blob: 7c555dd46f1a387318489b0aa43fd84afaa2a9a9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86CallingConv.td - Calling Conventions for X86 32/64 ----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
18
19//===----------------------------------------------------------------------===//
20// Return Value Calling Conventions
21//===----------------------------------------------------------------------===//
22
23// Return-value conventions common to all X86 CC's.
24def RetCC_X86Common : CallingConv<[
25 // Scalar values are returned in AX first, then DX.
26 CCIfType<[i8] , CCAssignToReg<[AL]>>,
27 CCIfType<[i16], CCAssignToReg<[AX]>>,
28 CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
29 CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
30
31 // Vector types are returned in XMM0 and XMM1, when they fit. If the target
32 // doesn't have XMM registers, it won't have vector types.
33 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
34 CCAssignToReg<[XMM0,XMM1]>>,
35
36 // MMX vector types are always returned in MM0. If the target doesn't have
37 // MM0, it doesn't support these vector types.
Dale Johannesen19f781d2007-08-06 21:31:06 +000038 CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[MM0]>>,
39
40 // Long double types are always returned in ST0 (even with SSE).
41 CCIfType<[f80], CCAssignToReg<[ST0]>>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042]>;
43
44// X86-32 C return-value convention.
45def RetCC_X86_32_C : CallingConv<[
46 // The X86-32 calling convention returns FP values in ST0, otherwise it is the
47 // same as the common X86 calling conv.
48 CCIfType<[f32], CCAssignToReg<[ST0]>>,
49 CCIfType<[f64], CCAssignToReg<[ST0]>>,
50 CCDelegateTo<RetCC_X86Common>
51]>;
52
53// X86-32 FastCC return-value convention.
54def RetCC_X86_32_Fast : CallingConv<[
55 // The X86-32 fastcc returns FP values in XMM0 if the target has SSE2,
56 // otherwise it is the the C calling conventions.
57 CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>,
58 CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>,
59 CCDelegateTo<RetCC_X86Common>
60]>;
61
62// X86-64 C return-value convention.
63def RetCC_X86_64_C : CallingConv<[
64 // The X86-64 calling convention always returns FP values in XMM0.
65 CCIfType<[f32], CCAssignToReg<[XMM0]>>,
66 CCIfType<[f64], CCAssignToReg<[XMM0]>>,
67 CCDelegateTo<RetCC_X86Common>
68]>;
69
70
71
72// This is the root return-value convention for the X86-32 backend.
73def RetCC_X86_32 : CallingConv<[
74 // If FastCC, use RetCC_X86_32_Fast.
75 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
76 // Otherwise, use RetCC_X86_32_C.
77 CCDelegateTo<RetCC_X86_32_C>
78]>;
79
80// This is the root return-value convention for the X86-64 backend.
81def RetCC_X86_64 : CallingConv<[
82 // Always just the same as C calling conv for X86-64.
83 CCDelegateTo<RetCC_X86_64_C>
84]>;
85
86// This is the return-value convention used for the entire X86 backend.
87def RetCC_X86 : CallingConv<[
88 CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
89 CCDelegateTo<RetCC_X86_32>
90]>;
91
92//===----------------------------------------------------------------------===//
93// X86-64 Argument Calling Conventions
94//===----------------------------------------------------------------------===//
95
96def CC_X86_64_C : CallingConv<[
97 // Promote i8/i16 arguments to i32.
98 CCIfType<[i8, i16], CCPromoteToType<i32>>,
99
100 CCIfStruct<CCStructAssign<[RDI, RSI, RDX, RCX, R8, R9 ]>>,
101
102 // The first 6 integer arguments are passed in integer registers.
103 CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
104 CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
105
106 // The first 8 FP/Vector arguments are passed in XMM registers.
107 CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
108 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
109
110 // The first 8 MMX vector arguments are passed in GPRs.
111 CCIfType<[v8i8, v4i16, v2i32, v1i64],
112 CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
113
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000114 // The 'nest' parameter, if any, is passed in R10.
115 CCIfNest<CCAssignToReg<[R10]>>,
116
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 // Integer/FP values get stored in stack slots that are 8 bytes in size and
118 // 8-byte aligned if there are no more registers to hold them.
119 CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
120
121 // Vectors get 16-byte stack slots that are 16-byte aligned.
122 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
123
124 // __m64 vectors get 8-byte stack slots that are 8-byte aligned.
125 CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
126]>;
127
128
129//===----------------------------------------------------------------------===//
130// X86 C Calling Convention
131//===----------------------------------------------------------------------===//
132
133/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
134/// values are spilled on the stack, and the first 4 vector values go in XMM
135/// regs.
136def CC_X86_32_Common : CallingConv<[
137 // Integer/Float values get stored in stack slots that are 4 bytes in
138 // size and 4-byte aligned.
139 CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
140
141 // Doubles get 8-byte slots that are 4-byte aligned.
142 CCIfType<[f64], CCAssignToStack<8, 4>>,
Dale Johannesen19f781d2007-08-06 21:31:06 +0000143
144 // Long doubles get 16-byte slots that are 4-byte aligned.
145 CCIfType<[f80], CCAssignToStack<16, 4>>,
146
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147 // The first 4 vector arguments are passed in XMM registers.
148 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
149 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
150
151 // Other vectors get 16-byte stack slots that are 16-byte aligned.
152 CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
153
154 // __m64 vectors get 8-byte stack slots that are 8-byte aligned. They are
155 // passed in the parameter area.
156 CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
157]>;
158
159def CC_X86_32_C : CallingConv<[
160 // Promote i8/i16 arguments to i32.
161 CCIfType<[i8, i16], CCPromoteToType<i32>>,
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000162
163 // The 'nest' parameter, if any, is passed in ECX.
164 CCIfNest<CCAssignToReg<[ECX]>>,
165
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000166 // The first 3 integer arguments, if marked 'inreg' and if the call is not
167 // a vararg call, are passed in integer registers.
168 CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000169
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000170 // Otherwise, same as everything else.
171 CCDelegateTo<CC_X86_32_Common>
172]>;
173
174
175def CC_X86_32_FastCall : CallingConv<[
176 // Promote i8/i16 arguments to i32.
177 CCIfType<[i8, i16], CCPromoteToType<i32>>,
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000178
179 // The 'nest' parameter, if any, is passed in EAX.
180 CCIfNest<CCAssignToReg<[EAX]>>,
181
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 // The first 2 integer arguments are passed in ECX/EDX
183 CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000184
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000185 // Otherwise, same as everything else.
186 CCDelegateTo<CC_X86_32_Common>
187]>;