of a hexadecimal number. |
| 159 | DIGITVALUE is the first hex digit of the fraction, P points to |
| 160 | the next digit. */ |
| 161 | lostFraction |
| 162 | trailingHexadecimalFraction(const char *p, unsigned int digitValue) |
| 163 | { |
| 164 | unsigned int hexDigit; |
| 165 | |
| 166 | /* If the first trailing digit isn't 0 or 8 we can work out the |
| 167 | fraction immediately. */ |
| 168 | if(digitValue > 8) |
| 169 | return lfMoreThanHalf; |
| 170 | else if(digitValue < 8 && digitValue > 0) |
| 171 | return lfLessThanHalf; |
| 172 | |
| 173 | /* Otherwise we need to find the first non-zero digit. */ |
| 174 | while(*p == '0') |
| 175 | p++; |
| 176 | |
| 177 | hexDigit = hexDigitValue(*p); |
| 178 | |
| 179 | /* If we ran off the end it is exactly zero or one-half, otherwise |
| 180 | a little more. */ |
| 181 | if(hexDigit == -1U) |
| 182 | return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; |
| 183 | else |
| 184 | return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; |
| 185 | } |
| 186 | |
| 187 | /* Return the fraction lost were a bignum truncated. */ |
| 188 | lostFraction |
| 189 | lostFractionThroughTruncation(integerPart *parts, |
| 190 | unsigned int partCount, |
| 191 | unsigned int bits) |
| 192 | { |
| 193 | unsigned int lsb; |
| 194 | |
| 195 | lsb = APInt::tcLSB(parts, partCount); |
| 196 | |
| 197 | /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ |
| 198 | if(bits <= lsb) |
| 199 | return lfExactlyZero; |
| 200 | if(bits == lsb + 1) |
| 201 | return lfExactlyHalf; |
| 202 | if(bits <= partCount * integerPartWidth |
| 203 | && APInt::tcExtractBit(parts, bits - 1)) |
| 204 | return lfMoreThanHalf; |
| 205 | |
| 206 | return lfLessThanHalf; |
| 207 | } |
| 208 | |
| 209 | /* Shift DST right BITS bits noting lost fraction. */ |
| 210 | lostFraction |
| 211 | shiftRight(integerPart *dst, unsigned int parts, unsigned int bits) |
| 212 | { |
| 213 | lostFraction lost_fraction; |
| 214 | |
| 215 | lost_fraction = lostFractionThroughTruncation(dst, parts, bits); |
| 216 | |
| 217 | APInt::tcShiftRight(dst, parts, bits); |
| 218 | |
| 219 | return lost_fraction; |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | /* Constructors. */ |
| 224 | void |
| 225 | APFloat::initialize(const fltSemantics *ourSemantics) |
| 226 | { |
| 227 | unsigned int count; |
| 228 | |
| 229 | semantics = ourSemantics; |
| 230 | count = partCount(); |
| 231 | if(count > 1) |
| 232 | significand.parts = new integerPart[count]; |
| 233 | } |
| 234 | |
| 235 | void |
| 236 | APFloat::freeSignificand() |
| 237 | { |
| 238 | if(partCount() > 1) |
| 239 | delete [] significand.parts; |
| 240 | } |
| 241 | |
| 242 | void |
| 243 | APFloat::assign(const APFloat &rhs) |
| 244 | { |
| 245 | assert(semantics == rhs.semantics); |
| 246 | |
| 247 | sign = rhs.sign; |
| 248 | category = rhs.category; |
| 249 | exponent = rhs.exponent; |
| 250 | if(category == fcNormal) |
| 251 | copySignificand(rhs); |
| 252 | } |
| 253 | |
| 254 | void |
| 255 | APFloat::copySignificand(const APFloat &rhs) |
| 256 | { |
| 257 | assert(category == fcNormal); |
| 258 | assert(rhs.partCount() >= partCount()); |
| 259 | |
| 260 | APInt::tcAssign(significandParts(), rhs.significandParts(), |
| 261 | partCount()); |
| 262 | } |
| 263 | |
| 264 | APFloat & |
| 265 | APFloat::operator=(const APFloat &rhs) |
| 266 | { |
| 267 | if(this != &rhs) { |
| 268 | if(semantics != rhs.semantics) { |
| 269 | freeSignificand(); |
| 270 | initialize(rhs.semantics); |
| 271 | } |
| 272 | assign(rhs); |
| 273 | } |
| 274 | |
| 275 | return *this; |
| 276 | } |
| 277 | |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 278 | bool |
Dale Johannesen | 12595d7 | 2007-08-24 22:09:56 +0000 | [diff] [blame^] | 279 | APFloat::bitwiseIsEqual(const APFloat &rhs) const { |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 280 | if (this == &rhs) |
| 281 | return true; |
| 282 | if (semantics != rhs.semantics || |
| 283 | category != rhs.category) |
| 284 | return false; |
| 285 | if (category==fcQNaN) |
| 286 | return true; |
| 287 | else if (category==fcZero || category==fcInfinity) |
| 288 | return sign==rhs.sign; |
| 289 | else { |
| 290 | if (sign!=rhs.sign || exponent!=rhs.exponent) |
| 291 | return false; |
| 292 | int i= partCount(); |
| 293 | const integerPart* p=significandParts(); |
| 294 | const integerPart* q=rhs.significandParts(); |
| 295 | for (; i>0; i--, p++, q++) { |
| 296 | if (*p != *q) |
| 297 | return false; |
| 298 | } |
| 299 | return true; |
| 300 | } |
| 301 | } |
| 302 | |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 303 | APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) |
| 304 | { |
| 305 | initialize(&ourSemantics); |
| 306 | sign = 0; |
| 307 | zeroSignificand(); |
| 308 | exponent = ourSemantics.precision - 1; |
| 309 | significandParts()[0] = value; |
| 310 | normalize(rmNearestTiesToEven, lfExactlyZero); |
| 311 | } |
| 312 | |
| 313 | APFloat::APFloat(const fltSemantics &ourSemantics, |
| 314 | fltCategory ourCategory, bool negative) |
| 315 | { |
| 316 | initialize(&ourSemantics); |
| 317 | category = ourCategory; |
| 318 | sign = negative; |
| 319 | if(category == fcNormal) |
| 320 | category = fcZero; |
| 321 | } |
| 322 | |
| 323 | APFloat::APFloat(const fltSemantics &ourSemantics, const char *text) |
| 324 | { |
| 325 | initialize(&ourSemantics); |
| 326 | convertFromString(text, rmNearestTiesToEven); |
| 327 | } |
| 328 | |
| 329 | APFloat::APFloat(const APFloat &rhs) |
| 330 | { |
| 331 | initialize(rhs.semantics); |
| 332 | assign(rhs); |
| 333 | } |
| 334 | |
| 335 | APFloat::~APFloat() |
| 336 | { |
| 337 | freeSignificand(); |
| 338 | } |
| 339 | |
| 340 | unsigned int |
| 341 | APFloat::partCount() const |
| 342 | { |
| 343 | return partCountForBits(semantics->precision + 1); |
| 344 | } |
| 345 | |
| 346 | unsigned int |
| 347 | APFloat::semanticsPrecision(const fltSemantics &semantics) |
| 348 | { |
| 349 | return semantics.precision; |
| 350 | } |
| 351 | |
| 352 | const integerPart * |
| 353 | APFloat::significandParts() const |
| 354 | { |
| 355 | return const_cast<APFloat *>(this)->significandParts(); |
| 356 | } |
| 357 | |
| 358 | integerPart * |
| 359 | APFloat::significandParts() |
| 360 | { |
| 361 | assert(category == fcNormal); |
| 362 | |
| 363 | if(partCount() > 1) |
| 364 | return significand.parts; |
| 365 | else |
| 366 | return &significand.part; |
| 367 | } |
| 368 | |
| 369 | /* Combine the effect of two lost fractions. */ |
| 370 | lostFraction |
| 371 | APFloat::combineLostFractions(lostFraction moreSignificant, |
| 372 | lostFraction lessSignificant) |
| 373 | { |
| 374 | if(lessSignificant != lfExactlyZero) { |
| 375 | if(moreSignificant == lfExactlyZero) |
| 376 | moreSignificant = lfLessThanHalf; |
| 377 | else if(moreSignificant == lfExactlyHalf) |
| 378 | moreSignificant = lfMoreThanHalf; |
| 379 | } |
| 380 | |
| 381 | return moreSignificant; |
| 382 | } |
| 383 | |
| 384 | void |
| 385 | APFloat::zeroSignificand() |
| 386 | { |
| 387 | category = fcNormal; |
| 388 | APInt::tcSet(significandParts(), 0, partCount()); |
| 389 | } |
| 390 | |
| 391 | /* Increment an fcNormal floating point number's significand. */ |
| 392 | void |
| 393 | APFloat::incrementSignificand() |
| 394 | { |
| 395 | integerPart carry; |
| 396 | |
| 397 | carry = APInt::tcIncrement(significandParts(), partCount()); |
| 398 | |
| 399 | /* Our callers should never cause us to overflow. */ |
| 400 | assert(carry == 0); |
| 401 | } |
| 402 | |
| 403 | /* Add the significand of the RHS. Returns the carry flag. */ |
| 404 | integerPart |
| 405 | APFloat::addSignificand(const APFloat &rhs) |
| 406 | { |
| 407 | integerPart *parts; |
| 408 | |
| 409 | parts = significandParts(); |
| 410 | |
| 411 | assert(semantics == rhs.semantics); |
| 412 | assert(exponent == rhs.exponent); |
| 413 | |
| 414 | return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); |
| 415 | } |
| 416 | |
| 417 | /* Subtract the significand of the RHS with a borrow flag. Returns |
| 418 | the borrow flag. */ |
| 419 | integerPart |
| 420 | APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow) |
| 421 | { |
| 422 | integerPart *parts; |
| 423 | |
| 424 | parts = significandParts(); |
| 425 | |
| 426 | assert(semantics == rhs.semantics); |
| 427 | assert(exponent == rhs.exponent); |
| 428 | |
| 429 | return APInt::tcSubtract(parts, rhs.significandParts(), borrow, |
| 430 | partCount()); |
| 431 | } |
| 432 | |
| 433 | /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it |
| 434 | on to the full-precision result of the multiplication. Returns the |
| 435 | lost fraction. */ |
| 436 | lostFraction |
| 437 | APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend) |
| 438 | { |
| 439 | unsigned int omsb; // One, not zero, based MSB. |
| 440 | unsigned int partsCount, newPartsCount, precision; |
| 441 | integerPart *lhsSignificand; |
| 442 | integerPart scratch[4]; |
| 443 | integerPart *fullSignificand; |
| 444 | lostFraction lost_fraction; |
| 445 | |
| 446 | assert(semantics == rhs.semantics); |
| 447 | |
| 448 | precision = semantics->precision; |
| 449 | newPartsCount = partCountForBits(precision * 2); |
| 450 | |
| 451 | if(newPartsCount > 4) |
| 452 | fullSignificand = new integerPart[newPartsCount]; |
| 453 | else |
| 454 | fullSignificand = scratch; |
| 455 | |
| 456 | lhsSignificand = significandParts(); |
| 457 | partsCount = partCount(); |
| 458 | |
| 459 | APInt::tcFullMultiply(fullSignificand, lhsSignificand, |
| 460 | rhs.significandParts(), partsCount); |
| 461 | |
| 462 | lost_fraction = lfExactlyZero; |
| 463 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| 464 | exponent += rhs.exponent; |
| 465 | |
| 466 | if(addend) { |
| 467 | Significand savedSignificand = significand; |
| 468 | const fltSemantics *savedSemantics = semantics; |
| 469 | fltSemantics extendedSemantics; |
| 470 | opStatus status; |
| 471 | unsigned int extendedPrecision; |
| 472 | |
| 473 | /* Normalize our MSB. */ |
| 474 | extendedPrecision = precision + precision - 1; |
| 475 | if(omsb != extendedPrecision) |
| 476 | { |
| 477 | APInt::tcShiftLeft(fullSignificand, newPartsCount, |
| 478 | extendedPrecision - omsb); |
| 479 | exponent -= extendedPrecision - omsb; |
| 480 | } |
| 481 | |
| 482 | /* Create new semantics. */ |
| 483 | extendedSemantics = *semantics; |
| 484 | extendedSemantics.precision = extendedPrecision; |
| 485 | |
| 486 | if(newPartsCount == 1) |
| 487 | significand.part = fullSignificand[0]; |
| 488 | else |
| 489 | significand.parts = fullSignificand; |
| 490 | semantics = &extendedSemantics; |
| 491 | |
| 492 | APFloat extendedAddend(*addend); |
| 493 | status = extendedAddend.convert(extendedSemantics, rmTowardZero); |
| 494 | assert(status == opOK); |
| 495 | lost_fraction = addOrSubtractSignificand(extendedAddend, false); |
| 496 | |
| 497 | /* Restore our state. */ |
| 498 | if(newPartsCount == 1) |
| 499 | fullSignificand[0] = significand.part; |
| 500 | significand = savedSignificand; |
| 501 | semantics = savedSemantics; |
| 502 | |
| 503 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; |
| 504 | } |
| 505 | |
| 506 | exponent -= (precision - 1); |
| 507 | |
| 508 | if(omsb > precision) { |
| 509 | unsigned int bits, significantParts; |
| 510 | lostFraction lf; |
| 511 | |
| 512 | bits = omsb - precision; |
| 513 | significantParts = partCountForBits(omsb); |
| 514 | lf = shiftRight(fullSignificand, significantParts, bits); |
| 515 | lost_fraction = combineLostFractions(lf, lost_fraction); |
| 516 | exponent += bits; |
| 517 | } |
| 518 | |
| 519 | APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); |
| 520 | |
| 521 | if(newPartsCount > 4) |
| 522 | delete [] fullSignificand; |
| 523 | |
| 524 | return lost_fraction; |
| 525 | } |
| 526 | |
| 527 | /* Multiply the significands of LHS and RHS to DST. */ |
| 528 | lostFraction |
| 529 | APFloat::divideSignificand(const APFloat &rhs) |
| 530 | { |
| 531 | unsigned int bit, i, partsCount; |
| 532 | const integerPart *rhsSignificand; |
| 533 | integerPart *lhsSignificand, *dividend, *divisor; |
| 534 | integerPart scratch[4]; |
| 535 | lostFraction lost_fraction; |
| 536 | |
| 537 | assert(semantics == rhs.semantics); |
| 538 | |
| 539 | lhsSignificand = significandParts(); |
| 540 | rhsSignificand = rhs.significandParts(); |
| 541 | partsCount = partCount(); |
| 542 | |
| 543 | if(partsCount > 2) |
| 544 | dividend = new integerPart[partsCount * 2]; |
| 545 | else |
| 546 | dividend = scratch; |
| 547 | |
| 548 | divisor = dividend + partsCount; |
| 549 | |
| 550 | /* Copy the dividend and divisor as they will be modified in-place. */ |
| 551 | for(i = 0; i < partsCount; i++) { |
| 552 | dividend[i] = lhsSignificand[i]; |
| 553 | divisor[i] = rhsSignificand[i]; |
| 554 | lhsSignificand[i] = 0; |
| 555 | } |
| 556 | |
| 557 | exponent -= rhs.exponent; |
| 558 | |
| 559 | unsigned int precision = semantics->precision; |
| 560 | |
| 561 | /* Normalize the divisor. */ |
| 562 | bit = precision - APInt::tcMSB(divisor, partsCount) - 1; |
| 563 | if(bit) { |
| 564 | exponent += bit; |
| 565 | APInt::tcShiftLeft(divisor, partsCount, bit); |
| 566 | } |
| 567 | |
| 568 | /* Normalize the dividend. */ |
| 569 | bit = precision - APInt::tcMSB(dividend, partsCount) - 1; |
| 570 | if(bit) { |
| 571 | exponent -= bit; |
| 572 | APInt::tcShiftLeft(dividend, partsCount, bit); |
| 573 | } |
| 574 | |
| 575 | if(APInt::tcCompare(dividend, divisor, partsCount) < 0) { |
| 576 | exponent--; |
| 577 | APInt::tcShiftLeft(dividend, partsCount, 1); |
| 578 | assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); |
| 579 | } |
| 580 | |
| 581 | /* Long division. */ |
| 582 | for(bit = precision; bit; bit -= 1) { |
| 583 | if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) { |
| 584 | APInt::tcSubtract(dividend, divisor, 0, partsCount); |
| 585 | APInt::tcSetBit(lhsSignificand, bit - 1); |
| 586 | } |
| 587 | |
| 588 | APInt::tcShiftLeft(dividend, partsCount, 1); |
| 589 | } |
| 590 | |
| 591 | /* Figure out the lost fraction. */ |
| 592 | int cmp = APInt::tcCompare(dividend, divisor, partsCount); |
| 593 | |
| 594 | if(cmp > 0) |
| 595 | lost_fraction = lfMoreThanHalf; |
| 596 | else if(cmp == 0) |
| 597 | lost_fraction = lfExactlyHalf; |
| 598 | else if(APInt::tcIsZero(dividend, partsCount)) |
| 599 | lost_fraction = lfExactlyZero; |
| 600 | else |
| 601 | lost_fraction = lfLessThanHalf; |
| 602 | |
| 603 | if(partsCount > 2) |
| 604 | delete [] dividend; |
| 605 | |
| 606 | return lost_fraction; |
| 607 | } |
| 608 | |
| 609 | unsigned int |
| 610 | APFloat::significandMSB() const |
| 611 | { |
| 612 | return APInt::tcMSB(significandParts(), partCount()); |
| 613 | } |
| 614 | |
| 615 | unsigned int |
| 616 | APFloat::significandLSB() const |
| 617 | { |
| 618 | return APInt::tcLSB(significandParts(), partCount()); |
| 619 | } |
| 620 | |
| 621 | /* Note that a zero result is NOT normalized to fcZero. */ |
| 622 | lostFraction |
| 623 | APFloat::shiftSignificandRight(unsigned int bits) |
| 624 | { |
| 625 | /* Our exponent should not overflow. */ |
| 626 | assert((exponent_t) (exponent + bits) >= exponent); |
| 627 | |
| 628 | exponent += bits; |
| 629 | |
| 630 | return shiftRight(significandParts(), partCount(), bits); |
| 631 | } |
| 632 | |
| 633 | /* Shift the significand left BITS bits, subtract BITS from its exponent. */ |
| 634 | void |
| 635 | APFloat::shiftSignificandLeft(unsigned int bits) |
| 636 | { |
| 637 | assert(bits < semantics->precision); |
| 638 | |
| 639 | if(bits) { |
| 640 | unsigned int partsCount = partCount(); |
| 641 | |
| 642 | APInt::tcShiftLeft(significandParts(), partsCount, bits); |
| 643 | exponent -= bits; |
| 644 | |
| 645 | assert(!APInt::tcIsZero(significandParts(), partsCount)); |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | APFloat::cmpResult |
| 650 | APFloat::compareAbsoluteValue(const APFloat &rhs) const |
| 651 | { |
| 652 | int compare; |
| 653 | |
| 654 | assert(semantics == rhs.semantics); |
| 655 | assert(category == fcNormal); |
| 656 | assert(rhs.category == fcNormal); |
| 657 | |
| 658 | compare = exponent - rhs.exponent; |
| 659 | |
| 660 | /* If exponents are equal, do an unsigned bignum comparison of the |
| 661 | significands. */ |
| 662 | if(compare == 0) |
| 663 | compare = APInt::tcCompare(significandParts(), rhs.significandParts(), |
| 664 | partCount()); |
| 665 | |
| 666 | if(compare > 0) |
| 667 | return cmpGreaterThan; |
| 668 | else if(compare < 0) |
| 669 | return cmpLessThan; |
| 670 | else |
| 671 | return cmpEqual; |
| 672 | } |
| 673 | |
| 674 | /* Handle overflow. Sign is preserved. We either become infinity or |
| 675 | the largest finite number. */ |
| 676 | APFloat::opStatus |
| 677 | APFloat::handleOverflow(roundingMode rounding_mode) |
| 678 | { |
| 679 | /* Infinity? */ |
| 680 | if(rounding_mode == rmNearestTiesToEven |
| 681 | || rounding_mode == rmNearestTiesToAway |
| 682 | || (rounding_mode == rmTowardPositive && !sign) |
| 683 | || (rounding_mode == rmTowardNegative && sign)) |
| 684 | { |
| 685 | category = fcInfinity; |
| 686 | return (opStatus) (opOverflow | opInexact); |
| 687 | } |
| 688 | |
| 689 | /* Otherwise we become the largest finite number. */ |
| 690 | category = fcNormal; |
| 691 | exponent = semantics->maxExponent; |
| 692 | APInt::tcSetLeastSignificantBits(significandParts(), partCount(), |
| 693 | semantics->precision); |
| 694 | |
| 695 | return opInexact; |
| 696 | } |
| 697 | |
| 698 | /* This routine must work for fcZero of both signs, and fcNormal |
| 699 | numbers. */ |
| 700 | bool |
| 701 | APFloat::roundAwayFromZero(roundingMode rounding_mode, |
| 702 | lostFraction lost_fraction) |
| 703 | { |
| 704 | /* QNaNs and infinities should not have lost fractions. */ |
| 705 | assert(category == fcNormal || category == fcZero); |
| 706 | |
| 707 | /* Our caller has already handled this case. */ |
| 708 | assert(lost_fraction != lfExactlyZero); |
| 709 | |
| 710 | switch(rounding_mode) { |
| 711 | default: |
| 712 | assert(0); |
| 713 | |
| 714 | case rmNearestTiesToAway: |
| 715 | return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; |
| 716 | |
| 717 | case rmNearestTiesToEven: |
| 718 | if(lost_fraction == lfMoreThanHalf) |
| 719 | return true; |
| 720 | |
| 721 | /* Our zeroes don't have a significand to test. */ |
| 722 | if(lost_fraction == lfExactlyHalf && category != fcZero) |
| 723 | return significandParts()[0] & 1; |
| 724 | |
| 725 | return false; |
| 726 | |
| 727 | case rmTowardZero: |
| 728 | return false; |
| 729 | |
| 730 | case rmTowardPositive: |
| 731 | return sign == false; |
| 732 | |
| 733 | case rmTowardNegative: |
| 734 | return sign == true; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | APFloat::opStatus |
| 739 | APFloat::normalize(roundingMode rounding_mode, |
| 740 | lostFraction lost_fraction) |
| 741 | { |
| 742 | unsigned int omsb; /* One, not zero, based MSB. */ |
| 743 | int exponentChange; |
| 744 | |
| 745 | if(category != fcNormal) |
| 746 | return opOK; |
| 747 | |
| 748 | /* Before rounding normalize the exponent of fcNormal numbers. */ |
| 749 | omsb = significandMSB() + 1; |
| 750 | |
| 751 | if(omsb) { |
| 752 | /* OMSB is numbered from 1. We want to place it in the integer |
| 753 | bit numbered PRECISON if possible, with a compensating change in |
| 754 | the exponent. */ |
| 755 | exponentChange = omsb - semantics->precision; |
| 756 | |
| 757 | /* If the resulting exponent is too high, overflow according to |
| 758 | the rounding mode. */ |
| 759 | if(exponent + exponentChange > semantics->maxExponent) |
| 760 | return handleOverflow(rounding_mode); |
| 761 | |
| 762 | /* Subnormal numbers have exponent minExponent, and their MSB |
| 763 | is forced based on that. */ |
| 764 | if(exponent + exponentChange < semantics->minExponent) |
| 765 | exponentChange = semantics->minExponent - exponent; |
| 766 | |
| 767 | /* Shifting left is easy as we don't lose precision. */ |
| 768 | if(exponentChange < 0) { |
| 769 | assert(lost_fraction == lfExactlyZero); |
| 770 | |
| 771 | shiftSignificandLeft(-exponentChange); |
| 772 | |
| 773 | return opOK; |
| 774 | } |
| 775 | |
| 776 | if(exponentChange > 0) { |
| 777 | lostFraction lf; |
| 778 | |
| 779 | /* Shift right and capture any new lost fraction. */ |
| 780 | lf = shiftSignificandRight(exponentChange); |
| 781 | |
| 782 | lost_fraction = combineLostFractions(lf, lost_fraction); |
| 783 | |
| 784 | /* Keep OMSB up-to-date. */ |
| 785 | if(omsb > (unsigned) exponentChange) |
| 786 | omsb -= (unsigned) exponentChange; |
| 787 | else |
| 788 | omsb = 0; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* Now round the number according to rounding_mode given the lost |
| 793 | fraction. */ |
| 794 | |
| 795 | /* As specified in IEEE 754, since we do not trap we do not report |
| 796 | underflow for exact results. */ |
| 797 | if(lost_fraction == lfExactlyZero) { |
| 798 | /* Canonicalize zeroes. */ |
| 799 | if(omsb == 0) |
| 800 | category = fcZero; |
| 801 | |
| 802 | return opOK; |
| 803 | } |
| 804 | |
| 805 | /* Increment the significand if we're rounding away from zero. */ |
| 806 | if(roundAwayFromZero(rounding_mode, lost_fraction)) { |
| 807 | if(omsb == 0) |
| 808 | exponent = semantics->minExponent; |
| 809 | |
| 810 | incrementSignificand(); |
| 811 | omsb = significandMSB() + 1; |
| 812 | |
| 813 | /* Did the significand increment overflow? */ |
| 814 | if(omsb == (unsigned) semantics->precision + 1) { |
| 815 | /* Renormalize by incrementing the exponent and shifting our |
| 816 | significand right one. However if we already have the |
| 817 | maximum exponent we overflow to infinity. */ |
| 818 | if(exponent == semantics->maxExponent) { |
| 819 | category = fcInfinity; |
| 820 | |
| 821 | return (opStatus) (opOverflow | opInexact); |
| 822 | } |
| 823 | |
| 824 | shiftSignificandRight(1); |
| 825 | |
| 826 | return opInexact; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | /* The normal case - we were and are not denormal, and any |
| 831 | significand increment above didn't overflow. */ |
| 832 | if(omsb == semantics->precision) |
| 833 | return opInexact; |
| 834 | |
| 835 | /* We have a non-zero denormal. */ |
| 836 | assert(omsb < semantics->precision); |
| 837 | assert(exponent == semantics->minExponent); |
| 838 | |
| 839 | /* Canonicalize zeroes. */ |
| 840 | if(omsb == 0) |
| 841 | category = fcZero; |
| 842 | |
| 843 | /* The fcZero case is a denormal that underflowed to zero. */ |
| 844 | return (opStatus) (opUnderflow | opInexact); |
| 845 | } |
| 846 | |
| 847 | APFloat::opStatus |
| 848 | APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract) |
| 849 | { |
| 850 | switch(convolve(category, rhs.category)) { |
| 851 | default: |
| 852 | assert(0); |
| 853 | |
| 854 | case convolve(fcQNaN, fcZero): |
| 855 | case convolve(fcQNaN, fcNormal): |
| 856 | case convolve(fcQNaN, fcInfinity): |
| 857 | case convolve(fcQNaN, fcQNaN): |
| 858 | case convolve(fcNormal, fcZero): |
| 859 | case convolve(fcInfinity, fcNormal): |
| 860 | case convolve(fcInfinity, fcZero): |
| 861 | return opOK; |
| 862 | |
| 863 | case convolve(fcZero, fcQNaN): |
| 864 | case convolve(fcNormal, fcQNaN): |
| 865 | case convolve(fcInfinity, fcQNaN): |
| 866 | category = fcQNaN; |
| 867 | return opOK; |
| 868 | |
| 869 | case convolve(fcNormal, fcInfinity): |
| 870 | case convolve(fcZero, fcInfinity): |
| 871 | category = fcInfinity; |
| 872 | sign = rhs.sign ^ subtract; |
| 873 | return opOK; |
| 874 | |
| 875 | case convolve(fcZero, fcNormal): |
| 876 | assign(rhs); |
| 877 | sign = rhs.sign ^ subtract; |
| 878 | return opOK; |
| 879 | |
| 880 | case convolve(fcZero, fcZero): |
| 881 | /* Sign depends on rounding mode; handled by caller. */ |
| 882 | return opOK; |
| 883 | |
| 884 | case convolve(fcInfinity, fcInfinity): |
| 885 | /* Differently signed infinities can only be validly |
| 886 | subtracted. */ |
| 887 | if(sign ^ rhs.sign != subtract) { |
| 888 | category = fcQNaN; |
| 889 | return opInvalidOp; |
| 890 | } |
| 891 | |
| 892 | return opOK; |
| 893 | |
| 894 | case convolve(fcNormal, fcNormal): |
| 895 | return opDivByZero; |
| 896 | } |
| 897 | } |
| 898 | |
| 899 | /* Add or subtract two normal numbers. */ |
| 900 | lostFraction |
| 901 | APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract) |
| 902 | { |
| 903 | integerPart carry; |
| 904 | lostFraction lost_fraction; |
| 905 | int bits; |
| 906 | |
| 907 | /* Determine if the operation on the absolute values is effectively |
| 908 | an addition or subtraction. */ |
| 909 | subtract ^= (sign ^ rhs.sign); |
| 910 | |
| 911 | /* Are we bigger exponent-wise than the RHS? */ |
| 912 | bits = exponent - rhs.exponent; |
| 913 | |
| 914 | /* Subtraction is more subtle than one might naively expect. */ |
| 915 | if(subtract) { |
| 916 | APFloat temp_rhs(rhs); |
| 917 | bool reverse; |
| 918 | |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 919 | if (bits == 0) { |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 920 | reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; |
| 921 | lost_fraction = lfExactlyZero; |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 922 | } else if (bits > 0) { |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 923 | lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); |
| 924 | shiftSignificandLeft(1); |
| 925 | reverse = false; |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 926 | } else { |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 927 | lost_fraction = shiftSignificandRight(-bits - 1); |
| 928 | temp_rhs.shiftSignificandLeft(1); |
| 929 | reverse = true; |
| 930 | } |
| 931 | |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 932 | if (reverse) { |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 933 | carry = temp_rhs.subtractSignificand |
| 934 | (*this, lost_fraction != lfExactlyZero); |
| 935 | copySignificand(temp_rhs); |
| 936 | sign = !sign; |
| 937 | } else { |
| 938 | carry = subtractSignificand |
| 939 | (temp_rhs, lost_fraction != lfExactlyZero); |
| 940 | } |
| 941 | |
| 942 | /* Invert the lost fraction - it was on the RHS and |
| 943 | subtracted. */ |
| 944 | if(lost_fraction == lfLessThanHalf) |
| 945 | lost_fraction = lfMoreThanHalf; |
| 946 | else if(lost_fraction == lfMoreThanHalf) |
| 947 | lost_fraction = lfLessThanHalf; |
| 948 | |
| 949 | /* The code above is intended to ensure that no borrow is |
| 950 | necessary. */ |
| 951 | assert(!carry); |
| 952 | } else { |
| 953 | if(bits > 0) { |
| 954 | APFloat temp_rhs(rhs); |
| 955 | |
| 956 | lost_fraction = temp_rhs.shiftSignificandRight(bits); |
| 957 | carry = addSignificand(temp_rhs); |
| 958 | } else { |
| 959 | lost_fraction = shiftSignificandRight(-bits); |
| 960 | carry = addSignificand(rhs); |
| 961 | } |
| 962 | |
| 963 | /* We have a guard bit; generating a carry cannot happen. */ |
| 964 | assert(!carry); |
| 965 | } |
| 966 | |
| 967 | return lost_fraction; |
| 968 | } |
| 969 | |
| 970 | APFloat::opStatus |
| 971 | APFloat::multiplySpecials(const APFloat &rhs) |
| 972 | { |
| 973 | switch(convolve(category, rhs.category)) { |
| 974 | default: |
| 975 | assert(0); |
| 976 | |
| 977 | case convolve(fcQNaN, fcZero): |
| 978 | case convolve(fcQNaN, fcNormal): |
| 979 | case convolve(fcQNaN, fcInfinity): |
| 980 | case convolve(fcQNaN, fcQNaN): |
| 981 | case convolve(fcZero, fcQNaN): |
| 982 | case convolve(fcNormal, fcQNaN): |
| 983 | case convolve(fcInfinity, fcQNaN): |
| 984 | category = fcQNaN; |
| 985 | return opOK; |
| 986 | |
| 987 | case convolve(fcNormal, fcInfinity): |
| 988 | case convolve(fcInfinity, fcNormal): |
| 989 | case convolve(fcInfinity, fcInfinity): |
| 990 | category = fcInfinity; |
| 991 | return opOK; |
| 992 | |
| 993 | case convolve(fcZero, fcNormal): |
| 994 | case convolve(fcNormal, fcZero): |
| 995 | case convolve(fcZero, fcZero): |
| 996 | category = fcZero; |
| 997 | return opOK; |
| 998 | |
| 999 | case convolve(fcZero, fcInfinity): |
| 1000 | case convolve(fcInfinity, fcZero): |
| 1001 | category = fcQNaN; |
| 1002 | return opInvalidOp; |
| 1003 | |
| 1004 | case convolve(fcNormal, fcNormal): |
| 1005 | return opOK; |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | APFloat::opStatus |
| 1010 | APFloat::divideSpecials(const APFloat &rhs) |
| 1011 | { |
| 1012 | switch(convolve(category, rhs.category)) { |
| 1013 | default: |
| 1014 | assert(0); |
| 1015 | |
| 1016 | case convolve(fcQNaN, fcZero): |
| 1017 | case convolve(fcQNaN, fcNormal): |
| 1018 | case convolve(fcQNaN, fcInfinity): |
| 1019 | case convolve(fcQNaN, fcQNaN): |
| 1020 | case convolve(fcInfinity, fcZero): |
| 1021 | case convolve(fcInfinity, fcNormal): |
| 1022 | case convolve(fcZero, fcInfinity): |
| 1023 | case convolve(fcZero, fcNormal): |
| 1024 | return opOK; |
| 1025 | |
| 1026 | case convolve(fcZero, fcQNaN): |
| 1027 | case convolve(fcNormal, fcQNaN): |
| 1028 | case convolve(fcInfinity, fcQNaN): |
| 1029 | category = fcQNaN; |
| 1030 | return opOK; |
| 1031 | |
| 1032 | case convolve(fcNormal, fcInfinity): |
| 1033 | category = fcZero; |
| 1034 | return opOK; |
| 1035 | |
| 1036 | case convolve(fcNormal, fcZero): |
| 1037 | category = fcInfinity; |
| 1038 | return opDivByZero; |
| 1039 | |
| 1040 | case convolve(fcInfinity, fcInfinity): |
| 1041 | case convolve(fcZero, fcZero): |
| 1042 | category = fcQNaN; |
| 1043 | return opInvalidOp; |
| 1044 | |
| 1045 | case convolve(fcNormal, fcNormal): |
| 1046 | return opOK; |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | /* Change sign. */ |
| 1051 | void |
| 1052 | APFloat::changeSign() |
| 1053 | { |
| 1054 | /* Look mummy, this one's easy. */ |
| 1055 | sign = !sign; |
| 1056 | } |
| 1057 | |
| 1058 | /* Normalized addition or subtraction. */ |
| 1059 | APFloat::opStatus |
| 1060 | APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode, |
| 1061 | bool subtract) |
| 1062 | { |
| 1063 | opStatus fs; |
| 1064 | |
| 1065 | fs = addOrSubtractSpecials(rhs, subtract); |
| 1066 | |
| 1067 | /* This return code means it was not a simple case. */ |
| 1068 | if(fs == opDivByZero) { |
| 1069 | lostFraction lost_fraction; |
| 1070 | |
| 1071 | lost_fraction = addOrSubtractSignificand(rhs, subtract); |
| 1072 | fs = normalize(rounding_mode, lost_fraction); |
| 1073 | |
| 1074 | /* Can only be zero if we lost no fraction. */ |
| 1075 | assert(category != fcZero || lost_fraction == lfExactlyZero); |
| 1076 | } |
| 1077 | |
| 1078 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| 1079 | positive zero unless rounding to minus infinity, except that |
| 1080 | adding two like-signed zeroes gives that zero. */ |
| 1081 | if(category == fcZero) { |
| 1082 | if(rhs.category != fcZero || (sign == rhs.sign) == subtract) |
| 1083 | sign = (rounding_mode == rmTowardNegative); |
| 1084 | } |
| 1085 | |
| 1086 | return fs; |
| 1087 | } |
| 1088 | |
| 1089 | /* Normalized addition. */ |
| 1090 | APFloat::opStatus |
| 1091 | APFloat::add(const APFloat &rhs, roundingMode rounding_mode) |
| 1092 | { |
| 1093 | return addOrSubtract(rhs, rounding_mode, false); |
| 1094 | } |
| 1095 | |
| 1096 | /* Normalized subtraction. */ |
| 1097 | APFloat::opStatus |
| 1098 | APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode) |
| 1099 | { |
| 1100 | return addOrSubtract(rhs, rounding_mode, true); |
| 1101 | } |
| 1102 | |
| 1103 | /* Normalized multiply. */ |
| 1104 | APFloat::opStatus |
| 1105 | APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode) |
| 1106 | { |
| 1107 | opStatus fs; |
| 1108 | |
| 1109 | sign ^= rhs.sign; |
| 1110 | fs = multiplySpecials(rhs); |
| 1111 | |
| 1112 | if(category == fcNormal) { |
| 1113 | lostFraction lost_fraction = multiplySignificand(rhs, 0); |
| 1114 | fs = normalize(rounding_mode, lost_fraction); |
| 1115 | if(lost_fraction != lfExactlyZero) |
| 1116 | fs = (opStatus) (fs | opInexact); |
| 1117 | } |
| 1118 | |
| 1119 | return fs; |
| 1120 | } |
| 1121 | |
| 1122 | /* Normalized divide. */ |
| 1123 | APFloat::opStatus |
| 1124 | APFloat::divide(const APFloat &rhs, roundingMode rounding_mode) |
| 1125 | { |
| 1126 | opStatus fs; |
| 1127 | |
| 1128 | sign ^= rhs.sign; |
| 1129 | fs = divideSpecials(rhs); |
| 1130 | |
| 1131 | if(category == fcNormal) { |
| 1132 | lostFraction lost_fraction = divideSignificand(rhs); |
| 1133 | fs = normalize(rounding_mode, lost_fraction); |
| 1134 | if(lost_fraction != lfExactlyZero) |
| 1135 | fs = (opStatus) (fs | opInexact); |
| 1136 | } |
| 1137 | |
| 1138 | return fs; |
| 1139 | } |
| 1140 | |
| 1141 | /* Normalized fused-multiply-add. */ |
| 1142 | APFloat::opStatus |
| 1143 | APFloat::fusedMultiplyAdd(const APFloat &multiplicand, |
| 1144 | const APFloat &addend, |
| 1145 | roundingMode rounding_mode) |
| 1146 | { |
| 1147 | opStatus fs; |
| 1148 | |
| 1149 | /* Post-multiplication sign, before addition. */ |
| 1150 | sign ^= multiplicand.sign; |
| 1151 | |
| 1152 | /* If and only if all arguments are normal do we need to do an |
| 1153 | extended-precision calculation. */ |
| 1154 | if(category == fcNormal |
| 1155 | && multiplicand.category == fcNormal |
| 1156 | && addend.category == fcNormal) { |
| 1157 | lostFraction lost_fraction; |
| 1158 | |
| 1159 | lost_fraction = multiplySignificand(multiplicand, &addend); |
| 1160 | fs = normalize(rounding_mode, lost_fraction); |
| 1161 | if(lost_fraction != lfExactlyZero) |
| 1162 | fs = (opStatus) (fs | opInexact); |
| 1163 | |
| 1164 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a |
| 1165 | positive zero unless rounding to minus infinity, except that |
| 1166 | adding two like-signed zeroes gives that zero. */ |
| 1167 | if(category == fcZero && sign != addend.sign) |
| 1168 | sign = (rounding_mode == rmTowardNegative); |
| 1169 | } else { |
| 1170 | fs = multiplySpecials(multiplicand); |
| 1171 | |
| 1172 | /* FS can only be opOK or opInvalidOp. There is no more work |
| 1173 | to do in the latter case. The IEEE-754R standard says it is |
| 1174 | implementation-defined in this case whether, if ADDEND is a |
| 1175 | quiet QNaN, we raise invalid op; this implementation does so. |
| 1176 | |
| 1177 | If we need to do the addition we can do so with normal |
| 1178 | precision. */ |
| 1179 | if(fs == opOK) |
| 1180 | fs = addOrSubtract(addend, rounding_mode, false); |
| 1181 | } |
| 1182 | |
| 1183 | return fs; |
| 1184 | } |
| 1185 | |
| 1186 | /* Comparison requires normalized numbers. */ |
| 1187 | APFloat::cmpResult |
| 1188 | APFloat::compare(const APFloat &rhs) const |
| 1189 | { |
| 1190 | cmpResult result; |
| 1191 | |
| 1192 | assert(semantics == rhs.semantics); |
| 1193 | |
| 1194 | switch(convolve(category, rhs.category)) { |
| 1195 | default: |
| 1196 | assert(0); |
| 1197 | |
| 1198 | case convolve(fcQNaN, fcZero): |
| 1199 | case convolve(fcQNaN, fcNormal): |
| 1200 | case convolve(fcQNaN, fcInfinity): |
| 1201 | case convolve(fcQNaN, fcQNaN): |
| 1202 | case convolve(fcZero, fcQNaN): |
| 1203 | case convolve(fcNormal, fcQNaN): |
| 1204 | case convolve(fcInfinity, fcQNaN): |
| 1205 | return cmpUnordered; |
| 1206 | |
| 1207 | case convolve(fcInfinity, fcNormal): |
| 1208 | case convolve(fcInfinity, fcZero): |
| 1209 | case convolve(fcNormal, fcZero): |
| 1210 | if(sign) |
| 1211 | return cmpLessThan; |
| 1212 | else |
| 1213 | return cmpGreaterThan; |
| 1214 | |
| 1215 | case convolve(fcNormal, fcInfinity): |
| 1216 | case convolve(fcZero, fcInfinity): |
| 1217 | case convolve(fcZero, fcNormal): |
| 1218 | if(rhs.sign) |
| 1219 | return cmpGreaterThan; |
| 1220 | else |
| 1221 | return cmpLessThan; |
| 1222 | |
| 1223 | case convolve(fcInfinity, fcInfinity): |
| 1224 | if(sign == rhs.sign) |
| 1225 | return cmpEqual; |
| 1226 | else if(sign) |
| 1227 | return cmpLessThan; |
| 1228 | else |
| 1229 | return cmpGreaterThan; |
| 1230 | |
| 1231 | case convolve(fcZero, fcZero): |
| 1232 | return cmpEqual; |
| 1233 | |
| 1234 | case convolve(fcNormal, fcNormal): |
| 1235 | break; |
| 1236 | } |
| 1237 | |
| 1238 | /* Two normal numbers. Do they have the same sign? */ |
| 1239 | if(sign != rhs.sign) { |
| 1240 | if(sign) |
| 1241 | result = cmpLessThan; |
| 1242 | else |
| 1243 | result = cmpGreaterThan; |
| 1244 | } else { |
| 1245 | /* Compare absolute values; invert result if negative. */ |
| 1246 | result = compareAbsoluteValue(rhs); |
| 1247 | |
| 1248 | if(sign) { |
| 1249 | if(result == cmpLessThan) |
| 1250 | result = cmpGreaterThan; |
| 1251 | else if(result == cmpGreaterThan) |
| 1252 | result = cmpLessThan; |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | return result; |
| 1257 | } |
| 1258 | |
| 1259 | APFloat::opStatus |
| 1260 | APFloat::convert(const fltSemantics &toSemantics, |
| 1261 | roundingMode rounding_mode) |
| 1262 | { |
| 1263 | unsigned int newPartCount; |
| 1264 | opStatus fs; |
| 1265 | |
| 1266 | newPartCount = partCountForBits(toSemantics.precision + 1); |
| 1267 | |
| 1268 | /* If our new form is wider, re-allocate our bit pattern into wider |
| 1269 | storage. */ |
| 1270 | if(newPartCount > partCount()) { |
| 1271 | integerPart *newParts; |
| 1272 | |
| 1273 | newParts = new integerPart[newPartCount]; |
| 1274 | APInt::tcSet(newParts, 0, newPartCount); |
| 1275 | APInt::tcAssign(newParts, significandParts(), partCount()); |
| 1276 | freeSignificand(); |
| 1277 | significand.parts = newParts; |
| 1278 | } |
| 1279 | |
| 1280 | if(category == fcNormal) { |
| 1281 | /* Re-interpret our bit-pattern. */ |
| 1282 | exponent += toSemantics.precision - semantics->precision; |
| 1283 | semantics = &toSemantics; |
| 1284 | fs = normalize(rounding_mode, lfExactlyZero); |
| 1285 | } else { |
| 1286 | semantics = &toSemantics; |
| 1287 | fs = opOK; |
| 1288 | } |
| 1289 | |
| 1290 | return fs; |
| 1291 | } |
| 1292 | |
| 1293 | /* Convert a floating point number to an integer according to the |
| 1294 | rounding mode. If the rounded integer value is out of range this |
| 1295 | returns an invalid operation exception. If the rounded value is in |
| 1296 | range but the floating point number is not the exact integer, the C |
| 1297 | standard doesn't require an inexact exception to be raised. IEEE |
| 1298 | 854 does require it so we do that. |
| 1299 | |
| 1300 | Note that for conversions to integer type the C standard requires |
| 1301 | round-to-zero to always be used. */ |
| 1302 | APFloat::opStatus |
| 1303 | APFloat::convertToInteger(integerPart *parts, unsigned int width, |
| 1304 | bool isSigned, |
| 1305 | roundingMode rounding_mode) const |
| 1306 | { |
| 1307 | lostFraction lost_fraction; |
| 1308 | unsigned int msb, partsCount; |
| 1309 | int bits; |
| 1310 | |
| 1311 | /* Handle the three special cases first. */ |
| 1312 | if(category == fcInfinity || category == fcQNaN) |
| 1313 | return opInvalidOp; |
| 1314 | |
| 1315 | partsCount = partCountForBits(width); |
| 1316 | |
| 1317 | if(category == fcZero) { |
| 1318 | APInt::tcSet(parts, 0, partsCount); |
| 1319 | return opOK; |
| 1320 | } |
| 1321 | |
| 1322 | /* Shift the bit pattern so the fraction is lost. */ |
| 1323 | APFloat tmp(*this); |
| 1324 | |
| 1325 | bits = (int) semantics->precision - 1 - exponent; |
| 1326 | |
| 1327 | if(bits > 0) { |
| 1328 | lost_fraction = tmp.shiftSignificandRight(bits); |
| 1329 | } else { |
| 1330 | tmp.shiftSignificandLeft(-bits); |
| 1331 | lost_fraction = lfExactlyZero; |
| 1332 | } |
| 1333 | |
| 1334 | if(lost_fraction != lfExactlyZero |
| 1335 | && tmp.roundAwayFromZero(rounding_mode, lost_fraction)) |
| 1336 | tmp.incrementSignificand(); |
| 1337 | |
| 1338 | msb = tmp.significandMSB(); |
| 1339 | |
| 1340 | /* Negative numbers cannot be represented as unsigned. */ |
| 1341 | if(!isSigned && tmp.sign && msb != -1U) |
| 1342 | return opInvalidOp; |
| 1343 | |
| 1344 | /* It takes exponent + 1 bits to represent the truncated floating |
| 1345 | point number without its sign. We lose a bit for the sign, but |
| 1346 | the maximally negative integer is a special case. */ |
| 1347 | if(msb + 1 > width) /* !! Not same as msb >= width !! */ |
| 1348 | return opInvalidOp; |
| 1349 | |
| 1350 | if(isSigned && msb + 1 == width |
| 1351 | && (!tmp.sign || tmp.significandLSB() != msb)) |
| 1352 | return opInvalidOp; |
| 1353 | |
| 1354 | APInt::tcAssign(parts, tmp.significandParts(), partsCount); |
| 1355 | |
| 1356 | if(tmp.sign) |
| 1357 | APInt::tcNegate(parts, partsCount); |
| 1358 | |
| 1359 | if(lost_fraction == lfExactlyZero) |
| 1360 | return opOK; |
| 1361 | else |
| 1362 | return opInexact; |
| 1363 | } |
| 1364 | |
| 1365 | APFloat::opStatus |
| 1366 | APFloat::convertFromUnsignedInteger(integerPart *parts, |
| 1367 | unsigned int partCount, |
| 1368 | roundingMode rounding_mode) |
| 1369 | { |
| 1370 | unsigned int msb, precision; |
| 1371 | lostFraction lost_fraction; |
| 1372 | |
| 1373 | msb = APInt::tcMSB(parts, partCount) + 1; |
| 1374 | precision = semantics->precision; |
| 1375 | |
| 1376 | category = fcNormal; |
| 1377 | exponent = precision - 1; |
| 1378 | |
| 1379 | if(msb > precision) { |
| 1380 | exponent += (msb - precision); |
| 1381 | lost_fraction = shiftRight(parts, partCount, msb - precision); |
| 1382 | msb = precision; |
| 1383 | } else |
| 1384 | lost_fraction = lfExactlyZero; |
| 1385 | |
| 1386 | /* Copy the bit image. */ |
| 1387 | zeroSignificand(); |
| 1388 | APInt::tcAssign(significandParts(), parts, partCountForBits(msb)); |
| 1389 | |
| 1390 | return normalize(rounding_mode, lost_fraction); |
| 1391 | } |
| 1392 | |
| 1393 | APFloat::opStatus |
| 1394 | APFloat::convertFromInteger(const integerPart *parts, |
| 1395 | unsigned int partCount, bool isSigned, |
| 1396 | roundingMode rounding_mode) |
| 1397 | { |
| 1398 | unsigned int width; |
| 1399 | opStatus status; |
| 1400 | integerPart *copy; |
| 1401 | |
| 1402 | copy = new integerPart[partCount]; |
| 1403 | APInt::tcAssign(copy, parts, partCount); |
| 1404 | |
| 1405 | width = partCount * integerPartWidth; |
| 1406 | |
| 1407 | sign = false; |
| 1408 | if(isSigned && APInt::tcExtractBit(parts, width - 1)) { |
| 1409 | sign = true; |
| 1410 | APInt::tcNegate(copy, partCount); |
| 1411 | } |
| 1412 | |
| 1413 | status = convertFromUnsignedInteger(copy, partCount, rounding_mode); |
| 1414 | delete [] copy; |
| 1415 | |
| 1416 | return status; |
| 1417 | } |
| 1418 | |
| 1419 | APFloat::opStatus |
| 1420 | APFloat::convertFromHexadecimalString(const char *p, |
| 1421 | roundingMode rounding_mode) |
| 1422 | { |
| 1423 | lostFraction lost_fraction; |
| 1424 | integerPart *significand; |
| 1425 | unsigned int bitPos, partsCount; |
| 1426 | const char *dot, *firstSignificantDigit; |
| 1427 | |
| 1428 | zeroSignificand(); |
| 1429 | exponent = 0; |
| 1430 | category = fcNormal; |
| 1431 | |
| 1432 | significand = significandParts(); |
| 1433 | partsCount = partCount(); |
| 1434 | bitPos = partsCount * integerPartWidth; |
| 1435 | |
| 1436 | /* Skip leading zeroes and any(hexa)decimal point. */ |
| 1437 | p = skipLeadingZeroesAndAnyDot(p, &dot); |
| 1438 | firstSignificantDigit = p; |
| 1439 | |
| 1440 | for(;;) { |
| 1441 | integerPart hex_value; |
| 1442 | |
| 1443 | if(*p == '.') { |
| 1444 | assert(dot == 0); |
| 1445 | dot = p++; |
| 1446 | } |
| 1447 | |
| 1448 | hex_value = hexDigitValue(*p); |
| 1449 | if(hex_value == -1U) { |
| 1450 | lost_fraction = lfExactlyZero; |
| 1451 | break; |
| 1452 | } |
| 1453 | |
| 1454 | p++; |
| 1455 | |
| 1456 | /* Store the number whilst 4-bit nibbles remain. */ |
| 1457 | if(bitPos) { |
| 1458 | bitPos -= 4; |
| 1459 | hex_value <<= bitPos % integerPartWidth; |
| 1460 | significand[bitPos / integerPartWidth] |= hex_value; |
| 1461 | } else { |
| 1462 | lost_fraction = trailingHexadecimalFraction(p, hex_value); |
| 1463 | while(hexDigitValue(*p) != -1U) |
| 1464 | p++; |
| 1465 | break; |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | /* Hex floats require an exponent but not a hexadecimal point. */ |
| 1470 | assert(*p == 'p' || *p == 'P'); |
| 1471 | |
| 1472 | /* Ignore the exponent if we are zero. */ |
| 1473 | if(p != firstSignificantDigit) { |
| 1474 | int expAdjustment; |
| 1475 | |
| 1476 | /* Implicit hexadecimal point? */ |
| 1477 | if(!dot) |
| 1478 | dot = p; |
| 1479 | |
| 1480 | /* Calculate the exponent adjustment implicit in the number of |
| 1481 | significant digits. */ |
| 1482 | expAdjustment = dot - firstSignificantDigit; |
| 1483 | if(expAdjustment < 0) |
| 1484 | expAdjustment++; |
| 1485 | expAdjustment = expAdjustment * 4 - 1; |
| 1486 | |
| 1487 | /* Adjust for writing the significand starting at the most |
| 1488 | significant nibble. */ |
| 1489 | expAdjustment += semantics->precision; |
| 1490 | expAdjustment -= partsCount * integerPartWidth; |
| 1491 | |
| 1492 | /* Adjust for the given exponent. */ |
| 1493 | exponent = totalExponent(p, expAdjustment); |
| 1494 | } |
| 1495 | |
| 1496 | return normalize(rounding_mode, lost_fraction); |
| 1497 | } |
| 1498 | |
| 1499 | APFloat::opStatus |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 1500 | APFloat::convertFromString(const char *p, roundingMode rounding_mode) { |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 1501 | /* Handle a leading minus sign. */ |
| 1502 | if(*p == '-') |
| 1503 | sign = 1, p++; |
| 1504 | else |
| 1505 | sign = 0; |
| 1506 | |
| 1507 | if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) |
| 1508 | return convertFromHexadecimalString(p + 2, rounding_mode); |
Chris Lattner | ada530b | 2007-08-24 03:02:34 +0000 | [diff] [blame] | 1509 | |
| 1510 | assert(0 && "Decimal to binary conversions not yet implemented"); |
| 1511 | abort(); |
Chris Lattner | b39cdde | 2007-08-20 22:49:32 +0000 | [diff] [blame] | 1512 | } |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1513 | |
| 1514 | // For good performance it is desirable for different APFloats |
| 1515 | // to produce different integers. |
| 1516 | uint32_t |
| 1517 | APFloat::getHashValue() const { |
| 1518 | if (category==fcZero) return sign<<8 | semantics->precision ; |
| 1519 | else if (category==fcInfinity) return sign<<9 | semantics->precision; |
| 1520 | else if (category==fcQNaN) return 1<<10 | semantics->precision; |
| 1521 | else { |
| 1522 | uint32_t hash = sign<<11 | semantics->precision | exponent<<12; |
| 1523 | const integerPart* p = significandParts(); |
| 1524 | for (int i=partCount(); i>0; i--, p++) |
| 1525 | hash ^= ((uint32_t)*p) ^ (*p)>>32; |
| 1526 | return hash; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | // Conversion from APFloat to/from host float/double. It may eventually be |
| 1531 | // possible to eliminate these and have everybody deal with APFloats, but that |
| 1532 | // will take a while. This approach will not easily extend to long double. |
| 1533 | // Current implementation requires partCount()==1, which is correct at the |
| 1534 | // moment but could be made more general. |
| 1535 | |
| 1536 | double |
| 1537 | APFloat::convertToDouble() const { |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1538 | assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble); |
| 1539 | assert (partCount()==1); |
| 1540 | |
| 1541 | uint64_t myexponent, mysign, mysignificand; |
| 1542 | |
| 1543 | if (category==fcNormal) { |
| 1544 | mysign = sign; |
| 1545 | mysignificand = *significandParts(); |
| 1546 | myexponent = exponent+1023; //bias |
| 1547 | } else if (category==fcZero) { |
| 1548 | mysign = sign; |
| 1549 | myexponent = 0; |
| 1550 | mysignificand = 0; |
| 1551 | } else if (category==fcInfinity) { |
| 1552 | mysign = sign; |
| 1553 | myexponent = 0x7ff; |
| 1554 | mysignificand = 0; |
| 1555 | } else if (category==fcQNaN) { |
| 1556 | mysign = 0; |
| 1557 | myexponent = 0x7ff; |
| 1558 | mysignificand = 0xfffffffffffffLL; |
| 1559 | } else |
| 1560 | assert(0); |
| 1561 | |
Dale Johannesen | d3b51fd | 2007-08-24 05:08:11 +0000 | [diff] [blame] | 1562 | return BitsToDouble(((mysign & 1) << 63) | ((myexponent & 0x7ff) << 52) | |
| 1563 | (mysignificand & 0xfffffffffffffLL)); |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1564 | } |
| 1565 | |
| 1566 | float |
| 1567 | APFloat::convertToFloat() const { |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1568 | assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle); |
| 1569 | assert (partCount()==1); |
| 1570 | |
| 1571 | uint32_t mysign, myexponent, mysignificand; |
| 1572 | |
| 1573 | if (category==fcNormal) { |
| 1574 | mysign = sign; |
| 1575 | myexponent = exponent+127; //bias |
| 1576 | mysignificand = *significandParts(); |
| 1577 | } else if (category==fcZero) { |
| 1578 | mysign = sign; |
| 1579 | myexponent = 0; |
| 1580 | mysignificand = 0; |
| 1581 | } else if (category==fcInfinity) { |
| 1582 | mysign = sign; |
| 1583 | myexponent = 0xff; |
| 1584 | mysignificand = 0; |
| 1585 | } else if (category==fcQNaN) { |
| 1586 | mysign = sign; |
| 1587 | myexponent = 0x7ff; |
| 1588 | mysignificand = 0x7fffff; |
| 1589 | } else |
| 1590 | assert(0); |
| 1591 | |
Dale Johannesen | d3b51fd | 2007-08-24 05:08:11 +0000 | [diff] [blame] | 1592 | return BitsToFloat(((mysign&1) << 31) | ((myexponent&0xff) << 23) | |
| 1593 | (mysignificand & 0x7fffff)); |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1594 | } |
| 1595 | |
| 1596 | APFloat::APFloat(double d) { |
Dale Johannesen | d3b51fd | 2007-08-24 05:08:11 +0000 | [diff] [blame] | 1597 | uint64_t i = DoubleToBits(d); |
| 1598 | uint64_t mysign = i >> 63; |
| 1599 | uint64_t myexponent = (i >> 52) & 0x7ff; |
| 1600 | uint64_t mysignificand = i & 0xfffffffffffffLL; |
| 1601 | |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1602 | initialize(&APFloat::IEEEdouble); |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1603 | assert(partCount()==1); |
| 1604 | |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1605 | if (myexponent==0 && mysignificand==0) { |
| 1606 | // exponent, significand meaningless |
| 1607 | category = fcZero; |
| 1608 | sign = mysign; |
| 1609 | } else if (myexponent==0x7ff && mysignificand==0) { |
| 1610 | // exponent, significand meaningless |
| 1611 | category = fcInfinity; |
| 1612 | sign = mysign; |
| 1613 | } else if (myexponent==0x7ff && (mysignificand & 0x8000000000000LL)) { |
| 1614 | // sign, exponent, significand meaningless |
| 1615 | category = fcQNaN; |
| 1616 | } else { |
| 1617 | sign = mysign; |
| 1618 | category = fcNormal; |
| 1619 | exponent = myexponent - 1023; |
| 1620 | *significandParts() = mysignificand | 0x100000000000000LL; |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | APFloat::APFloat(float f) { |
Dale Johannesen | d3b51fd | 2007-08-24 05:08:11 +0000 | [diff] [blame] | 1625 | uint32_t i = FloatToBits(f); |
| 1626 | uint32_t mysign = i >> 31; |
| 1627 | uint32_t myexponent = (i >> 23) & 0xff; |
| 1628 | uint32_t mysignificand = i & 0x7fffff; |
| 1629 | |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1630 | initialize(&APFloat::IEEEsingle); |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1631 | assert(partCount()==1); |
| 1632 | |
Dale Johannesen | 343e770 | 2007-08-24 00:56:33 +0000 | [diff] [blame] | 1633 | if (myexponent==0 && mysignificand==0) { |
| 1634 | // exponent, significand meaningless |
| 1635 | category = fcZero; |
| 1636 | sign = mysign; |
| 1637 | } else if (myexponent==0xff && mysignificand==0) { |
| 1638 | // exponent, significand meaningless |
| 1639 | category = fcInfinity; |
| 1640 | sign = mysign; |
| 1641 | } else if (myexponent==0xff && (mysignificand & 0x400000)) { |
| 1642 | // sign, exponent, significand meaningless |
| 1643 | category = fcQNaN; |
| 1644 | } else { |
| 1645 | category = fcNormal; |
| 1646 | sign = mysign; |
| 1647 | exponent = myexponent - 127; //bias |
| 1648 | *significandParts() = mysignificand | 0x800000; // integer bit |
| 1649 | } |
| 1650 | } |