Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 1 | //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the X86MCCodeEmitter class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "x86-emitter" |
| 15 | #include "X86.h" |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 16 | #include "X86InstrInfo.h" |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 17 | #include "llvm/MC/MCCodeEmitter.h" |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 18 | #include "llvm/MC/MCInst.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 20 | using namespace llvm; |
| 21 | |
| 22 | namespace { |
| 23 | class X86MCCodeEmitter : public MCCodeEmitter { |
| 24 | X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
| 25 | void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 26 | const TargetMachine &TM; |
| 27 | const TargetInstrInfo &TII; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 28 | bool Is64BitMode; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 29 | public: |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 30 | X86MCCodeEmitter(TargetMachine &tm) |
| 31 | : TM(tm), TII(*TM.getInstrInfo()) { |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 32 | // FIXME: Get this from the right place. |
| 33 | Is64BitMode = false; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 34 | } |
| 35 | |
| 36 | ~X86MCCodeEmitter() {} |
| 37 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 38 | static unsigned GetX86RegNum(const MCOperand &MO) { |
| 39 | return X86RegisterInfo::getX86RegNum(MO.getReg()); |
| 40 | } |
| 41 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 42 | void EmitByte(unsigned char C, raw_ostream &OS) const { |
| 43 | OS << (char)C; |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 44 | } |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 45 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 46 | void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { |
| 47 | // Output the constant in little endian byte order. |
| 48 | for (unsigned i = 0; i != Size; ++i) { |
| 49 | EmitByte(Val & 255, OS); |
| 50 | Val >>= 8; |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| 55 | unsigned RM) { |
| 56 | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| 57 | return RM | (RegOpcode << 3) | (Mod << 6); |
| 58 | } |
| 59 | |
| 60 | void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, |
| 61 | raw_ostream &OS) const { |
| 62 | EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS); |
| 63 | } |
| 64 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 65 | void EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| 66 | unsigned RegOpcodeField, intptr_t PCAdj, |
| 67 | raw_ostream &OS) const; |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 68 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 69 | void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const; |
| 70 | |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 71 | }; |
| 72 | |
| 73 | } // end anonymous namespace |
| 74 | |
| 75 | |
| 76 | MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &, |
| 77 | TargetMachine &TM) { |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 78 | return new X86MCCodeEmitter(TM); |
| 79 | } |
| 80 | |
| 81 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 82 | /// isDisp8 - Return true if this signed displacement fits in a 8-bit |
| 83 | /// sign-extended field. |
| 84 | static bool isDisp8(int Value) { |
| 85 | return Value == (signed char)Value; |
| 86 | } |
| 87 | |
| 88 | void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| 89 | unsigned RegOpcodeField, |
| 90 | intptr_t PCAdj, |
| 91 | raw_ostream &OS) const { |
| 92 | const MCOperand &Op3 = MI.getOperand(Op+3); |
| 93 | int DispVal = 0; |
| 94 | const MCOperand *DispForReloc = 0; |
| 95 | |
| 96 | // Figure out what sort of displacement we have to handle here. |
| 97 | if (Op3.isImm()) { |
| 98 | DispVal = Op3.getImm(); |
| 99 | } else { |
| 100 | #if 0 |
| 101 | if (Op3.isGlobal()) { |
| 102 | DispForReloc = &Op3; |
| 103 | } else if (Op3.isSymbol()) { |
| 104 | DispForReloc = &Op3; |
| 105 | } else if (Op3.isCPI()) { |
| 106 | if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { |
| 107 | DispForReloc = &Op3; |
| 108 | } else { |
| 109 | DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); |
| 110 | DispVal += Op3.getOffset(); |
| 111 | } |
| 112 | } else { |
| 113 | assert(Op3.isJTI()); |
| 114 | if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { |
| 115 | DispForReloc = &Op3; |
| 116 | } else { |
| 117 | DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); |
| 118 | } |
| 119 | #endif |
| 120 | } |
| 121 | |
| 122 | const MCOperand &Base = MI.getOperand(Op); |
| 123 | //const MCOperand &Scale = MI.getOperand(Op+1); |
| 124 | const MCOperand &IndexReg = MI.getOperand(Op+2); |
| 125 | unsigned BaseReg = Base.getReg(); |
| 126 | |
| 127 | // Is a SIB byte needed? |
| 128 | // If no BaseReg, issue a RIP relative instruction only if the MCE can |
| 129 | // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table |
| 130 | // 2-7) and absolute references. |
| 131 | if ((!Is64BitMode || DispForReloc || BaseReg != 0) && |
| 132 | IndexReg.getReg() == 0 && |
| 133 | (BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) { |
| 134 | if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement? |
| 135 | // Emit special case [disp32] encoding |
| 136 | EmitByte(ModRMByte(0, RegOpcodeField, 5), OS); |
| 137 | #if 0 |
| 138 | emitDisplacementField(DispForReloc, DispVal, PCAdj, true); |
| 139 | #endif |
| 140 | } else { |
| 141 | unsigned BaseRegNo = GetX86RegNum(Base); |
| 142 | if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { |
| 143 | // Emit simple indirect register encoding... [EAX] f.e. |
| 144 | EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS); |
| 145 | } else if (!DispForReloc && isDisp8(DispVal)) { |
| 146 | // Emit the disp8 encoding... [REG+disp8] |
| 147 | EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS); |
| 148 | EmitConstant(DispVal, 1, OS); |
| 149 | } else { |
| 150 | // Emit the most general non-SIB encoding: [REG+disp32] |
| 151 | EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS); |
| 152 | #if 0 |
| 153 | emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); |
| 154 | #endif |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | } else { // We need a SIB byte, so start by outputting the ModR/M byte first |
| 159 | assert(IndexReg.getReg() != X86::ESP && |
| 160 | IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); |
| 161 | |
| 162 | bool ForceDisp32 = false; |
| 163 | bool ForceDisp8 = false; |
| 164 | if (BaseReg == 0) { |
| 165 | // If there is no base register, we emit the special case SIB byte with |
| 166 | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| 167 | EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); |
| 168 | ForceDisp32 = true; |
| 169 | } else if (DispForReloc) { |
| 170 | // Emit the normal disp32 encoding. |
| 171 | EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); |
| 172 | ForceDisp32 = true; |
| 173 | } else if (DispVal == 0 && BaseReg != X86::EBP) { |
| 174 | // Emit no displacement ModR/M byte |
| 175 | EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); |
| 176 | } else if (isDisp8(DispVal)) { |
| 177 | // Emit the disp8 encoding. |
| 178 | EmitByte(ModRMByte(1, RegOpcodeField, 4), OS); |
| 179 | ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| 180 | } else { |
| 181 | // Emit the normal disp32 encoding. |
| 182 | EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); |
| 183 | } |
| 184 | |
| 185 | #if 0 |
| 186 | // Calculate what the SS field value should be... |
| 187 | static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| 188 | unsigned SS = SSTable[Scale.getImm()]; |
| 189 | |
| 190 | if (BaseReg == 0) { |
| 191 | // Handle the SIB byte for the case where there is no base, see Intel |
| 192 | // Manual 2A, table 2-7. The displacement has already been output. |
| 193 | unsigned IndexRegNo; |
| 194 | if (IndexReg.getReg()) |
| 195 | IndexRegNo = getX86RegNum(IndexReg.getReg()); |
| 196 | else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) |
| 197 | IndexRegNo = 4; |
| 198 | emitSIBByte(SS, IndexRegNo, 5); |
| 199 | } else { |
| 200 | unsigned BaseRegNo = getX86RegNum(BaseReg); |
| 201 | unsigned IndexRegNo; |
| 202 | if (IndexReg.getReg()) |
| 203 | IndexRegNo = getX86RegNum(IndexReg.getReg()); |
| 204 | else |
| 205 | IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| 206 | emitSIBByte(SS, IndexRegNo, BaseRegNo); |
| 207 | } |
| 208 | |
| 209 | // Do we need to output a displacement? |
| 210 | if (ForceDisp8) { |
| 211 | emitConstant(DispVal, 1); |
| 212 | } else if (DispVal != 0 || ForceDisp32) { |
| 213 | emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); |
| 214 | } |
| 215 | #endif |
| 216 | } |
| 217 | } |
| 218 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 219 | |
| 220 | void X86MCCodeEmitter:: |
| 221 | EncodeInstruction(const MCInst &MI, raw_ostream &OS) const { |
| 222 | unsigned Opcode = MI.getOpcode(); |
| 223 | const TargetInstrDesc &Desc = TII.get(Opcode); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 224 | unsigned TSFlags = Desc.TSFlags; |
| 225 | |
| 226 | // FIXME: We should emit the prefixes in exactly the same order as GAS does, |
| 227 | // in order to provide diffability. |
| 228 | |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 229 | // Emit the lock opcode prefix as needed. |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 230 | if (TSFlags & X86II::LOCK) |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 231 | EmitByte(0xF0, OS); |
| 232 | |
| 233 | // Emit segment override opcode prefix as needed. |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 234 | switch (TSFlags & X86II::SegOvrMask) { |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 235 | default: assert(0 && "Invalid segment!"); |
| 236 | case 0: break; // No segment override! |
| 237 | case X86II::FS: |
| 238 | EmitByte(0x64, OS); |
| 239 | break; |
| 240 | case X86II::GS: |
| 241 | EmitByte(0x65, OS); |
| 242 | break; |
| 243 | } |
| 244 | |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 245 | // Emit the repeat opcode prefix as needed. |
| 246 | if ((TSFlags & X86II::Op0Mask) == X86II::REP) |
| 247 | EmitByte(0xF3, OS); |
Chris Lattner | 92b1dfe | 2010-02-03 21:43:43 +0000 | [diff] [blame] | 248 | |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 249 | // Emit the operand size opcode prefix as needed. |
| 250 | if (TSFlags & X86II::OpSize) |
| 251 | EmitByte(0x66, OS); |
| 252 | |
| 253 | // Emit the address size opcode prefix as needed. |
| 254 | if (TSFlags & X86II::AdSize) |
| 255 | EmitByte(0x67, OS); |
| 256 | |
| 257 | bool Need0FPrefix = false; |
| 258 | switch (TSFlags & X86II::Op0Mask) { |
| 259 | default: assert(0 && "Invalid prefix!"); |
| 260 | case 0: break; // No prefix! |
| 261 | case X86II::REP: break; // already handled. |
| 262 | case X86II::TB: // Two-byte opcode prefix |
| 263 | case X86II::T8: // 0F 38 |
| 264 | case X86II::TA: // 0F 3A |
| 265 | Need0FPrefix = true; |
| 266 | break; |
| 267 | case X86II::TF: // F2 0F 38 |
| 268 | EmitByte(0xF2, OS); |
| 269 | Need0FPrefix = true; |
| 270 | break; |
| 271 | case X86II::XS: // F3 0F |
| 272 | EmitByte(0xF3, OS); |
| 273 | Need0FPrefix = true; |
| 274 | break; |
| 275 | case X86II::XD: // F2 0F |
| 276 | EmitByte(0xF2, OS); |
| 277 | Need0FPrefix = true; |
| 278 | break; |
| 279 | case X86II::D8: EmitByte(0xD8, OS); break; |
| 280 | case X86II::D9: EmitByte(0xD9, OS); break; |
| 281 | case X86II::DA: EmitByte(0xDA, OS); break; |
| 282 | case X86II::DB: EmitByte(0xDB, OS); break; |
| 283 | case X86II::DC: EmitByte(0xDC, OS); break; |
| 284 | case X86II::DD: EmitByte(0xDD, OS); break; |
| 285 | case X86II::DE: EmitByte(0xDE, OS); break; |
| 286 | case X86II::DF: EmitByte(0xDF, OS); break; |
| 287 | } |
| 288 | |
| 289 | // Handle REX prefix. |
| 290 | #if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission? |
| 291 | if (Is64BitMode) { |
| 292 | if (unsigned REX = X86InstrInfo::determineREX(MI)) |
| 293 | EmitByte(0x40 | REX, OS); |
| 294 | } |
| 295 | #endif |
| 296 | |
| 297 | // 0x0F escape code must be emitted just before the opcode. |
| 298 | if (Need0FPrefix) |
| 299 | EmitByte(0x0F, OS); |
| 300 | |
| 301 | // FIXME: Pull this up into previous switch if REX can be moved earlier. |
| 302 | switch (TSFlags & X86II::Op0Mask) { |
| 303 | case X86II::TF: // F2 0F 38 |
| 304 | case X86II::T8: // 0F 38 |
| 305 | EmitByte(0x38, OS); |
| 306 | break; |
| 307 | case X86II::TA: // 0F 3A |
| 308 | EmitByte(0x3A, OS); |
| 309 | break; |
| 310 | } |
| 311 | |
| 312 | // If this is a two-address instruction, skip one of the register operands. |
| 313 | unsigned NumOps = Desc.getNumOperands(); |
| 314 | unsigned CurOp = 0; |
| 315 | if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) |
| 316 | ++CurOp; |
| 317 | else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) |
| 318 | // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 |
| 319 | --NumOps; |
| 320 | |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 321 | // FIXME: Can we kill off MRMInitReg?? |
| 322 | |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 323 | unsigned char BaseOpcode = X86InstrInfo::getBaseOpcodeFor(Desc); |
| 324 | switch (TSFlags & X86II::FormMask) { |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 325 | default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; |
| 326 | assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 327 | case X86II::RawFrm: { |
| 328 | EmitByte(BaseOpcode, OS); |
| 329 | |
| 330 | if (CurOp == NumOps) |
| 331 | break; |
| 332 | |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 333 | assert(0 && "Unimpl RawFrm expr"); |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 334 | break; |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 335 | } |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 336 | |
| 337 | case X86II::AddRegFrm: { |
| 338 | EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS); |
| 339 | if (CurOp == NumOps) |
| 340 | break; |
| 341 | |
| 342 | const MCOperand &MO1 = MI.getOperand(CurOp++); |
| 343 | if (MO1.isImm()) { |
| 344 | unsigned Size = X86InstrInfo::sizeOfImm(&Desc); |
| 345 | EmitConstant(MO1.getImm(), Size, OS); |
| 346 | break; |
| 347 | } |
| 348 | |
| 349 | assert(0 && "Unimpl AddRegFrm expr"); |
| 350 | break; |
Chris Lattner | 1e80f40 | 2010-02-03 21:57:59 +0000 | [diff] [blame] | 351 | } |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 352 | |
| 353 | case X86II::MRMDestReg: |
| 354 | EmitByte(BaseOpcode, OS); |
| 355 | EmitRegModRMByte(MI.getOperand(CurOp), |
| 356 | GetX86RegNum(MI.getOperand(CurOp+1)), OS); |
| 357 | CurOp += 2; |
| 358 | if (CurOp != NumOps) |
| 359 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
| 360 | X86InstrInfo::sizeOfImm(&Desc), OS); |
| 361 | break; |
Chris Lattner | 1ac23b1 | 2010-02-05 02:18:40 +0000 | [diff] [blame^] | 362 | |
| 363 | case X86II::MRMDestMem: |
| 364 | EmitByte(BaseOpcode, OS); |
| 365 | EmitMemModRMByte(MI, CurOp, |
| 366 | GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), |
| 367 | 0, OS); |
| 368 | CurOp += X86AddrNumOperands + 1; |
| 369 | if (CurOp != NumOps) |
| 370 | EmitConstant(MI.getOperand(CurOp++).getImm(), |
| 371 | X86InstrInfo::sizeOfImm(&Desc), OS); |
| 372 | break; |
Chris Lattner | 28249d9 | 2010-02-05 01:53:19 +0000 | [diff] [blame] | 373 | } |
| 374 | |
| 375 | #ifndef NDEBUG |
| 376 | if (!Desc.isVariadic() && CurOp != NumOps) { |
| 377 | errs() << "Cannot encode all operands of: "; |
| 378 | MI.dump(); |
| 379 | errs() << '\n'; |
| 380 | abort(); |
| 381 | } |
| 382 | #endif |
Chris Lattner | 4576247 | 2010-02-03 21:24:49 +0000 | [diff] [blame] | 383 | } |