blob: bfa02e838dc65fcc5e9ac6c45f32c27e63579861 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
22namespace {
23class X86MCCodeEmitter : public MCCodeEmitter {
24 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
25 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000026 const TargetMachine &TM;
27 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000028 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000029public:
Chris Lattner92b1dfe2010-02-03 21:43:43 +000030 X86MCCodeEmitter(TargetMachine &tm)
31 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner1ac23b12010-02-05 02:18:40 +000032 // FIXME: Get this from the right place.
33 Is64BitMode = false;
Chris Lattner45762472010-02-03 21:24:49 +000034 }
35
36 ~X86MCCodeEmitter() {}
37
Chris Lattner28249d92010-02-05 01:53:19 +000038 static unsigned GetX86RegNum(const MCOperand &MO) {
39 return X86RegisterInfo::getX86RegNum(MO.getReg());
40 }
41
Chris Lattner92b1dfe2010-02-03 21:43:43 +000042 void EmitByte(unsigned char C, raw_ostream &OS) const {
43 OS << (char)C;
Chris Lattner45762472010-02-03 21:24:49 +000044 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000045
Chris Lattner28249d92010-02-05 01:53:19 +000046 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
47 // Output the constant in little endian byte order.
48 for (unsigned i = 0; i != Size; ++i) {
49 EmitByte(Val & 255, OS);
50 Val >>= 8;
51 }
52 }
53
54 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
55 unsigned RM) {
56 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
57 return RM | (RegOpcode << 3) | (Mod << 6);
58 }
59
60 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
61 raw_ostream &OS) const {
62 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
63 }
64
Chris Lattner1ac23b12010-02-05 02:18:40 +000065 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
66 unsigned RegOpcodeField, intptr_t PCAdj,
67 raw_ostream &OS) const;
Chris Lattner28249d92010-02-05 01:53:19 +000068
Chris Lattner92b1dfe2010-02-03 21:43:43 +000069 void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
70
Chris Lattner45762472010-02-03 21:24:49 +000071};
72
73} // end anonymous namespace
74
75
76MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
77 TargetMachine &TM) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000078 return new X86MCCodeEmitter(TM);
79}
80
81
Chris Lattner1ac23b12010-02-05 02:18:40 +000082/// isDisp8 - Return true if this signed displacement fits in a 8-bit
83/// sign-extended field.
84static bool isDisp8(int Value) {
85 return Value == (signed char)Value;
86}
87
88void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
89 unsigned RegOpcodeField,
90 intptr_t PCAdj,
91 raw_ostream &OS) const {
92 const MCOperand &Op3 = MI.getOperand(Op+3);
93 int DispVal = 0;
94 const MCOperand *DispForReloc = 0;
95
96 // Figure out what sort of displacement we have to handle here.
97 if (Op3.isImm()) {
98 DispVal = Op3.getImm();
99 } else {
100#if 0
101 if (Op3.isGlobal()) {
102 DispForReloc = &Op3;
103 } else if (Op3.isSymbol()) {
104 DispForReloc = &Op3;
105 } else if (Op3.isCPI()) {
106 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
107 DispForReloc = &Op3;
108 } else {
109 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
110 DispVal += Op3.getOffset();
111 }
112 } else {
113 assert(Op3.isJTI());
114 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
115 DispForReloc = &Op3;
116 } else {
117 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
118 }
119#endif
120 }
121
122 const MCOperand &Base = MI.getOperand(Op);
123 //const MCOperand &Scale = MI.getOperand(Op+1);
124 const MCOperand &IndexReg = MI.getOperand(Op+2);
125 unsigned BaseReg = Base.getReg();
126
127 // Is a SIB byte needed?
128 // If no BaseReg, issue a RIP relative instruction only if the MCE can
129 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
130 // 2-7) and absolute references.
131 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
132 IndexReg.getReg() == 0 &&
133 (BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
134 if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
135 // Emit special case [disp32] encoding
136 EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
137#if 0
138 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
139#endif
140 } else {
141 unsigned BaseRegNo = GetX86RegNum(Base);
142 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
143 // Emit simple indirect register encoding... [EAX] f.e.
144 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
145 } else if (!DispForReloc && isDisp8(DispVal)) {
146 // Emit the disp8 encoding... [REG+disp8]
147 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
148 EmitConstant(DispVal, 1, OS);
149 } else {
150 // Emit the most general non-SIB encoding: [REG+disp32]
151 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
152#if 0
153 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
154#endif
155 }
156 }
157
158 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
159 assert(IndexReg.getReg() != X86::ESP &&
160 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
161
162 bool ForceDisp32 = false;
163 bool ForceDisp8 = false;
164 if (BaseReg == 0) {
165 // If there is no base register, we emit the special case SIB byte with
166 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
167 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
168 ForceDisp32 = true;
169 } else if (DispForReloc) {
170 // Emit the normal disp32 encoding.
171 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
172 ForceDisp32 = true;
173 } else if (DispVal == 0 && BaseReg != X86::EBP) {
174 // Emit no displacement ModR/M byte
175 EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
176 } else if (isDisp8(DispVal)) {
177 // Emit the disp8 encoding.
178 EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
179 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
180 } else {
181 // Emit the normal disp32 encoding.
182 EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
183 }
184
185#if 0
186 // Calculate what the SS field value should be...
187 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
188 unsigned SS = SSTable[Scale.getImm()];
189
190 if (BaseReg == 0) {
191 // Handle the SIB byte for the case where there is no base, see Intel
192 // Manual 2A, table 2-7. The displacement has already been output.
193 unsigned IndexRegNo;
194 if (IndexReg.getReg())
195 IndexRegNo = getX86RegNum(IndexReg.getReg());
196 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
197 IndexRegNo = 4;
198 emitSIBByte(SS, IndexRegNo, 5);
199 } else {
200 unsigned BaseRegNo = getX86RegNum(BaseReg);
201 unsigned IndexRegNo;
202 if (IndexReg.getReg())
203 IndexRegNo = getX86RegNum(IndexReg.getReg());
204 else
205 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
206 emitSIBByte(SS, IndexRegNo, BaseRegNo);
207 }
208
209 // Do we need to output a displacement?
210 if (ForceDisp8) {
211 emitConstant(DispVal, 1);
212 } else if (DispVal != 0 || ForceDisp32) {
213 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
214 }
215#endif
216 }
217}
218
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000219
220void X86MCCodeEmitter::
221EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
222 unsigned Opcode = MI.getOpcode();
223 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000224 unsigned TSFlags = Desc.TSFlags;
225
226 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
227 // in order to provide diffability.
228
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000229 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000230 if (TSFlags & X86II::LOCK)
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000231 EmitByte(0xF0, OS);
232
233 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000234 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000235 default: assert(0 && "Invalid segment!");
236 case 0: break; // No segment override!
237 case X86II::FS:
238 EmitByte(0x64, OS);
239 break;
240 case X86II::GS:
241 EmitByte(0x65, OS);
242 break;
243 }
244
Chris Lattner1e80f402010-02-03 21:57:59 +0000245 // Emit the repeat opcode prefix as needed.
246 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
247 EmitByte(0xF3, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000248
Chris Lattner1e80f402010-02-03 21:57:59 +0000249 // Emit the operand size opcode prefix as needed.
250 if (TSFlags & X86II::OpSize)
251 EmitByte(0x66, OS);
252
253 // Emit the address size opcode prefix as needed.
254 if (TSFlags & X86II::AdSize)
255 EmitByte(0x67, OS);
256
257 bool Need0FPrefix = false;
258 switch (TSFlags & X86II::Op0Mask) {
259 default: assert(0 && "Invalid prefix!");
260 case 0: break; // No prefix!
261 case X86II::REP: break; // already handled.
262 case X86II::TB: // Two-byte opcode prefix
263 case X86II::T8: // 0F 38
264 case X86II::TA: // 0F 3A
265 Need0FPrefix = true;
266 break;
267 case X86II::TF: // F2 0F 38
268 EmitByte(0xF2, OS);
269 Need0FPrefix = true;
270 break;
271 case X86II::XS: // F3 0F
272 EmitByte(0xF3, OS);
273 Need0FPrefix = true;
274 break;
275 case X86II::XD: // F2 0F
276 EmitByte(0xF2, OS);
277 Need0FPrefix = true;
278 break;
279 case X86II::D8: EmitByte(0xD8, OS); break;
280 case X86II::D9: EmitByte(0xD9, OS); break;
281 case X86II::DA: EmitByte(0xDA, OS); break;
282 case X86II::DB: EmitByte(0xDB, OS); break;
283 case X86II::DC: EmitByte(0xDC, OS); break;
284 case X86II::DD: EmitByte(0xDD, OS); break;
285 case X86II::DE: EmitByte(0xDE, OS); break;
286 case X86II::DF: EmitByte(0xDF, OS); break;
287 }
288
289 // Handle REX prefix.
290#if 0 // FIXME: Add in, also, can this come before F2 etc to simplify emission?
291 if (Is64BitMode) {
292 if (unsigned REX = X86InstrInfo::determineREX(MI))
293 EmitByte(0x40 | REX, OS);
294 }
295#endif
296
297 // 0x0F escape code must be emitted just before the opcode.
298 if (Need0FPrefix)
299 EmitByte(0x0F, OS);
300
301 // FIXME: Pull this up into previous switch if REX can be moved earlier.
302 switch (TSFlags & X86II::Op0Mask) {
303 case X86II::TF: // F2 0F 38
304 case X86II::T8: // 0F 38
305 EmitByte(0x38, OS);
306 break;
307 case X86II::TA: // 0F 3A
308 EmitByte(0x3A, OS);
309 break;
310 }
311
312 // If this is a two-address instruction, skip one of the register operands.
313 unsigned NumOps = Desc.getNumOperands();
314 unsigned CurOp = 0;
315 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
316 ++CurOp;
317 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
318 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
319 --NumOps;
320
Chris Lattner1ac23b12010-02-05 02:18:40 +0000321 // FIXME: Can we kill off MRMInitReg??
322
Chris Lattner1e80f402010-02-03 21:57:59 +0000323 unsigned char BaseOpcode = X86InstrInfo::getBaseOpcodeFor(Desc);
324 switch (TSFlags & X86II::FormMask) {
Chris Lattner1ac23b12010-02-05 02:18:40 +0000325 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
326 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000327 case X86II::RawFrm: {
328 EmitByte(BaseOpcode, OS);
329
330 if (CurOp == NumOps)
331 break;
332
Chris Lattner28249d92010-02-05 01:53:19 +0000333 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000334 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000335 }
Chris Lattner28249d92010-02-05 01:53:19 +0000336
337 case X86II::AddRegFrm: {
338 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS);
339 if (CurOp == NumOps)
340 break;
341
342 const MCOperand &MO1 = MI.getOperand(CurOp++);
343 if (MO1.isImm()) {
344 unsigned Size = X86InstrInfo::sizeOfImm(&Desc);
345 EmitConstant(MO1.getImm(), Size, OS);
346 break;
347 }
348
349 assert(0 && "Unimpl AddRegFrm expr");
350 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000351 }
Chris Lattner28249d92010-02-05 01:53:19 +0000352
353 case X86II::MRMDestReg:
354 EmitByte(BaseOpcode, OS);
355 EmitRegModRMByte(MI.getOperand(CurOp),
356 GetX86RegNum(MI.getOperand(CurOp+1)), OS);
357 CurOp += 2;
358 if (CurOp != NumOps)
359 EmitConstant(MI.getOperand(CurOp++).getImm(),
360 X86InstrInfo::sizeOfImm(&Desc), OS);
361 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000362
363 case X86II::MRMDestMem:
364 EmitByte(BaseOpcode, OS);
365 EmitMemModRMByte(MI, CurOp,
366 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
367 0, OS);
368 CurOp += X86AddrNumOperands + 1;
369 if (CurOp != NumOps)
370 EmitConstant(MI.getOperand(CurOp++).getImm(),
371 X86InstrInfo::sizeOfImm(&Desc), OS);
372 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000373 }
374
375#ifndef NDEBUG
376 if (!Desc.isVariadic() && CurOp != NumOps) {
377 errs() << "Cannot encode all operands of: ";
378 MI.dump();
379 errs() << '\n';
380 abort();
381 }
382#endif
Chris Lattner45762472010-02-03 21:24:49 +0000383}